1
|
Schiavon E, Rezzola S, Filippi E, Turati M, Parrasia S, Bernardotto S, Stocco M, Szabò I, Mattarei A, Ronca R, Morpurgo M. A novel mertansine conjugate for acid-reversible targeted drug delivery validated through the Avidin-Nucleic-Acid-NanoASsembly platform. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102784. [PMID: 39236938 DOI: 10.1016/j.nano.2024.102784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/27/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
In targeted cancer therapy, antibody-drug-conjugates using mertansine (DM1)-based cytotoxic compounds rely on covalent bonds for drug conjugation. Consequently, the cytotoxic DM1 derivative released upon their proteolytic digestion is up to 1000-fold less potent than DM1 and lacks a bystander effect. To overcome these limitations, we developed a DM1 derivative (keto-DM1) suitable for bioconjugation through an acid-reversible hydrazone bond. Its acid-reversible hydrazone conjugate with biotin (B-Hz-DM1) was generated and tested for efficacy using the cetuximab-targeted Avidin-Nucleic-Acid-NanoASsembly (ANANAS) nanoparticle (NP) platform. NP-tethered B-Hz-DM1 is stable at neutral pH and releases its active moiety only in endosome/lysosome mimicking acidic pH. In vitro, the NP/Cetux/B-Hz-DM1 assembly showed high potency on MDA-MB231 breast cancer cells. In vivo both B-Hz-DM1 and NP/Cetux/B-Hz-DM1 reduced tumor growth. A significantly major effect was exerted by the nanoformulation, associated with an increased in situ tumor cell death. Keto-DM1 is a promising acid-reversible mertansine derivative for targeted delivery in cancer therapy.
Collapse
Affiliation(s)
- Elisa Schiavon
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131 Padova, Italy
| | - Sara Rezzola
- Molecular and Translational Medicine Dept (DMMT), University of Brescia, v.le Europa 11, 25121 Brescia, Italy
| | - Erica Filippi
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131 Padova, Italy
| | - Marta Turati
- Molecular and Translational Medicine Dept (DMMT), University of Brescia, v.le Europa 11, 25121 Brescia, Italy
| | - Sofia Parrasia
- Department of Biology (DiBio), University of Padova, Via U. Bassi, 58/B, Padova, Italy
| | - Simone Bernardotto
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131 Padova, Italy
| | - Martina Stocco
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology (DiBio), University of Padova, Via U. Bassi, 58/B, Padova, Italy
| | - Andrea Mattarei
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131 Padova, Italy
| | - Roberto Ronca
- Molecular and Translational Medicine Dept (DMMT), University of Brescia, v.le Europa 11, 25121 Brescia, Italy.
| | - Margherita Morpurgo
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131 Padova, Italy.
| |
Collapse
|
2
|
Cao X, Zheng J, Zhang R, Sun Y, Zhao M. Live-cell imaging of human apurinic/apyrimidinic endonuclease 1 in the nucleus and nucleolus using a chaperone@DNA probe. Nucleic Acids Res 2024; 52:e41. [PMID: 38554110 PMCID: PMC11077052 DOI: 10.1093/nar/gkae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) plays crucial roles in repairing DNA damage and regulating RNA in the nucleus. However, direct visualization of nuclear APE1 in live cells remains challenging. Here, we report a chaperone@DNA probe for live-cell imaging of APE1 in the nucleus and nucleolus in real time. The probe is based on an assembly of phenylboronic acid modified avidin and biotin-labeled DNA containing an abasic site (named PB-ACP), which cleverly protects DNA from being nonspecifically destroyed while enabling targeted delivery of the probe to the nucleus. The PB-ACP construct specifically detects APE1 due to the high binding affinity of APE1 for both avidin and the abasic site in DNA. It is easy to prepare, biocompatible and allowing for long-term observation of APE1 activity. This molecular tool offers a powerful means to investigate the behavior of APE1 in the nuclei of various types of live cells, particularly for the development of improved cancer therapies targeting this protein.
Collapse
Affiliation(s)
- Xiangjian Cao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jinghui Zheng
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Zhu C, Xie H, Zhang Y, Zhang R, Dai S, Li X, Sun Y, Zhang Y, Zhao M. Exploring the Complex Impact of Proteins on Dopamine Polymerization: Mechanisms and Strategies for Modulation. J Phys Chem B 2024; 128:2885-2896. [PMID: 38488148 DOI: 10.1021/acs.jpcb.3c07620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Polydopamine (pDA) is a valuable material with wide-ranging potential applications. However, the complex and debated nature of dopamine polymerization complicates our understanding. Specifically, the impact of foreign substances, especially proteins, on pDA formation adds an additional layer of subtlety and complexity. This study delves into specific surface features of proteins that predominantly shape their impact on dopamine polymerization. Notably, the biotin-binding site emerges as a critical region responsible for the pronounced inhibitory effect of avidin and neutravidin on the dopamine polymerization process. The binding of biotin successfully mitigates these inhibitory effects. Moreover, several nucleases demonstrated a significant hindrance to pDA formation, with their impact substantially alleviated through the introduction of DNA. It is speculated that hydrogen bonding, electrostatic, cation-π, and/or hydrophobic interactions may underlie the binding between protein surfaces and diverse oligomeric intermediates formed by the oxidation products of dopamine. Additionally, we observed a noteworthy blocking effect on the dopamine polymerization reaction induced by erythropoietin (EPO), a glycoprotein hormone known for its role in stimulating red blood cell production and demonstrating neuroprotective effects. The inhibitory influence of EPO persisted even after deglycosylation. These findings not only advance our comprehension of the mechanisms underlying dopamine polymerization but also provide strategic insights for manipulating the reaction to tailor desired biomaterials.
Collapse
Affiliation(s)
- Chenxu Zhu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaisyuan Xie
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yihan Zhang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ruilan Zhang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shenbin Dai
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyi Li
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying Sun
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuxuan Zhang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Bernardotto S, Frasson I, Faravelli S, Morelli A, Schiavon E, Moscatiello GY, Violatto MB, Pinnola A, Canciani A, Mattarei A, Rossi G, Brini M, Pasetto L, Bonetto V, Bigini P, Forneris F, Richter SN, Morpurgo M. Efficient SARS-CoV-2 infection antagonization by rhACE2 ectodomain multimerized onto the Avidin-Nucleic-Acid-NanoASsembly. Biomaterials 2023; 303:122394. [PMID: 38007919 DOI: 10.1016/j.biomaterials.2023.122394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Nanodecoy systems based on analogues of viral cellular receptors assembled onto fluid lipid-based membranes of nano/extravescicles are potential new tools to complement classic therapeutic or preventive antiviral approaches. The need for lipid-based membranes for transmembrane receptor anchorage may pose technical challenges along industrial translation, calling for alternative geometries for receptor multimerization. Here we developed a semisynthetic self-assembling SARS-CoV-2 nanodecoy by multimerizing the biotin labelled virus cell receptor -ACE2- ectodomain onto a poly-avidin nanoparticle (NP) based on the Avidin-Nucleic-Acid-NanoASsembly-ANANAS. The ability of the assembly to prevent SARS-CoV-2 infection in human lung cells and the affinity of the ACE2:viral receptor-binding domain (RBD) interaction were measured at different ACE2:NP ratios. At ACE2:NP = 30, 90 % SARS-CoV-2 infection inhibition at ACE2 nanomolar concentration was registered on both Wuhan and Omicron variants, with ten-fold higher potency than the monomeric protein. Lower and higher ACE2 densities were less efficient suggesting that functional recognition between multi-ligand NPs and multi-receptor virus surfaces requires optimal geometrical relationships. In vivo studies in mice showed that the biodistribution and safety profiles of the nanodecoy are potentially suitable for preventing viral infection upon nasal instillation. Viral receptor multimerization using ANANAS is a convenient process which, in principle, could be rapidly adapted to counteract also other viral infections.
Collapse
Affiliation(s)
- Simone Bernardotto
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine (DMM), University of Padova, Via A. Gabelli, 63, 35121, Padova, Italy
| | - Silvia Faravelli
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Annalisa Morelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Elisa Schiavon
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Giulia Yuri Moscatiello
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Alberta Pinnola
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Anselmo Canciani
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Andrea Mattarei
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy
| | - Gianpaolo Rossi
- Department of Medicine (DIMED), University of Padova, Via Giustiniani, 2, 35131, Padova, Italy
| | - Marisa Brini
- Department of Biology (DIBIO), Viale G. Colombo, 3, 35131, Padova, Italy
| | - Laura Pasetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Valentina Bonetto
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Italy, Via Mario Negri 2, 20156, Milano, Italy
| | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Dept. Biology and Biotechnology, University of Pavia, Via Ferrata 9/A, 27100, Pavia, Italy
| | - Sara N Richter
- Department of Molecular Medicine (DMM), University of Padova, Via A. Gabelli, 63, 35121, Padova, Italy; Microbiology and Virology Unit, Padua University Hospital, 35121, Padua, Italy.
| | - Margherita Morpurgo
- Pharmaceutical and Pharmacological Sciences Dept (DSF), University of Padova, Via Marzolo, 5. 35131, Padova, Italy.
| |
Collapse
|
5
|
Violatto MB, Pasetto L, Casarin E, Tondello C, Schiavon E, Talamini L, Marchini G, Cagnotto A, Morelli A, Lanno A, Passoni A, Bigini P, Morpurgo M, Bonetto V. Development of a Nanoparticle-Based Approach for the Blood-Brain Barrier Passage in a Murine Model of Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11244003. [PMID: 36552768 PMCID: PMC9776960 DOI: 10.3390/cells11244003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The development of nanoparticles (NPs) to enable the passage of drugs across blood-brain barrier (BBB) represents one of the main challenges in neuropharmacology. In recent years, NPs that are able to transport drugs and interact with brain endothelial cells have been tested. Here, we investigated whether the functionalization of avidin-nucleic-acid-nanoassembly (ANANAS) with apolipoprotein E (ApoE) would allow BBB passage in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Our results demonstrated that ANANAS was able to transiently cross BBB to reach the central nervous system (CNS), and ApoE did not enhance this property. Next, we investigated if ANANAS could improve CNS drug delivery. To this aim, the steroid dexamethasone was covalently linked to ANANAS through an acid-reversible hydrazone bond. Our data showed that the steroid levels in CNS tissues of SOD1G93A mice treated with nanoformulation were below the detection limit. This result demonstrates that the passage of BBB is not sufficient to guarantee the release of the cargo in CNS and that a different strategy for drug tethering should be devised. The present study furthermore highlights that NPs can be useful in improving the passage through biological barriers but may limit the interaction of the therapeutic compound with the specific target.
Collapse
Affiliation(s)
- Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Laura Pasetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | | | - Camilla Tondello
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padua, Italy
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital Frankfurt, 60596 Frankfurt am Main, Germany
| | - Elisa Schiavon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padua, Italy
| | - Laura Talamini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Gloria Marchini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Alfredo Cagnotto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Annalisa Morelli
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Alessia Lanno
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
| | - Margherita Morpurgo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padua, Italy
- Correspondence: (M.M.); (V.B.); Tel.: +39-049-8275330 (M.M.); +39-02-39014548 (V.B.)
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, 20133 Milan, Italy
- Correspondence: (M.M.); (V.B.); Tel.: +39-049-8275330 (M.M.); +39-02-39014548 (V.B.)
| |
Collapse
|
6
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
7
|
Perry CC, Ramos-Méndez J, Milligan JR. Boronated Condensed DNA as a Heterochromatic Radiation Target Model. Biomacromolecules 2021; 22:1675-1684. [PMID: 33750108 DOI: 10.1021/acs.biomac.1c00106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The compound 4-dihydroxyboryl-l-phenylalanine (BPA) has found use in clinical trials of boron neutron capture therapy (BNCT). Here, we have examined the interaction with DNA of an amide-blocked BPA derivative of hexa-l-arginine (Ac-BPA-Arg6-NH2). Physical and spectroscopic assays show that this peptide binds to and condenses DNA. The resulting condensates are highly resistant to the effects of nuclease incubation (68-fold) and gamma (38-fold) irradiation. Radioprotection was modeled by Monte Carlo track structure simulations of DNA single strand breaks (SSBs) with TOPAS-nBio. The differences between experimental and simulated SSB yields for uncondensed and condensed DNAs were ca. 2 and 18%, respectively. These observations indicate that the combination of a plasmid DNA target, the BPA-containing peptide, and track structure simulation provides a powerful approach to characterize DNA damage by the high-LET radiation associated with neutron capture on boron.
Collapse
Affiliation(s)
- Christopher C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, California 92350, United States
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, California 94115, United States
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, California 92350, United States
| |
Collapse
|
8
|
Hamada S, Yancey KG, Pardo Y, Gan M, Vanatta M, An D, Hu Y, Derrien TL, Ruiz R, Liu P, Sabin J, Luo D. Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Sci Robot 2021; 4:4/29/eaaw3512. [PMID: 33137715 DOI: 10.1126/scirobotics.aaw3512] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Abstract
Metabolism is a key process that makes life alive-the combination of anabolism and catabolism sustains life by a continuous flux of matter and energy. In other words, the materials comprising life are synthesized, assembled, dissipated, and decomposed autonomously in a controlled, hierarchical manner using biological processes. Although some biological approaches for creating dynamic materials have been reported, the construction of such materials by mimicking metabolism from scratch based on bioengineering has not yet been achieved. Various chemical approaches, especially dissipative assemblies, allow the construction of dynamic materials in a synthetic fashion, analogous to part of metabolism. Inspired by these approaches, here, we report a bottom-up construction of dynamic biomaterials powered by artificial metabolism, representing a combination of irreversible biosynthesis and dissipative assembly processes. An emergent locomotion behavior resembling a slime mold was programmed with this material by using an abstract design model similar to mechanical systems. Dynamic properties, such as autonomous pattern generation and continuous polarized regeneration, enabled locomotion along the designated tracks against a constant flow. Furthermore, an emergent racing behavior of two locomotive bodies was achieved by expanding the program. Other applications, including pathogen detection and hybrid nanomaterials, illustrated further potential use of this material. Dynamic biomaterials powered by artificial metabolism could provide a previously unexplored route to realize "artificial" biological systems with regenerating and self-sustaining characteristics.
Collapse
Affiliation(s)
- Shogo Hamada
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Kenneth Gene Yancey
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yehudah Pardo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mingzhe Gan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Max Vanatta
- Department of Architecture, Cornell University, Ithaca, NY 14853, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yue Hu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thomas L Derrien
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Roanna Ruiz
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Peifeng Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China.,Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jenny Sabin
- Department of Architecture, Cornell University, Ithaca, NY 14853, USA
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.,Micro-Nano Research and Diagnosis Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Chavan D, Chen H, Crum M, Vu B, Safari M, Smith M, Vekilov P, Conrad JC, Kourentzi K, Willson RC. Neutral DNA-avidin nanoparticles as ultrasensitive reporters in immuno-PCR. Analyst 2020; 145:4942-4949. [PMID: 32500871 PMCID: PMC7412439 DOI: 10.1039/d0an00134a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have developed an immuno-PCR based diagnostic platform which couples detection antibodies to self-assembled, ultra-detectable DNA-avidin nanoparticles stabilized with poly(ethylene glycol) to link DNA amplification to target protein concentration. Electrostatic neutralization and cloaking of the PCR-amplifiable DNA labels by avidin and PEG coating reduces non-specific "stickiness" and enhances assay sensitivity. We further optimized the detectability of the nanoparticles by incorporating four repeats of a unique synthetic DNA PCR target into each nanoparticle. Using human chorionic gonadotropin hormone (hCG) as a model analyte, this platform was able to quantitate the target hCG protein in femtomolar concentrations using only standard laboratory equipment.
Collapse
Affiliation(s)
- Dimple Chavan
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United States
| | - Hui Chen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United States
| | - Mary Crum
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Binh Vu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Mohammad Safari
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Maxwell Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Peter Vekilov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Richard C. Willson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204, United States
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Escuela de Medicina y Ciencias de la Salud ITESM Monterrey, Mexico
| |
Collapse
|
10
|
Kimura S, Imamura K, Futami J. A suitable and effective stepwise oxidative refolding procedure for highly-cationic tetrameric avidin in nucleic acid free conditions. Biotechnol Prog 2020; 36:e3031. [PMID: 32463160 DOI: 10.1002/btpr.3031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 11/06/2022]
Abstract
Optimized conditions are needed to refold recombinant proteins from bacterial inclusion bodies into their biologically active conformations. In this study, we found two crucial requirements for efficient refolding of cationic tetrameric chicken avidin. The first step is to eliminate nucleic acid contaminants from the bacterial inclusion body. The electrostatic interactions between the remaining nucleic acids and proteins strongly enhanced protein aggregation during the refolding process. The cysteine specific reversible S-cationization procedure was successfully employed for large-scale preparation of nucleic acid free denatured protein without purification tag system. The second step is the intramolecular disulfide formation prior to refolding in dialysis removing denaturant. Disulfide intact monomeric avidin showed efficient formation of biologically active tetrameric conformation during the refolding process. Using this optimized refolding procedure, highly cationic avidin derivative designed as an intracellular delivery carrier of biotinylated protein was successfully prepared.
Collapse
Affiliation(s)
- Shuichiro Kimura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Koreyoshi Imamura
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Violatto MB, Casarin E, Talamini L, Russo L, Baldan S, Tondello C, Messmer M, Hintermann E, Rossi A, Passoni A, Bagnati R, Biffi S, Toffanin C, Gimondi S, Fumagalli S, De Simoni MG, Barisani D, Salmona M, Christen U, Invernizzi P, Bigini P, Morpurgo M. Dexamethasone Conjugation to Biodegradable Avidin-Nucleic-Acid-Nano-Assemblies Promotes Selective Liver Targeting and Improves Therapeutic Efficacy in an Autoimmune Hepatitis Murine Model. ACS NANO 2019; 13:4410-4423. [PMID: 30883091 DOI: 10.1021/acsnano.8b09655] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Steroids are the standard therapy for autoimmune hepatitis (AIH) but the long-lasting administration is hampered by severe side effects. Methods to improve the tropism of the drug toward the liver are therefore required. Among them, conjugation to nanoparticles represents one possible strategy. In this study, we exploited the natural liver tropism of Avidin-Nucleic-Acid-Nano-Assemblies (ANANAS) to carry dexamethasone selectively to the liver in an AIH animal model. An acid-labile biotin-hydrazone linker was developed for reversible dexamethasone loading onto ANANAS. The biodistribution, pharmacokinetics and efficacy of free and ANANAS-linked dexamethasone (ANANAS-Hz-Dex) in healthy and AIH mice were investigated upon intraperitoneal administration. In ANANAS-treated animals, the free drug was detected only in the liver. Super-resolution microscopy showed that nanoparticles segregate inside lysosomes of liver immunocompetent cells, mainly involved in AIH progression. In agreement with these observational results, chronic low-dose treatment with ANANAS-Hz-Dex reduced the expression of liver inflammation markers and, in contrast to the free drug, also the levels of circulating AIH-specific autoantibodies. These data suggest that the ANANAS carrier attenuates AIH-related liver damage without drug accumulation in off-site tissues. The safety and biodegradability of the ANANAS carrier make this formulation a promising tool for the treatment of autoimmune liver disorders.
Collapse
Affiliation(s)
- Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | | | - Laura Talamini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Luca Russo
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Simone Baldan
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , 35131 , Italy
| | - Camilla Tondello
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , 35131 , Italy
| | - Marie Messmer
- Pharmazentrum Frankfurt/ZAFES , Goethe University Hospital Frankfurt , Frankfurt am Main , 60488 , Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt/ZAFES , Goethe University Hospital Frankfurt , Frankfurt am Main , 60488 , Germany
| | - Alessandro Rossi
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo″ , Trieste , 34137 , Italy
| | - Chiara Toffanin
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Sara Gimondi
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Stefano Fumagalli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Donatella Barisani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Urs Christen
- Pharmazentrum Frankfurt/ZAFES , Goethe University Hospital Frankfurt , Frankfurt am Main , 60488 , Germany
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, 20900, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, Milano, 20156, Italy
| | - Margherita Morpurgo
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Padova , 35131 , Italy
| |
Collapse
|
12
|
Delgadillo RF, Mueser TC, Zaleta-Rivera K, Carnes KA, González-Valdez J, Parkhurst LJ. Detailed characterization of the solution kinetics and thermodynamics of biotin, biocytin and HABA binding to avidin and streptavidin. PLoS One 2019; 14:e0204194. [PMID: 30818336 PMCID: PMC6394990 DOI: 10.1371/journal.pone.0204194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 02/01/2019] [Indexed: 01/02/2023] Open
Abstract
The high affinity (KD ~ 10−15 M) of biotin for avidin and streptavidin is the essential component in a multitude of bioassays with many experiments using biotin modifications to invoke coupling. Equilibration times suggested for these assays assume that the association rate constant (kon) is approximately diffusion limited (109 M-1s-1) but recent single molecule and surface binding studies indicate that they are slower than expected (105 to 107 M-1s-1). In this study, we asked whether these reactions in solution are diffusion controlled, which reaction model and thermodynamic cycle describes the complex formation, and if there are any functional differences between avidin and streptavidin. We have studied the biotin association by two stopped-flow methodologies using labeled and unlabeled probes: I) fluorescent probes attached to biotin and biocytin; and II) unlabeled biotin and HABA, 2-(4’-hydroxyazobenzene)-benzoic acid. Both native avidin and streptavidin are homo-tetrameric and the association data show no cooperativity between the binding sites. The kon values of streptavidin are faster than avidin but slower than expected for a diffusion limited reaction in both complexes. Moreover, the Arrhenius plots of the kon values revealed strong temperature dependence with large activation energies (6–15 kcal/mol) that do not correspond to a diffusion limited process (3–4 kcal/mol). Accordingly, we propose a simple reaction model with a single transition state for non-immobilized reactants whose forward thermodynamic parameters complete the thermodynamic cycle, in agreement with previously reported studies. Our new understanding and description of the kinetics, thermodynamics, and spectroscopic parameters for these complexes will help to improve purification efficiencies, molecule detection, and drug screening assays or find new applications.
Collapse
Affiliation(s)
- Roberto F. Delgadillo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, United States of America
| | - Kathia Zaleta-Rivera
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Katie A. Carnes
- GlaxoSmithKline, Medicinal Science and Technology, R&D, King of Prussia, Pennsylvania, United States of America
| | - José González-Valdez
- Tecnologico de Monterrey, School of Engineering and Science, NL, Monterrey, Mexico
| | - Lawrence J. Parkhurst
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RFD); (LJP)
| |
Collapse
|
13
|
Improvement and extension of anti-EGFR targeting in breast cancer therapy by integration with the Avidin-Nucleic-Acid-Nano-Assemblies. Nat Commun 2018; 9:4070. [PMID: 30287819 PMCID: PMC6172284 DOI: 10.1038/s41467-018-06602-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 09/12/2018] [Indexed: 12/03/2022] Open
Abstract
Nowadays, personalized cancer therapy relies on small molecules, monoclonal antibodies, or antibody–drug conjugates (ADC). Many nanoparticle (NP)-based drug delivery systems are also actively investigated, but their advantage over ADCs has not been demonstrated yet. Here, using the Avidin-Nucleic-Acid-Nano-Assemblies (ANANAS), a class of polyavidins multifuctionalizable with stoichiometric control, we compare quantitatively anti-EGFR antibody(cetuximab)-targeted NPs to the corresponding ADC. We show that ANANAS tethering of cetuximab promotes a more efficient EGFR-dependent vesicle-mediated internalization. Cetuximab-guided ANANAS carrying doxorubicin are more cytotoxic in vitro and much more potent in vivo than the corresponding ADC, leading to 43% tumor reduction at low drug dosage (0.56 mg/kg). Advantage of cetuximab-guided ANANAS with respect to the ADC goes beyond the increase in drug-to-antibody ratio. Even if further studies are needed, we propose that NP tethering could expand application of the anti-EGFR antibody to a wider number of cancer patients including the KRAS-mutated ones, currently suffering from poor prognosis. The nature of the linker is known to affect the efficacy of antibody–drug conjugate (ADC). Here the authors show cetuximab-guided Avidin-Nucleic-Acid-Nanoassemblies to be superior to cetuximab-doxorubicin conjugate, and show its efficacy in KRAS mutant breast cancer, allowing for therapeutic expansion of anti-EGFR therapy.
Collapse
|
14
|
Facchin S, Digiglio L, D'Incà R, Casarin E, Dassie E, Dettin M, Zamuner A, Buda A, De Boni M, Della Libera D, D'Urso A, Sturniolo GC, Morpurgo M. Discrimination between ulcerative colitis and Crohn's disease using phage display identified peptides and virus-mimicking synthetic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2027-2036. [PMID: 28428053 DOI: 10.1016/j.nano.2017.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/14/2017] [Accepted: 04/08/2017] [Indexed: 01/04/2023]
|
15
|
Amini HR, Pakdel A, Shahr-Babak HM, Eghbalsaied S. Developing a puncture-free in ovo chicken transfection strategy based on bypassing albumen nucleases. Theriogenology 2017; 91:90-97. [DOI: 10.1016/j.theriogenology.2016.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 12/10/2016] [Accepted: 12/15/2016] [Indexed: 11/17/2022]
|
16
|
Chaparian S, Abdulahnejad A, Rashidi F, Toghyani M, Gheisari A, Eghbalsaied S. Is passive transmission of non-viral vectors through artificial insemination of sperm-DNA mixtures sufficient for chicken transgenesis? J Reprod Dev 2016; 62:265-70. [PMID: 26935324 PMCID: PMC4919290 DOI: 10.1262/jrd.2015-176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA uptake in the post-acrosomal region of the spermatozoa takes place exclusively in immotile spermatozoa that are naturally unable to fertilize eggs. The present study aimed to assess whether passive transmission of non-viral vectors to the surrounding areas of chicken embryos could be an alternate mechanism in chicken sperm-mediated gene transfer. First, the presence of nucleases in rooster seminal plasma was evaluated. Semen ejaculates from five roosters were centrifuged and the supernatant was incubated with pBL2 for 1 h. A robust nuclease cocktail was detected in the rooster semen. To overcome these nucleases, plasmid-TransIT combinations were incubated with semen for 1 h. Incubation of exogenous DNA in the lipoplex structure could considerably bypass the semen nuclease effect. Then, intravaginal insemination of 1 × 10(9) sperm mixed with lipoplexes (40 µg pBL2:40 µl TransIT) was carried out in 15 virgin hens. Neither the epithelial tissue from the inseminated female reproductive tracts nor the produced embryos following artificial insemination showed the transgene. To remove any bias in the transgene transmission possibility, the plasmid-TransIT admixture was directly injected in close vicinity of the embryos in newly laid eggs. Nonetheless, none of the produced fetuses or chicks carried the transgene. In conclusion, the results of the present study revealed a nuclease admixture in rooster seminal plasma, and passive/active transmission of the non-viral vector into close vicinity of the chicken embryo was inefficient for producing transgenic chicks.
Collapse
Affiliation(s)
- Shahram Chaparian
- Young Researchers and Elite Club, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | | | | | | | | |
Collapse
|
17
|
Casarin E, Lucchese L, Grazioli S, Facchin S, Realdon N, Brocchi E, Morpurgo M, Nardelli S. A New ELISA Using the ANANAS Technology Showing High Sensitivity to diagnose the Bovine Rhinotracheitis from Individual Sera to Pooled Milk. PLoS One 2016; 11:e0145912. [PMID: 26761815 PMCID: PMC4712047 DOI: 10.1371/journal.pone.0145912] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022] Open
Abstract
Diagnostic tests for veterinary surveillance programs should be efficient, easy to use and, possibly, economical. In this context, classic Enzyme linked ImmunoSorbent Assay (ELISA) remains the most common analytical platform employed for serological analyses. The analysis of pooled samples instead of individual ones is a common procedure that permits to certify, with one single test, entire herds as “disease-free”. However, diagnostic tests for pooled samples need to be particularly sensitive, especially when the levels of disease markers are low, as in the case of anti-BoHV1 antibodies in milk as markers of Infectious Bovine Rhinotracheitis (IBR) disease. The avidin-nucleic-acid-nanoassembly (ANANAS) is a novel kind of signal amplification platform for immunodiagnostics based on colloidal poly-avidin nanoparticles that, using model analytes, was shown to strongly increase ELISA test performance as compared to monomeric avidin. Here, for the first time, we applied the ANANAS reagent integration in a real diagnostic context. The monoclonal 1G10 anti-bovine IgG1 antibody was biotinylated and integrated with the ANANAS reagents for indirect IBR diagnosis from pooled milk mimicking tank samples from herds with IBR prevalence between 1 to 8%. The sensitivity and specificity of the ANANAS integrated method was compared to that of a classic test based on the same 1G10 antibody directly linked to horseradish peroxidase, and a commercial IDEXX kit recently introduced in the market. ANANAS integration increased by 5-fold the sensitivity of the 1G10 mAb-based conventional ELISA without loosing specificity. When compared to the commercial kit, the 1G10-ANANAS integrated method was capable to detect the presence of anti-BHV1 antibodies from bulk milk of gE antibody positive animals with 2-fold higher sensitivity and similar specificity. The results demonstrate the potentials of this new amplification technology, which permits improving current classic ELISA sensitivity limits without the need for new hardware investments.
Collapse
Affiliation(s)
- Elisabetta Casarin
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences Padova, Italy
| | - Laura Lucchese
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
| | - Santina Grazioli
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna (IZSLER), Brescia, Italy
| | | | - Nicola Realdon
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences Padova, Italy
| | - Emiliana Brocchi
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna (IZSLER), Brescia, Italy
| | - Margherita Morpurgo
- University of Padova, Department of Pharmaceutical and Pharmacological Sciences Padova, Italy
- * E-mail: (SN); (MM)
| | - Stefano Nardelli
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro (PD), Italy
- * E-mail: (SN); (MM)
| |
Collapse
|
18
|
Papadimitriou SA, Salinas Y, Resmini M. Smart Polymeric Nanoparticles as Emerging Tools for Imaging--The Parallel Evolution of Materials. Chemistry 2015; 22:3612-20. [PMID: 26563829 DOI: 10.1002/chem.201502610] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 12/11/2022]
Abstract
The field of imaging has developed considerably over the past decade and recent advances in the area of nanotechnology, in particular nanomaterials, have opened new opportunities. Polymeric nanoparticles are particularly interesting and a number of novel materials, characterized by stimuli-responsive characteristics and fluorescent tagging, have allowed visualization, intracellular labeling and real-time tracking. In some of the latest applications the nanoparticles have been used for imagining of tumor cells, both in vivo and ex vivo.
Collapse
Affiliation(s)
- Sofia A Papadimitriou
- Queen Mary University of London, Department of Chemistry, SBCS, Mile End Road, London, E1 4NS, UK
| | - Yolanda Salinas
- Queen Mary University of London, Department of Chemistry, SBCS, Mile End Road, London, E1 4NS, UK
| | - Marina Resmini
- Queen Mary University of London, Department of Chemistry, SBCS, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
19
|
Buda A, Facchin S, Dassie E, Casarin E, Jepson MA, Neumann H, Hatem G, Realdon S, D'Incà R, Sturniolo GC, Morpurgo M. Detection of a fluorescent-labeled avidin-nucleic acid nanoassembly by confocal laser endomicroscopy in the microvasculature of chronically inflamed intestinal mucosa. Int J Nanomedicine 2015; 10:399-408. [PMID: 25609952 PMCID: PMC4294647 DOI: 10.2147/ijn.s70153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel diseases are chronic gastrointestinal pathologies causing great discomfort in both children and adults. The pathogenesis of inflammatory bowel diseases is not yet fully understood and their diagnosis and treatment are often challenging. Nanoparticle-based strategies have been tested in local drug delivery to the inflamed colon. Here, we have investigated the use of the novel avidin-nucleic acid nanoassembly (ANANAS) platform as a potential diagnostic carrier in an experimental model of inflammatory bowel diseases. Fluorescent- labeled ANANAS nanoparticles were administered to mice with chemically induced chronic inflammation of the large intestine. Localization of mucosal nanoparticles was assessed in vivo by dual-band confocal laser endomicroscopy. This technique enables characterization of the mucosal microvasculature and crypt architecture at subcellular resolution. Intravascular nanoparticle distribution was observed in the inflamed mucosa but not in healthy controls, demonstrating the utility of the combination of ANANAS and confocal laser endomicroscopy for highlighting intestinal inflammatory conditions. The specific localization of ANANAS in inflamed tissues supports the potential of this platform as a targeted carrier for bioactive moieties in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Andrea Buda
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Sonia Facchin
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Elisa Dassie
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Elisabetta Casarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mark A Jepson
- School of Biochemistry and Wolfson Bioimaging Facility, University of Bristol, Bristol, UK
| | - Helmut Neumann
- Ludwig Demlig Endoscopic Center of Excellence, ESGE Endoscopy Training Center, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Giorgia Hatem
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | | | - Renata D'Incà
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Giacomo Carlo Sturniolo
- Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Margherita Morpurgo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
20
|
Tsai JLL, Chan AOY, Che CM. A luminescent cyclometalated gold(iii)–avidin conjugate with a long-lived emissive excited state that binds to proteins and DNA and possesses anti-proliferation capacity. Chem Commun (Camb) 2015; 51:8547-50. [DOI: 10.1039/c5cc00186b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Here we describe a luminescent cyclometalated Au(iii)–avidin conjugate that exhibits a 520 nm emission with a lifetime of 1.8 μs in PBS solution in open air.
Collapse
Affiliation(s)
- Johnson Lui-Lui Tsai
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Center and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| | - Anna On-Yee Chan
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Center and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry
- Institute of Molecular Functional Materials
- Chemical Biology Center and Department of Chemistry
- The University of Hong Kong
- Hong Kong
| |
Collapse
|
21
|
Cai M, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R. Guanidinated multi-arm star polyornithines with a polyethylenimine core for gene delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Bigini P, Previdi S, Casarin E, Silvestri D, Violatto MB, Facchin S, Sitia L, Rosato A, Zuccolotto G, Realdon N, Fiordaliso F, Salmona M, Morpurgo M. In vivo fate of avidin-nucleic acid nanoassemblies as multifunctional diagnostic tools. ACS NANO 2014; 8:175-187. [PMID: 24328174 DOI: 10.1021/nn402669w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study describes the formulation optimization and body-cell distribution and clearance in mice of a dually fluorescent biodegradable poly avidin nanoassembly based on the novel Avidin-Nucleic-Acid-Nano-ASsembly (ANANAS) platform as a potential advancement of classic avidin/biotin-based targeted delivery. The nanoformulation circulates freely in the bloodstream; it is slowly captured by filter organs; it is efficiently cleared within 24-48 h, and it is poorly immunogenic. The system displays more favorable properties than its parent monomeric avidin and it is a promising tool for diagnostic purposes for future translational aims, for which free circulation in the bloodstream, safety, multifunctionality and high composition definition are all necessary requirements. In addition, the assembly shows a time-dependent cell penetration capability, suggesting it may also function as a NP-dependent drug delivery tool. The ease of preparation together with the possibility to fine-tune the surface composition makes it also an ideal candidate to understand if and how nanoparticle composition affects its localization.
Collapse
Affiliation(s)
- Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri" , Via La Masa 19, 20156 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lee A, Molloy MP, Baker MS, Kapur A. Tandem ion exchange fractionation of chicken egg white reveals the presence of proliferative bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4079-4088. [PMID: 23574589 DOI: 10.1021/jf305276c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Chicken eggs are recognized for their versatility as a food product and as a model for research in biology and medicine. This study investigated the egg white as a source of bioactive compounds. Egg white was fractionated using tandem ion exchange chromatography (SAX and SCX), and seven fractions were assessed for any associated bioactivity. Four fractions at various protein concentrations were shown to contain proliferative bioactivity that exceeded the FBS control. The most potent fraction (6) was used in an in vitro wound closure assay to demonstrate a positive influence on cell migration and restored scratch wounds more rapidly than the control. LC-MS/MS identified 33 proteins in fraction 6 of egg white, most of which play important roles in cell growth and development, signaling, motility, and proliferation. These candidate bioactives suggest that the egg white contains essential compounds that contribute to the growth of an embryo prior to fertilization.
Collapse
Affiliation(s)
- Albert Lee
- Department of Chemistry and Biomolecular Sciences and ‡Australian Proteome Analysis Facility (APAF), Research Park Drive, Macquarie University , Sydney, 2109 NSW, Australia
| | | | | | | |
Collapse
|
24
|
Cambi M, Tamburrino L, Marchiani S, Olivito B, Azzari C, Forti G, Baldi E, Muratori M. Development of a specific method to evaluate 8-hydroxy,2-deoxyguanosine in sperm nuclei: relationship with semen quality in a cohort of 94 subjects. Reproduction 2013; 145:227-35. [DOI: 10.1530/rep-12-0404] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative stress (OS) is involved in many disoders including male infertility. Human spermatozoa are very sensitive targets of reactive oxygen species (ROS) and most sperm functions are impaired in the case of OS. In addition unbalanced production of ROS is considered one of the most important causes of sperm DNA fragmentation, a semen trait of infertile men. The relationship between oxidative damage and semen quality is partially controversial, probably due to the different methods and/or targets used to reveal the OS. In this study, by fluorescence microscopy and flow cytometry, we compared two methods to reveal 8-hydroxy,2-deoxyguanosine (8-OHdG), the hallmark of oxidative DNA damage: an immunofluorescence method and the commercial OxyDNA kit. We found that although both methods localized the labelling in sperm nuclei they yielded different measures, and only with the immunofluorescence method was the labelling specific for sperm 8-OHdG. The immunofluorescence method, coupled to flow cytometry, was thus selected to analyse the 8-OHdG content in semen samples from 94 subfertile patients and to investigate the relationship with semen quality. We found that the percentages of spermatozoa with 8-OHdG (mean±s.d., 11.4±6.9%) were related to sperm count (Pearson's correlation coefficient (r)=−0.27, P=0.04 (ANOVA and student's t-test)), motility (progressive: r=−0.22, P=0.04; non-progressive: r=0.25, P=0.01), and normal morphology (r=−0.27, P=0.01). In conclusion, we demonstrate that immunofluorescence/flow cytometry is a reliable and specific method to detect 8-OHdG at single-cell level and show that oxidative damage only partially overlaps poor semen quality, suggesting that it could provide additional information on male fertility with respect to routine semen analysis.
Collapse
|
25
|
Perry CC, Urata SM, Lee M, Aguilera JA, Milligan JR. Radioprotective effects produced by the condensation of plasmid DNA with avidin and biotinylated gold nanoparticles. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:457-468. [PMID: 22825766 DOI: 10.1007/s00411-012-0429-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/28/2012] [Indexed: 06/01/2023]
Abstract
The treatment of aqueous solutions of plasmid DNA with the protein avidin results in significant changes in physical, chemical, and biochemical properties. These effects include increased light scattering, formation of micron-sized particles containing both DNA and protein, and plasmid protection against thermal denaturation, radical attack, and nuclease digestion. All of these changes are consistent with condensation of the plasmid by avidin. Avidin can be displaced from the plasmid at higher ionic strengths. Avidin is not displaced from the plasmid by an excess of a tetra-arginine ligand, nor by the presence of biotin. Therefore, this system offers the opportunity to reversibly bind biotin-labeled species to a condensed DNA-protein complex. An example application is the use of biotinylated gold nanoparticles. This system offers the ability to examine in better detail the chemical mechanisms involved in important radiobiological effects. Examples include protein modulation of radiation damage to DNA, and radiosensitization by gold nanoparticles.
Collapse
Affiliation(s)
- Christopher C Perry
- Department of Biochemistry, Loma Linda University, 11085 Campus Street, Loma Linda, CA, 92350, USA
| | | | | | | | | |
Collapse
|
26
|
Domenech M, García E, Prieto A, Moscoso M. Insight into the composition of the intercellular matrix of Streptococcus pneumoniae biofilms. Environ Microbiol 2012; 15:502-16. [PMID: 22913814 DOI: 10.1111/j.1462-2920.2012.02853.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/21/2012] [Indexed: 12/01/2022]
Abstract
Biofilm matrices consist of a mixture of extracellular polymeric substances synthesized in large part by the biofilm-producing microorganisms themselves. These matrices are responsible for the cohesion and three-dimensional architecture of biofilms. The present study demonstrates the existence of a matrix composed of extracellular DNA, proteins and polysaccharides in the biofilm formed by the human pathogen Streptococcus pneumoniae. Extracellular DNA, visualized by fluorescent labelling, was an important component of this matrix. The existence of DNA-protein complexes associated with bacterial aggregates and other polymers was hypothesized based on the unexpected DNA binding activity of lysozyme LytC, a novel moonlighting protein. Actually, a 25-amino-acid-long peptide derived from LytC (positions 408 and 432 of the mature LytC) was also capable of efficiently binding to DNA. Moreover, the presence of intercellular DNA-LytC protein complexes in pneumococcal biofilms was demonstrated by confocal laser scanning microscopy. Evidence of extracellular polysaccharide different from the capsule was obtained by staining with Calcofluor dye and four types of lectin conjugated to Alexa fluorophores, and by incubation with glycoside hydrolases. The presence of residues of Glcp(1→4) and GlcNAc(1→4) (in its deacetylated form) in the pneumococcal biofilm was confirmed by GC-MS techniques.
Collapse
Affiliation(s)
- Mirian Domenech
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Morpurgo M, Facchin S, Pignatto M, Silvestri D, Casarin E, Realdon N. Characterization of multifunctional nanosystems based on the avidin-nucleic acid interaction as signal enhancers in immuno-detection. Anal Chem 2012; 84:3433-9. [PMID: 22414051 DOI: 10.1021/ac300276u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Avidin-Nucleic-Acids-Nano-Assembly (ANANAS) is a kind of soft poly avidin nanoparticle originating from the high affinity interaction between avidin and the nucleic acids. In this work we investigated the possibility of transforming ANANAS cores into stoichiometrically controlled multifunctional nanoparticles through a "one-pot" procedure, and we measured in a quantitative way their ability to work as reagents for enhanced immunodiagnostic detection. Initially, we measured the ANANAS loading capability for biotinylated proteins of different nature. About 200 molecules of biotin-horseradish-peroxidase (40KDa b-HRP) and 60 molecules of biotin-immunoglobulin-G (150KDa b-IgG) could be accommodated onto each nanoparticle, showing that steric limitations dictate the number of loadable entities. Stoichiometrically controlled functional assemblies were generated by mixing core particles with subsaturating amounts of b-HRP and b-IgG. When applied as detection reagents in an Enzyme-Linked-ImmunoSorbed-Assay (ELISA), these assemblies were up to two-orders of magnitude more sensitive than commercial HRP-based reagents. Assemblies of different composition displayed different efficacy, indicating that the system functionality can be fine-tuned. Within-assay variability (CV%), measured to assess if the assembly procedure is reproducible, was within 10%. Stability experiments demonstrated that the functionalyzed assemblies are stable in solution for more than one week. In principle, any biotinylated function can be loaded onto the core particle, whose high loading capacity and tunability may open the way toward further application in biomedicine.
Collapse
Affiliation(s)
- Margherita Morpurgo
- Pharmaceutical Chemistry and Pharmacology Department, The University of Padova, Via Marzolo, 5, 35131 Padova.
| | | | | | | | | | | |
Collapse
|
28
|
Konigsfeld KM, Lee M, Urata SM, Aguilera JA, Milligan JR. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation. Int J Radiat Biol 2011; 88:230-8. [PMID: 22124251 DOI: 10.3109/09553002.2012.643853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. MATERIALS AND METHODS Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. RESULTS We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. CONCLUSION These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.
Collapse
Affiliation(s)
- Katie M Konigsfeld
- Department of Radiology, University of California at San Diego, La Jolla, California 92093-0610, USA
| | | | | | | | | |
Collapse
|
29
|
Lehnert M, Gorbahn M, Klein M, Al-Nawas B, Köper I, Knoll W, Veith M. Streptavidin-coated TiO2 surfaces are biologically inert: Protein adsorption and osteoblast adhesion studies. J Biomed Mater Res A 2011; 100:388-95. [DOI: 10.1002/jbm.a.33281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/28/2011] [Accepted: 08/29/2011] [Indexed: 01/13/2023]
|
30
|
Naknukool S, Hayakawa S, Ogawa M. Multiple biological functions of novel basic proteins isolated from duck egg white: duck basic protein small 1 (dBPS1) and 2 (dBPS2). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5081-5086. [PMID: 21425855 DOI: 10.1021/jf2004404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biological functions of duck basic protein small 1 (dBPS(1)) and 2 (dBPS(2)) were investigated by in vitro experiments. Results of agarose gel retardation assay indicated that dBPS(1) and dBPS(2) associate with RNA. Addition of NaCl or urea induced partial dissociation of dBPS(1)/dBPS(2)-RNA complex, implying that electrostatic interaction, hydrophobic interaction, and hydrogen bonds are involved in the association of dBPS(1)/dBPS(2) to RNA. dBPS(1) and dBPS(2) inhibited pancreatic lipase activity with the fifty percent inhibitory concentration (IC(50)) of 250 and 100 μg/mL, respectively. Peptic hydrolysates of dBPS(1) and those of dBPS(2) showed a potent angiotensin I-converting enzyme (ACE) inhibition with an IC(50) of 22.5 and 49.6 mg/L. The most potent ACE-inhibitory peptide was a nanopeptide (EKKGFCAGY) from dBPS(1) and an octapeptide (KYCPKVGY) from dBPS(2). These multiple biological functions of dBPS(1) and dBPS(2) may contribute to reducing the risk of lifestyle diseases.
Collapse
Affiliation(s)
- Supaporn Naknukool
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Kagawa, Japan
| | | | | |
Collapse
|
31
|
Nepal D, Minus ML, Kumar S. Lysozyme Coated DNA and DNA/SWNT Fibers by Solution Spinning. Macromol Biosci 2011; 11:875-81. [DOI: 10.1002/mabi.201000490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Indexed: 11/11/2022]
|
32
|
Synthesis and characterization of functionalized poly(γ-benzyl-l-glutamate) derivates and corresponding nanoparticles preparation and characterization. Int J Pharm 2010; 387:244-52. [DOI: 10.1016/j.ijpharm.2009.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 11/17/2022]
|
33
|
Takakura Y, Tsunashima M, Suzuki J, Usami S, Kakuta Y, Okino N, Ito M, Yamamoto T. Tamavidins--novel avidin-like biotin-binding proteins from the Tamogitake mushroom. FEBS J 2009; 276:1383-97. [PMID: 19187241 DOI: 10.1111/j.1742-4658.2009.06879.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Novel biotin-binding proteins, referred to herein as tamavidin 1 and tamavidin 2, were found in a basidiomycete fungus, Pleurotus cornucopiae, known as the Tamogitake mushroom. These are the first avidin-like proteins to be discovered in organisms other than birds and bacteria. Tamavidin 1 and tamavidin 2 have amino acid sequences with 31% and 36% identity, respectively, to avidin, and 47% and 48% identity, respectively, to streptavidin. Unlike any other biotin-binding proteins, tamavidin 1 and tamavidin 2 are expressed as soluble proteins at a high level in Escherichia coli. Recombinant tamavidin 2 was purified as a tetrameric protein in a single step by 2-iminobiotin affinity chromatography, with a yield of 5 mg per 100 mL culture of E. coli. The kinetic parameters measured by a BIAcore biosensor indicated that recombinant tamavidin 2 binds biotin with high affinity, in a similar manner to binding by avidin and streptavidin. The overall crystal structure of recombinant tamavidin 2 is similar to that of avidin and streptavidin. However, recombinant tamavidin 2 is immunologically distinct from avidin and streptavidin. Tamavidin 2 and streptavidin are very similar in terms of the arrangement of the residues interacting with biotin, but different with regard to the number of hydrogen bonds to biotin carboxylate. Recombinant tamavidin 2 is more stable than avidin and streptavidin at high temperature, and nonspecific binding to DNA and human serum by recombinant tamavidin 2 is lower than that for avidin. These findings highlight tamavidin 2 as a probable powerful tool, in addition to avidin and streptavidin, in numerous applications of biotin-binding proteins.
Collapse
|
34
|
Bysell H, Malmsten M. Interactions between homopolypeptides and lightly cross-linked microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:522-528. [PMID: 19061315 DOI: 10.1021/la8029984] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The relative importance of electrostatic and nonelectrostatic interactions in peptide-microgel systems was evaluated by micromanipulator-assisted light microscopy, confocal microscopy, and circular dichroism. For this purpose, the interaction of various homopolypeptides with lightly cross-linked polyelectrolyte gel particles ( approximately 70 microm in diameter) was studied with focus on peptide-induced microgel deswelling and its relation to peptide distribution within the microgel particles. Negatively charged poly-l-glutamic acid (pGlu) and poly-l-aspartic acid (pAsp), as well as uncharged poly-l-proline (pPro) and poly-l-threonine (pThr), were found to not bind to negatively charged poly(acrylic acid) microgels under the conditions investigated, but were instead depleted from the microgel particles. Positively charged poly-l-arginine (pArg), poly-l-histidine (pHis), and poly-l-lysine (pLys), on the other hand, interacted strongly with the oppositely charged microgel particles and caused significant deswelling of these. In parallel, cationic acrylamidopropyltriethylammoniumchloride (APTAC) microgels bound negatively charged polypeptides to a much higher extent than positively charged and uncharged ones. These findings suggest that electrostatic interactions dominate peptide binding and resulting microgel deswelling in these systems. Nevertheless, although the amount of cationic peptide bound to the anionic microgel particles was similar for cationic pLys, pArg, and pHis, peptide-induced gel deswelling differed significantly, as did the change in peptide conformation after microgel binding and the peptide distribution within the microgels. These effects, as well as pH dependent binding and release of titrable pHis, are discussed in terms of the effects of the charge density of, and structural differences between, the cationic homopolypeptides on the interaction with the oppositely charged microgel particles.
Collapse
Affiliation(s)
- Helena Bysell
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
35
|
Xiong MP, Forrest ML, Karls AL, Kwon GS. Biotin-Triggered Release of Poly(ethylene glycol)−Avidin from Biotinylated Polyethylenimine Enhances in Vitro Gene Expression. Bioconjug Chem 2007; 18:746-53. [PMID: 17375897 DOI: 10.1021/bc0602883] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalently poly(ethylene glycol) (PEG)-ylated polyethylenimine (PEI)/pDNA complexes display prolonged blood circulation profiles compared with PEI/pDNA complexes, but such PEGylated particles may not be suitable for tumor targeting due to low interaction with cell membranes, low internalization, and low gene expression. Noncovalent PEGylation of cationic particles via PEG-avidin/biotin-PEI is an attempt to bridge the gap between the positive attributes of PEG (prolonged particle circulation) and the positive attributes of nontoxic cationic polymers (enhanced cell interactions) for greater gene expression. Our polymer, 2PEG-avidin/biotin-PEI8, forms salt-stable particles ( approximately 100 nm) under physiologic conditions with a minimum of two 2PEG-avidin molecules bound per polymer chain (biotin-PEI8, 8 biotins/PEI). Following 10 days of incubation with 3000-fold excess biotin, 2PEG-avidin completely dissociated from biotin-PEI8, and gene expression was increased 2.1-32-fold in various cell lines when the desirable transfection feature of the cationic polymer was retained. This new PEGylation approach has implications for generally improving the clinical aspect of gene delivery via a two-step therapeutic strategy: (1) intravenous injection of noncovalent PEG-avidin/biotin-polycation nanoparticles for prolonged circulation, followed by (2) temporal release of PEG-avidin from biotin-polycation through either endogenous biotin or intravenous injection of biotin.
Collapse
Affiliation(s)
- May P Xiong
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA
| | | | | | | |
Collapse
|
36
|
Daube SS, Arad T, Bar-Ziv R. Cell-free co-synthesis of protein nanoassemblies: tubes, rings, and doughnuts. NANO LETTERS 2007; 7:638-41. [PMID: 17269832 DOI: 10.1021/nl062560n] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We used a cell-free transcription/translation system to synthesize structural proteins of the T4 bacteriophage. We focused on two proteins that participate in the formation of the virus tail tube assembly. Synthesized separately, the proteins assembled into their in vivo forms, namely one polymerized into rigid hollow nanotubes approximately 20 nm thick and hundreds of nanometers long, the other assembled into 10 nm tube-capping hexameric rings. Co-synthesis of the two proteins, however, revealed a novel structure of a nanodoughnut with an outer diameter of approximately 50 nm and thickness of approximately 20 nm. Cell-free co-synthesis and assembly of T4 structural proteins can be extended in a combinatorial fashion. The addition of other structural genes offers control of native nanoassemblies and may reveal ones not observable by mixing purified components.
Collapse
Affiliation(s)
- Shirley S Daube
- Kimmel Center for Nanoscale Science, Chemical Research Support, Department of Materials and Interfaces, The Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | |
Collapse
|
37
|
Wilchek M, Bayer EA, Livnah O. Essentials of biorecognition: The (strept)avidin–biotin system as a model for protein–protein and protein–ligand interaction. Immunol Lett 2006; 103:27-32. [PMID: 16325268 DOI: 10.1016/j.imlet.2005.10.022] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 10/23/2005] [Accepted: 10/23/2005] [Indexed: 10/25/2022]
Abstract
Molecular recognition or biorecognition is as the heart of all biological interactions. These interactions are characterized by a collection of noncovalent bonds, namely ionic, hydrogen-bonding and hydrophobic interactions. In addition, shape complementarity appears to play a pivotal role in the process of biorecognition. In this review, we examine the versatile avidin-biotin complex as a model system for study of the biorecognition phenomenon with respect to protein-protein, protein-peptide, protein-ligand and protein-DNA interactions.
Collapse
Affiliation(s)
- Meir Wilchek
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | | | |
Collapse
|
38
|
Nordlund HR, Hytönen VP, Laitinen OH, Kulomaa MS. Novel avidin-like protein from a root nodule symbiotic bacterium, Bradyrhizobium japonicum. J Biol Chem 2005; 280:13250-5. [PMID: 15695809 DOI: 10.1074/jbc.m414336200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bradyrhizobium japonicum is an important nitrogenfixing symbiotic bacterium, which can form root nodules on soybeans. These bacteria have a gene encoding a putative avidin- and streptavidin-like protein, which bears an amino acid sequence identity of only about 30% over the core regions with both of them. We produced this protein in Escherichia coli both as the full-length wild type and as a C-terminally truncated core form and showed that it is indeed a high affinity biotin-binding protein that resembles (strept)avidin structurally and functionally. Because of the considerable dissimilarity in the amino acid sequence, however, it is immunologically very different, and polyclonal rabbit and human antibodies toward (strept)avidin did not show significant cross-reactivity with it. Therefore this new avidin, named bradavidin, facilitates medical treatments such as targeted drug delivery, gene therapy, and imaging by offering an alternative tool for use if (strept)avidin cannot be used, because of a deleterious patient immune response for example. In addition to its medical value, bradavidin can be used both in other applications of avidin-biotin technology and as a source of new ideas when creating engineered (strept)avidin forms by changing or combining the desired parts, interface patterns, or specific residues within the avidin protein family. Moreover, the unexpected discovery of bradavidin indicates that the group of new and undiscovered bacterial avidin-like proteins may be both more diverse and more common than hitherto thought.
Collapse
Affiliation(s)
- Henri R Nordlund
- Department of Biological and Environmental Science, NanoScience Center, P. O. Box 35 (YAB), FIN-40014 University of Jyväskylä, Finland
| | | | | | | |
Collapse
|