1
|
Kong LT, Zhao CY, Xin HY, Gu WY, Su YX, Jia XH, Tang WZ. Confocal image of three oxoaporphine alkaloids in cancer cell lines and their interaction with DNA by multispectroscopic and molecular docking techniques. Int J Biol Macromol 2024; 280:135870. [PMID: 39307493 DOI: 10.1016/j.ijbiomac.2024.135870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Dicentrinone (Di), liriodenine (Li) and lysicamine (Ly) are three natural oxoaporphine alkaloids (OAs), which revealed significant biological activity such as anticancer, anti-inflammatory and antimicrobial activities and were considered as potential lead compounds for the development of new clinical chemicals. In the present study, confocal laser scanning fluorescence microscopy observation demonstrated these three natural OAs could traverse inside of the nucleus and get an opportunity to interact with DNA. Their interaction properties with DNA were then investigated simultaneously by two spectral fluorescent probes of ethidium bromide (EB) and methyl green (MG), as well as UV-vis absorption and cyclic voltammetry measurements, and further verified by the molecular docking analysis. Results indicated Di and Li were distinctly classified as the intercalative molecules to DNA, however, Ly was confirmed with a mixed-mode binding of partial intercalation and groove affinity. Their binding ability was revealed as the follows: Di ≥ Li > Ly, which was correlated with their structural changes. Thermodynamic studies revealed the binding process of Li and Ly with ctDNA was all spontaneous, the hydrophobic interaction was the major binding force for Li-ctDNA complex, however, the interaction between Ly and ctDNA relied on both hydrophobic and hydrogen binding force. Molecular docking provided detailed computational interaction of Di, Li and Ly with DNA, which proved the intercalation binding of Li-DNA complex and Di-DNA complex stabilizing mainly by the π-π binding force, however, apart from a small quantity of π-π interaction, another binding force in the Ly-DNA complex mainly was supplied from the weaker Pi-Alkyl, hydrogen bond and Pi-Anion interactions.
Collapse
Affiliation(s)
- Ling-Tao Kong
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Chao-Yue Zhao
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Hao-Yue Xin
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wen-Yu Gu
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Yu-Xin Su
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
| | - Xian-Hui Jia
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China.
| | - Wen-Zhao Tang
- School of Pharmacy & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China.
| |
Collapse
|
2
|
Newly Synthesized Melphalan Analogs Induce DNA Damage and Mitotic Catastrophe in Hematological Malignant Cancer Cells. Int J Mol Sci 2022; 23:ijms232214258. [PMID: 36430734 PMCID: PMC9693175 DOI: 10.3390/ijms232214258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Myeloablative therapy with highdoses of the cytostatic drug melphalan (MEL) in preparation for hematopoietic cell transplantation is the standard of care for multiple myeloma (MM) patients. Melphalan is a bifunctional alkylating agent that covalently binds to nucleophilic sites in the DNA and effective in the treatment, but unfortunately has limited therapeutic benefit. Therefore, new approaches are urgently needed for patients who are resistant to existing standard treatment with MEL. Regulating the pharmacological activity of drug molecules by modifying their structure is one method for improving their effectiveness. The purpose of this work was to analyze the physicochemical and biological properties of newly synthesized melphalan derivatives (EE-MEL, EM-MEL, EM-MOR-MEL, EM-I-MEL, EM-T-MEL) obtained through the esterification of the carboxyl group and the replacement of the the amino group with an amidine group. Compounds were selected based on our previous studies for their improved anticancer properties in comparison with the original drug. For this, we first evaluated the physicochemical properties using the circular dichroism technique, then analyzed the zeta potential and the hydrodynamic diameters of the particles. Then, the in vitro biological properties of the analogs were tested on multiple myeloma (RPMI8226), acute monocytic leukemia (THP1), and promyelocytic leukemia (HL60) cells as model systems for hematological malignant cells. DNA damage was assessed by immunostaining γH2AX, cell cycle distribution changes by propidium iodide (PI) staining, and cell death by the activation of caspase 2. We proved that the newly synthesized derivatives, in particular EM-MOR-MEL and EM-T-MEL, affected the B-DNA conformation, thus increasing the DNA damage. As a result of the DNA changes, the cell cycle was arrested in the S and G2/M phases. The cell death occurred by activating a mitotic catastrophe. Our investigations suggest that the analogs EM-MOR-MEL and EM-T-MEL have better anti-cancer activity in multiple myeloma cells than the currently used melphalan.
Collapse
|
3
|
Yadav V, Krishnan A, Baig MS, Majeed M, Nayak M, Vohora D. Decrypting the interaction pattern of Piperlongumine with calf thymus DNA and dodecamer d(CGCGAATTCGCG) 2 B-DNA: Biophysical and molecular docking analysis. Biophys Chem 2022; 285:106808. [PMID: 35358908 DOI: 10.1016/j.bpc.2022.106808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 12/20/2022]
Abstract
The mechanisms of interaction of DNA with pharmacological molecules are critical to understanding their therapeutic actions on physiological systems. Piperlongumine is widely studied for its anticancer potential. Multi-spectrometry, calorimetry and in silico studies were employed to study the interaction of piperlongumine and calf thymus DNA. UV-Vis spectroscopy illustrated a hyperchromic pattern in spectra of the calf thymus DNA-piperlongumine complex, while fluorescent quenching was observed in emission spectral studies. Competitive displacement assay demonstrated higher displacement and binding constant for DNA-rhodamine B complex by piperlongumine than DNA-methylene blue complex. Differential scanning calorimetry presented non-significant changes in melting temperature and molecular docking presented the precise interaction site of piperlongumine with calf thymus DNA at minor groove. Further, piperlongumine treatment did not result in pBluescript KS plasmid DNA cleavage as revealed from the DNA topology assay. All these experiments confirmed the binding of piperlongumine with DNA through minor groove binding mode.
Collapse
Affiliation(s)
- Vaishali Yadav
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Mirza Sarwar Baig
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Muhammed Majeed
- Sami-Sabinsa Group Limited, Bengaluru 560058, Karnataka, India
| | - Mahadeva Nayak
- Sami-Sabinsa Group Limited, Bengaluru 560058, Karnataka, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
5
|
Yang J, Li H, Wang X, Zhang C, Feng G, Peng X. Inhibition Mechanism of α-Amylase/α-Glucosidase by Silibinin, Its Synergism with Acarbose, and the Effect of Milk Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10515-10526. [PMID: 34463509 DOI: 10.1021/acs.jafc.1c01765] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a natural flavonolignan, silibinin is reported to possess multiple biological activities, while the inhibitory potential of silibinin on carbohydrate-hydrolyzing enzymes is still unclear. Therefore, in this study, the inhibitory effect and underlying mechanism of silibinin against α-amylase/α-glucosidase were investigated. The results indicated that silibinin showed a strong inhibitory efficiency against α-amylase/α-glucosidase in noncompetitive manners and exhibited synergistic inhibition against α-glucosidase with acarbose. However, interestingly, the inhibitory effect of silibinin was significantly hindered in various milk protein-rich environments, but this phenomenon disappeared after simulated gastrointestinal digestion of milk proteins in vitro. Furthermore, silibinin could combine with the inactive site of α-amylase/α-glucosidase and change the microenvironment and secondary structure of the enzymes, thereby influencing the catalytic efficiency of enzymes. This research suggested that silibinin could be used as a novel carbohydrate-hydrolyzing enzyme inhibitor, and milk beverages rich in silibinin had the potential for further application in antidiabetic dietary or medicine.
Collapse
Affiliation(s)
- Jichen Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoli Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuanying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guo Feng
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, People's Republic of China
| |
Collapse
|
6
|
Khan MI, Gulzar S, Majid A, Noor I. A computational study of intercalation of streptozotocin (STZ) into DNA base pairs. J Mol Model 2021; 27:78. [PMID: 33558970 DOI: 10.1007/s00894-020-04620-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022]
Abstract
Deoxyribonucleic acid (DNA) drug intercalation is a well-known phenomenon for the treatment of cancer. Streptozotocin (STZ) is a drug agent containing toxic properties that make it good in the pancreatic cancer. The main objective of this study is the intercalation of the anticancer drug into the stacked base pair of DNA sequence with ATGC using a density functional theory (DFT) code named as ADF-Molecule. ADF code implements DFT using the Slater-type orbitals (STO) for computational analysis of atomic and molecular structures. All the calculations were carried out with the GGA and hybrid exchange correlation functional with TZ2P basis sets. It was captivatingly studied that during the intercalation process, the bonds between the DNA base pairs broken. Moreover, during the process of intercalation, the free radicals are considered responsible for disturbance in the base configurations. It was determined that the disturbances that occurred in the base pairs lead to discontinuity in the replication of that particular sequence in the DNA strand.
Collapse
Affiliation(s)
| | - Salma Gulzar
- Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Abdul Majid
- Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Irum Noor
- Quaid e Azam Medical College, Bahawalpur, Pakistan
| |
Collapse
|
7
|
Antibacterial Activity of a Cationic Antimicrobial Peptide against Multidrug-Resistant Gram-Negative Clinical Isolates and Their Potential Molecular Targets. Molecules 2020; 25:molecules25215035. [PMID: 33142969 PMCID: PMC7663601 DOI: 10.3390/molecules25215035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial resistance reduces the efficacy of antibiotics. Infections caused by multidrug-resistant (MDR), Gram-negative bacterial strains, such as Klebsiella pneumoniae (MDRKp) and Pseudomonas aeruginosa (MDRPa), are a serious threat to global health. However, cationic antimicrobial peptides (CAMPs) are promising as an alternative therapeutic strategy against MDR strains. In this study, the inhibitory activity of a cationic peptide, derived from cecropin D-like (ΔM2), against MDRKp and MDRPa clinical isolates, and its interaction with membrane models and bacterial genomic DNA were evaluated. In vitro antibacterial activity was determined using the broth microdilution test, whereas interactions with lipids and DNA were studied by differential scanning calorimetry and electronic absorption, respectively. A strong bactericidal effect of ΔM2 against MDR strains, with minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) between 4 and 16 μg/mL, was observed. The peptide had a pronounced effect on the thermotropic behavior of the 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phosphorylglycerol (DMPG) membrane models that mimic bacterial membranes. Finally, the interaction between the peptide and genomic DNA (gDNA) showed a hyperchromic effect, which indicates that ΔM2 can denature bacterial DNA strands via the grooves.
Collapse
|