1
|
Lin K, Sarnari R, Speier P, Hayes C, Davids R, Carr JC, Markl M. Pilot Tone-Triggered MRI for Quantitative Assessment of Cardiac Function, Motion, and Structure. Invest Radiol 2023; 58:239-243. [PMID: 36070525 PMCID: PMC10016086 DOI: 10.1097/rli.0000000000000922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to test the hypothesis that there are good agreements between cardiac functional and structural indices derived from magnetic resonance imaging (MRI) sequences triggered with pilot tone (PT) and electrocardiogram (ECG). MATERIALS AND METHODS Sixteen healthy volunteers (11 male, age 21-76 years) underwent a cardiac MRI scan. Cine MRI, T1, and T2 mapping were acquired by using PT and ECG triggering. Quantitative measurements, including left and right ventricular end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, longitudinal strain, left ventricular T1 and T2 values, left and right atrial longitudinal strain, and maximal/minimal volumes, were measured. The interclass correlation coefficient, coefficient of variation, and Bland-Altman plots were used to evaluate the agreements between measurements derived by MRI sequences triggered with 2 methods. RESULTS There were no significant differences among end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, left ventricle mass, T1 and T2 values, or longitudinal strains acquired using PT and ECG. There were good agreements and low variations between the levels of these indices acquired with PT and ECG. Interclass correlation coefficients mainly ranged from 0.73 to 0.98. The coefficients of variation ranged from 1.4% to 22.6%. CONCLUSIONS Pilot tone-triggered MRI provides comparable measurements of cardiac function, motion, and structure as ECG-triggered MRI. Pilot tone has the potential to become a backup of ECG gating in cardiovascular imaging.
Collapse
Affiliation(s)
- Kai Lin
- Department of Radiology, Northwestern University, Chicago, IL
| | - Roberto Sarnari
- Department of Radiology, Northwestern University, Chicago, IL
| | | | | | | | - James C. Carr
- Department of Radiology, Northwestern University, Chicago, IL
| | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, IL
| |
Collapse
|
2
|
Ladrova M, Martinek R, Nedoma J, Hanzlikova P, Nelson MD, Kahankova R, Brablik J, Kolarik J. Monitoring and Synchronization of Cardiac and Respiratory Traces in Magnetic Resonance Imaging: A Review. IEEE Rev Biomed Eng 2021; 15:200-221. [PMID: 33513108 DOI: 10.1109/rbme.2021.3055550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synchronization of human vital signs, namely the cardiac cycle and respiratory excursions, is necessary during magnetic resonance imaging of the cardiovascular system and the abdominal cavity to achieve optimal image quality with minimized artifacts. This review summarizes techniques currently available in clinical practice, as well as methods under development, outlines the benefits and disadvantages of each approach, and offers some unique solutions for consideration.
Collapse
|
3
|
Guo J, Hardie WD, Cleveland ZI, Davidson C, Xu X, Madala SK, Woods JC. Longitudinal free-breathing MRI measurement of murine lung physiology in a progressive model of lung fibrosis. J Appl Physiol (1985) 2019; 126:1138-1149. [PMID: 30730810 DOI: 10.1152/japplphysiol.00993.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To longitudinally monitor progressive fibrosis in the transforming growth factor-α (TGF-α) transgenic mouse model of lung fibrosis, we used retrospective self-gating ultrashort echo time (UTE) magnetic resonance imaging (MRI) to image mouse lung at baseline and after 4 and 8 wk of fibrosis initiation via doxycycline administration. Only bitransgenic mice were used in this study and divided into two cohorts: six mice were fed doxycycline food to induce lung fibrosis (referred to as Dox cohort), and five other mice were fed normal food (referred to as control cohort). Lung mechanics, histology, and hydroxyproline were assessed after the final MRI. A linear mixed-effects model was used to analyze MRI-derived longitudinal lung-function parameters. Tidal volume decreased at a rate of -0.016 ± 0.002 ml/week [χ2(1) = 16.48, P < 0.001] for Dox cohort and increased at a rate of 0.010 ± 0.003 ml/week [χ2(1) = 6.37, P = 0.01] for control cohort. Minute ventilation decreased at a rate of -1.71 ± 0.26 ml·min-1·wk-1 [χ2(1) = 14.04, P < 0.001] for Dox cohort but did not change significantly over time for control cohort. High-density lung volume percentage increased at a rate of 3.9 ± 0.7%/wk for Dox cohort [χ2(1) = 11.47, P < 0.001] but did not change significantly over time for control cohort. MRI-derived lung structure and function parameters were strongly correlated with pleural thickness, hydroxyproline content, lung compliance, airway resistance, and airway elastance. We conclude that self-gating UTE MRI could be used to longitudinally monitor lung fibrosis in the TGF-α transgenic mouse model. NEW & NOTEWORTHY Self-gating UTE MRI was used to monitor morphology and physiology in lung fibrosis in a transforming growth factor-α transgenic mouse model. Tidal volume was shown for the first time to correlate strongly with conventional metrics of fibrosis such as hydroxyproline and pleural thickness.
Collapse
Affiliation(s)
- Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Cynthia Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Xuefeng Xu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri.,Department of Physics, University of Cincinnati , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
4
|
Bonanno G, Hays AG, Weiss RG, Schär M. Self-gated golden angle spiral cine MRI for coronary endothelial function assessment. Magn Reson Med 2018; 80:560-570. [PMID: 29282752 PMCID: PMC5910207 DOI: 10.1002/mrm.27060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE Depressed coronary endothelial function (CEF) is a marker for atherosclerotic disease, an independent predictor of cardiovascular events, and can be quantified non-invasively with ECG-triggered spiral cine MRI combined with isometric handgrip exercise (IHE). However, MRI-CEF measures can be hindered by faulty ECG-triggering, leading to prolonged breath-holds and degraded image quality. Here, a self-gated golden angle spiral method (SG-GA) is proposed to eliminate the need for ECG during cine MRI. METHODS SG-GA was tested against retrospectively ECG-gated golden angle spiral MRI (ECG-GA) and gold-standard ECG-triggered spiral cine MRI (ECG-STD) in 10 healthy volunteers. CEF data were obtained from cross-sectional images of the proximal right and left coronary arteries in a 3T scanner. Self-gating heart rates were compared to those from simultaneous ECG-gating. Coronary vessel sharpness and cross-sectional area (CSA) change with IHE were compared among the 3 methods. RESULTS Self-gating precision, accuracy, and correlation-coefficient were 7.7 ± 0.5 ms, 9.1 ± 0.7 ms, and 0.93 ± 0.01, respectively (mean ± standard error). Vessel sharpness by SG-GA was equal or higher than ECG-STD (rest: 63.0 ± 1.7% vs. 61.3 ± 1.3%; exercise: 62.6 ± 1.3% vs. 56.7 ± 1.6%, P < 0.05). CSA changes were in agreement among the 3 methods (ECG-STD = 8.7 ± 4.0%, ECG-GA = 9.6 ± 3.1%, SG-GA = 9.1 ± 3.5%, P = not significant). CONCLUSION CEF measures can be obtained with the proposed self-gated high-quality cine MRI method even when ECG is faulty or not available. Magn Reson Med 80:560-570, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gabriele Bonanno
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Robert G. Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| | - Michael Schär
- Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Abstract
BACKGROUND To develop a prospective cardiac motion self-gating method that provides robust and accurate cardiac triggers in real time. METHODS The proposed self-gating method consists of an "imaging mode" that acquires the k-space segments and a "self-gating mode" that captures the cardiac motion by repeatedly sampling the k-space centerline. A training based principal component analysis algorithm is utilized to process the self-gating data where the projection onto the first principal component was used as the self-gating signal. Retrospective studies using a sequence with self-gating mode only was performed on 8 healthy subjects to validate the accuracy and reliability of the self-gating triggers. Prospective studies using both ECG-gated and self-gated cardiac CINE sequences were conducted on 6 healthy subjects to compare the image quality. RESULTS Using the ECG as the reference, the proposed method was able to detect self-gating triggers within ±10 ms accuracy on all 8 subjects in the retrospective study. The prospectively self-gated CINE sequence successfully detected 100% of the cardiac triggers and provided excellent CINE image quality without using ECG signals. CONCLUSIONS The proposed cardiac self-gating method is a robust and accurate alternative to conventional ECG-based gating method for a number of cardiac MRI applications.
Collapse
Affiliation(s)
- Fei Han
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stanislas Rapacchi
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Peng Hu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Guo L, Derbyshire JA, Herzka DA. Pseudo-projection-driven, self-gated cardiac cine imaging using cartesian golden step phase encoding. Magn Reson Med 2016; 76:417-29. [PMID: 26519940 PMCID: PMC5019250 DOI: 10.1002/mrm.25834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/17/2015] [Accepted: 06/15/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop and evaluate a novel two-dimensional self-gated imaging technique for free-breathing cardiac cine MRI that is free of motion-detection overhead and requires minimal planning for motion tracking. METHODS Motion along the readout direction was extracted solely from normal Cartesian imaging readouts near ky = 0. During imaging, the readouts below a certain |ky | threshold were scaled in magnitude and filtered in time to form "pseudo-projections," enabling projection-based motion tracking along readout without frequently acquiring the central phase encode. A discrete golden step phase encode scheme allowed the |ky | threshold to be freely set after the scan while maintaining uniform motion sampling. RESULTS The pseudo-projections stream displayed sufficient spatiotemporal resolution for both cardiac and respiratory tracking, allowing retrospective reconstruction of free-breathing non-electrocardiogram (ECG) cines. The technique was tested on healthy subjects, and the resultant image quality, measured by blood-myocardium boundary sharpness, myocardial mass, and single-slice ejection fraction was found to be comparable to standard breath-hold ECG-gated cines. CONCLUSION The use of pseudo-projections for motion tracking was found feasible for cardiorespiratory self-gated imaging. Despite some sensitivity to flow and eddy currents, the simplicity of acquisition makes the proposed technique a valuable tool for self-gated cardiac imaging. Magn Reson Med 76:417-429, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Collapse
Affiliation(s)
- Liheng Guo
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - J. Andrew Derbyshire
- Functional MRI FacilityNational Institute of Mental Health, National Institutes of HealthBethesdaMarylandUSA
| | - Daniel A. Herzka
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Seo H, Kim D, Oh C, Park H. Self-gated cardiac cine imaging using phase information. Magn Reson Med 2016; 77:1216-1222. [DOI: 10.1002/mrm.26204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/17/2016] [Accepted: 02/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Hyunseok Seo
- Department of Electrical Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Dongchan Kim
- Department of Electrical Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Changheun Oh
- Department of Electrical Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - HyunWook Park
- Department of Electrical Engineering; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| |
Collapse
|
8
|
Ingle RR, Santos JM, Overall WR, McConnell MV, Hu BS, Nishimura DG. Self-gated fat-suppressed cardiac cine MRI. Magn Reson Med 2014; 73:1764-74. [PMID: 24806049 DOI: 10.1002/mrm.25291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 11/08/2022]
Abstract
PURPOSE To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. METHODS Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. RESULTS The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). CONCLUSION The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP.
Collapse
Affiliation(s)
- R Reeve Ingle
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
9
|
Comparison of self-gated and prospectively triggered fast low angle shot (FLASH) sequences for contrast-enhanced magnetic resonance imaging of the liver at 9.4 T in a rat model of colorectal cancer metastases. Invest Radiol 2014; 48:738-44. [PMID: 23695083 DOI: 10.1097/rli.0b013e318294dd0e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The aim of this study was to compare a retrospectively self-gated fast low angle shot sequence (RSG-FLASH) with a prospectively triggered fast low angle shot sequence (PT-FLASH) using an external trigger device for dynamic contrast-enhanced magnetic resonance imaging of the liver at 9.4 T in a rat model of colorectal cancer metastases. MATERIALS AND METHODS In 10 rats with hepatic metastases, we acquired an axial RSG-FLASH sequence through the liver. A FLASH sequence with prospective triggering (PT-FLASH) using an external trigger device was acquired at the same location with the same imaging parameters. After intravenous injection of 0.2 mmol/kg body weight of Gd-DTPA, alternating acquisitions of both sequences were performed at 4 consecutive time points.Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and lesion enhancement were obtained for liver tumors and parenchyma. In addition, we assessed the total acquisition times of the different imaging approaches for each acquisition, including triggering and gating. Two independent readers performed a qualitative evaluation of each sequence. Statistical analyses included paired t tests and Wilcoxon matched pairs signed rank tests. RESULTS No statistically significant differences in SNR, CNR, or lesion enhancement were observed. Qualitative assessments of the sequences were comparable. However, acquisition times of PT-FLASH were significantly longer (mean [SD], 160.6 [25.7] seconds; P < 0.0001) and markedly variable (minimum, 120 seconds; maximum, 209 seconds), whereas the RSG-FLASH approach demonstrated a constant mean (SD) acquisition time of 59.0 (0) seconds. CONCLUSIONS The RSG-FLASH and PT-FLASH sequences do not differ qualitatively or quantitatively regarding SNR, CNR, and lesion enhancement for magnetic resonance imaging of the liver in the rats at 9.4 T. However, the variability of acquisition times for the PT-FLASH sequences is a major factor of inconsistency, and we therefore consider this approach as inappropriate for dynamic contrast-enhanced studies with multiple-measurement time points. In contrast, the RSG-FLASH sequence represents a fast, consistent, and reproducible technique suitable for contrast-agent kinetic studies in experimental small-animal imaging of the abdomen.
Collapse
|
10
|
Paul J, Divkovic E, Wundrak S, Bernhardt P, Rottbauer W, Neumann H, Rasche V. High-resolution respiratory self-gated golden angle cardiac MRI: Comparison of self-gating methods in combination with k-t SPARSE SENSE. Magn Reson Med 2014; 73:292-8. [DOI: 10.1002/mrm.25102] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Paul
- Department of Internal Medicine II; University Hospital of Ulm; Ulm Germany
| | - Evica Divkovic
- Department of Internal Medicine II; University Hospital of Ulm; Ulm Germany
| | - Stefan Wundrak
- Department of Internal Medicine II; University Hospital of Ulm; Ulm Germany
| | - Peter Bernhardt
- Department of Internal Medicine II; University Hospital of Ulm; Ulm Germany
| | - Wolfgang Rottbauer
- Department of Internal Medicine II; University Hospital of Ulm; Ulm Germany
| | - Heiko Neumann
- Institute of Neural Information Processing; University of Ulm; Ulm Germany
| | - Volker Rasche
- Department of Internal Medicine II; University Hospital of Ulm; Ulm Germany
| |
Collapse
|
11
|
Comparison of Retrospectively Self-Gated and Prospectively Triggered FLASH Sequences for Cine Imaging of the Aorta in Mice at 9.4 Tesla. Invest Radiol 2012; 47:259-66. [DOI: 10.1097/rli.0b013e31823d3eb6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Fan Z, Zuehlsdorff S, Liu X, Li D. Prospective self-gating for swallowing motion: a feasibility study in carotid artery wall MRI using three-dimensional variable-flip-angle turbo spin-echo. Magn Reson Med 2011; 67:490-8. [PMID: 22161627 DOI: 10.1002/mrm.23295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/15/2011] [Accepted: 10/18/2011] [Indexed: 11/05/2022]
Abstract
Three-dimensional black-blood MRI is a promising noninvasive imaging technique for the assessment of atherosclerotic carotid artery disease. However, this technique is inherently susceptible to motion. In particular, swallowing can result in considerable wall motion at the carotid bifurcations, which may induce drastic image degradation or substantial overestimation of wall thickness. Self-gating techniques have previously been shown to be capable of resolving and compensating for cardiac or respiratory motion during MRI. This work presents a self-gating-based prospective motion gating scheme that is combined with a three-dimensional variable-flip-angle turbo spin-echo sequence (SPACE) for detecting swallowing motion. Self-gating signal readouts along the superior-inferior direction during each repetition time period are used to derive the projection profiles of the imaging volume. Based on cross-correlation analysis between the projection profiles and the corresponding reference profiles, swallowing motion can be detected and the motion-contaminated data will subsequently be discarded and reacquired in the next repetition time. The self-gated SPACE sequence was validated on eight healthy volunteers and two patients and, when compared with the conventional SPACE sequence, proved to be more resistant to swallowing motion and significantly improved image quality as well as the sharpness of carotid artery wall boundaries.
Collapse
Affiliation(s)
- Zhaoyang Fan
- Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | |
Collapse
|
13
|
Bovens SM, te Boekhorst BCM, den Ouden K, van de Kolk KWA, Nauerth A, Nederhoff MGJ, Pasterkamp G, ten Hove M, van Echteld CJA. Evaluation of infarcted murine heart function: comparison of prospectively triggered with self-gated MRI. NMR IN BIOMEDICINE 2011; 24:307-315. [PMID: 20891021 DOI: 10.1002/nbm.1593] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 04/23/2010] [Accepted: 06/08/2010] [Indexed: 05/28/2023]
Abstract
Measurement of cardiac function is often performed in mice after, for example, a myocardial infarction. Cardiac MRI is often used because it is noninvasive and provides high temporal and spatial resolution for the left and right ventricle. In animal cardiac MRI, the quality of the required electrocardiogram signal is variable and sometimes deteriorates over time, especially with infarcted hearts or cardiac hypertrophy. Therefore, we compared the self-gated IntraGateFLASH method with a prospectively triggered FLASH (fast low-angle shot) method in mice with myocardial infarcts (n = 16) and in control mice (n = 21). Mice with a myocardial infarct and control mice were imaged in a vertical 9.4-T MR system. Images of contiguous 1-mm slices were acquired from apex to base with prospective and self-gated methods. Data were processed to calculate cardiac function parameters for the left and right ventricle. The signal-to-noise and contrast-to-noise ratios were calculated in mid-ventricular slices. The signal-to-noise and contrast-to-noise ratios of the self-gated data were higher than those of the prospectively gated data. Differences between the two gating methods in the cardiac function parameters for both left and right ventricle (e.g. end-diastolic volumes) did not exceed the inter-observer variability in control or myocardial infarcted mice. Both methods gave comparable results with regard to the cardiac function parameters in both healthy control mice and mice with myocardial infarcts. Moreover, the self-gated method provided better signal-to-noise and contrast-to-noise ratios when the acquisition time was equal. In conclusion, the self-gated method is suitable for routine use in cardiac MRI in mice with myocardial infarcts as well as in control mice, and obviates the need for electrocardiogram triggering and respiratory gating. In both gating methods, more than 10 frames per cardiac cycle are recommended.
Collapse
Affiliation(s)
- Sandra M Bovens
- Department of Experimental Cardiology, University Medical Center, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Spincemaille P, Codella NCF, Nguyen TD, Prince MR, Wang Y. Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 2010; 63:1230-7. [PMID: 20432294 DOI: 10.1002/mrm.22306] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A respiratory and cardiac self-gated free-breathing three-dimensional cine steady-state free precession imaging method using multiecho hybrid radial sampling is presented. Cartesian mapping of the k-space center along the slice encoding direction provides intensity-weighted position information, from which both respiratory and cardiac motions are derived. With in plan radial sampling acquired at every pulse repetition time, no extra scan time is required for sampling the k-space center. Temporal filtering based on density compensation is used for radial reconstruction to achieve high signal-to-noise ratio and contrast-to-noise ratio. High correlation between the self-gating signals and external gating signals is demonstrated. This respiratory and cardiac self-gated, free-breathing, three-dimensional, radial cardiac cine imaging technique provides image quality comparable to that acquired with the multiple breath-hold two-dimensional Cartesian steady-state free precession technique in short-axis, four-chamber, and two-chamber orientations. Functional measurements from the three-dimensional cardiac short axis cine images are found to be comparable to those obtained using the standard two-dimensional technique.
Collapse
Affiliation(s)
- Jing Liu
- Cornell Cardiovascular Magnetic Resonance Imaging Laboratory, Radiology Department, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
15
|
Nijm GM, Sahakian AV, Swiryn S, Carr JC, Sheehan JJ, Larson AC. Comparison of self-gated cine MRI retrospective cardiac synchronization algorithms. J Magn Reson Imaging 2008; 28:767-72. [PMID: 18777546 DOI: 10.1002/jmri.21514] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To determine whether improved self-gating (SG) algorithms can provide superior synchronization accuracy for retrospectively gated cine MRI. MATERIALS AND METHODS First difference, template matching, and polynomial fitting algorithms were implemented to improve the synchronization of MRI data using cardiac SG signals. Cine datasets were acquired during short-axis, two-, three-, and four-chamber cardiac MRI scans. The root-mean-square (RMS) error of SG synchronization positions compared to detected R-wave positions were calculated along with the mean square error (MSE) and peak signal-to-noise ratio (PSNR) comparing SG to electrocardiogram (ECG)-gated images. Overall image quality was also compared by two expert reviewers. RESULTS RMS errors were highest for the first difference method for all orientations. Improvements for both template matching and cubic polynomial fitting methods were significant for two-, three-, and four-chamber scans. MSE values were lower and PSNR were significantly higher for the cubic method compared to the first difference method for all orientations. Reviewers scored the images to be of comparable quality. CONCLUSION Template matching and polynomial fitting improved the accuracy of cardiac cycle synchronization for two-, three-, and four-chamber scans; improvements in SG synchronization accuracy were reflected in improvements in analytical image quality. Implementation of robust postprocessing algorithms may bring SG approaches closer to clinical utilization.
Collapse
Affiliation(s)
- Grace M Nijm
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | |
Collapse
|
16
|
Buehrer M, Curcic J, Boesiger P, Kozerke S. Prospective self-gating for simultaneous compensation of cardiac and respiratory motion. Magn Reson Med 2008; 60:683-90. [DOI: 10.1002/mrm.21697] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Heijman E, de Graaf W, Niessen P, Nauerth A, van Eys G, de Graaf L, Nicolay K, Strijkers GJ. Comparison between prospective and retrospective triggering for mouse cardiac MRI. NMR IN BIOMEDICINE 2007; 20:439-47. [PMID: 17120296 DOI: 10.1002/nbm.1110] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
High-resolution magnetic resonance imaging (MRI) has evolved into one of the major non-invasive tools to study the healthy and diseased mouse heart. This study presents a Cartesian CINE MRI protocol based on a fast low-angle shot sequence with a navigator echo to generate cardiac triggering and respiratory gating signals retrospectively, making the use of ECG leads and respiratory motion sensors obsolete. MRI of the in vivo mouse heart using this sequence resulted in CINE images with no detectable cardiac and respiratory motion artefacts. The retrospective method allows for steady-state imaging of the mouse heart, which is essential for quantitative contrast-enhanced MRI studies. A comparison was made between prospective and retrospective methods in terms of the signal-to-noise ratio and the contrast-to-noise ratio between blood and myocardial wall, as well as global cardiac functional indices: end-diastolic volume, end-systolic volume, stroke volume and ejection fraction. The retrospective method resulted in almost constant left-ventricle wall signal intensity throughout the cardiac cycle, at the expense of a decrease in the signal-to-noise ratio and the contrast-to-noise ratio between blood and myocardial wall as compared with the prospective method. Prospective and retrospective sequences yielded comparable global cardiac functional indices. The largest mean relative difference found was 8% for the end-systolic volume.
Collapse
Affiliation(s)
- Edwin Heijman
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hiba B, Richard N, Thibault H, Janier M. Cardiac and respiratory self-gated cine MRI in the mouse: Comparison between radial and rectilinear techniques at 7T. Magn Reson Med 2007; 58:745-53. [PMID: 17899593 DOI: 10.1002/mrm.21355] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ECG-gated cardiac MRI in the mouse is hindered by many technical difficulties in ECG signal recording inside high magnetic field scanners. The present study proposes a robust rectilinear method of acquiring cardiac and respiratory self-gated cine images in mouse hearts. In this approach, a motion-synchronization MR signal is collected in the center of k-space simultaneously with imaging data in each readout of a nontriggered rectilinear acquisition. This signal is then used for both cardiac and respiratory retrospective gating before cine image reconstruction. The value of this approach for overcoming ECG-gating failure was demonstrated by performing cardiac imaging in eight mice with myocardial infarction. Comparison with an auto-gated radial k-space sampling technique, previously reported for cardiac applications in the mouse, found the rectilinear strategy more robust, thanks to a more reliable self-gating signal, while the radial strategy was less sensitive to motion and flow artifacts.
Collapse
Affiliation(s)
- Bassem Hiba
- ANIMAGE, Rhône-Alpes Genopole, Université Claude Bernard Lyon1, Lyon, France.
| | | | | | | |
Collapse
|
19
|
Hiba B, Richard N, Janier M, Croisille P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med 2006; 55:506-13. [PMID: 16463350 DOI: 10.1002/mrm.20815] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ECG-gated cardiac MRI in the mouse is hindered by many technical difficulties in ECG signal recording inside static and variable high magnetic scanner fields. The present study proposes an alternative robust method of acquiring auto-gated cardiac and respiratory cine images in mouse heart. In our approach, a motion synchronization signal is extracted from the echo peak MR signal of a non-triggered radial acquisition. This signal is then used for both cardiac and respiratory retrospective gating before cine image reconstruction. Highly asymmetric echoes were acquired to achieve the radial k-space sampling in order to avoid radial acquisition related artifacts and to increase auto-gating robustness. In vivo experiments demonstrated the feasibility and robustness of self-gated cine-MRI in the mouse heart at 7T. The signal-to-noise and contrast-to-noise ratios of the self-gated and ECG-gated images were comparable, all parameters being equal. Magn Reson Med, 2006. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Bassem Hiba
- Platform ANIMAGE, Rhône-Alpes Genopole, Lyon, France
| | | | | | | |
Collapse
|
20
|
Brau ACS, Brittain JH. Generalized self-navigated motion detection technique: Preliminary investigation in abdominal imaging. Magn Reson Med 2006; 55:263-70. [PMID: 16408272 DOI: 10.1002/mrm.20785] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patient motion remains a primary obstacle to diagnostic image quality, especially in the abdomen, despite the existence of various motion artifact reduction techniques. This work presents a self-navigated motion detection method that can be generalized for most pulse sequences and k-space trajectories. Motion information is extracted directly from raw MR data, requiring no additional gradient or RF pulses, no physiologic monitoring equipment, and minimal--if any--impact on scan time. Initial feasibility results with a two-dimensional gradient echo sequence are shown in phantom studies and in vivo volunteer abdominal studies, demonstrating the sensitivity of the method to both respiratory motion and cardiovascular pulsatility. Prospectively gated images were acquired using the self-navigated data to synchronize image acquisition with motion. These preliminary results suggest that the self-navigated method is a promising technique for reducing motion artifacts in clinical abdominal and cardiac applications.
Collapse
Affiliation(s)
- Anja C S Brau
- GE Healthcare, Applied Science Lab West, Menlo Park, California 94025, USA.
| | | |
Collapse
|
21
|
Liebling M, Forouhar AS, Gharib M, Fraser SE, Dickinson ME. Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:054001. [PMID: 16292961 DOI: 10.1117/1.2061567] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Being able to acquire, visualize, and analyze 3D time series (4D data) from living embryos makes it possible to understand complex dynamic movements at early stages of embryonic development. Despite recent technological breakthroughs in 2D dynamic imaging, confocal microscopes remain quite slow at capturing optical sections at successive depths. However, when the studied motion is periodic--such as for a beating heart--a way to circumvent this problem is to acquire, successively, sets of 2D+time slice sequences at increasing depths over at least one time period and later rearrange them to recover a 3D+time sequence. In other imaging modalities at macroscopic scales, external gating signals, e.g., an electro-cardiogram, have been used to achieve proper synchronization. Since gating signals are either unavailable or cumbersome to acquire in microscopic organisms, we have developed a procedure to reconstruct volumes based solely on the information contained in the image sequences. The central part of the algorithm is a least-squares minimization of an objective criterion that depends on the similarity between the data from neighboring depths. Owing to a wavelet-based multiresolution approach, our method is robust to common confocal microscopy artifacts. We validate the procedure on both simulated data and in vivo measurements from living zebrafish embryos.
Collapse
Affiliation(s)
- Michael Liebling
- California Institute of Technology, Beckman Institute, Biological Imaging Center, Mail Code 139-74, Pasadena, California 91125, USA.
| | | | | | | | | |
Collapse
|
22
|
Larson AC, Kellman P, Arai A, Hirsch GA, McVeigh E, Li D, Simonetti OP. Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 2005; 53:159-68. [PMID: 15690515 PMCID: PMC1939886 DOI: 10.1002/mrm.20331] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Segmented cine MRI generally requires breath-holding, which can be problematic for many patients. Navigator echo techniques, particularly successful for free-breathing coronary MRA, are incompatible with the acquisition strategies and SSFP pulse sequences commonly used for cine MRI. The purpose of this work is to introduce a new self-gating technique deriving respiratory gating information directly from the raw imaging data acquired for segmented cine MRI. The respiratory self-gating technique uses interleaved radial k-space sampling to provide low-resolution images in real time during the free-breathing acquisition that are compared to target expiration images. Only the raw data-producing images with high correlation to the target images are included in the final high-resolution reconstruction. The self-gating technique produced cine series with no significant differences in quantitative image sharpness to series produced using comparable breath-held techniques. Because of the difficulties associated with breath-holding, the respiratory self-gating technique represents an important practical advance for cardiac MRI. , Inc.
Collapse
Affiliation(s)
- Andrew C Larson
- Department of Biomedical Engineering, NorthWestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The need for ECG gating presents many difficulties in cardiac magnetic resonance imaging (CMRI). Real-time imaging techniques eliminate the need for ECG gating in cine CMRI, but they cannot offer the spatial and temporal resolution provided by segmented acquisition techniques. Previous MR signal-based techniques have demonstrated an ability to provide cardiac gating information; however, these techniques result in decreased imaging efficiency. The purpose of this work was to develop a new "self-gated" (SG) acquisition technique that eliminates these efficiency deficits by extracting the motion synchronization signal directly from the same MR signals used for image reconstruction. Three separate strategies are proposed for deriving the SG signal from data acquired using radial k-space sampling: echo peak magnitude, kymogram, and 2D correlation. The SG techniques were performed on seven normal volunteers. A comparison of the results showed that they provided cine image series with no significant differences in image quality compared to that obtained with conventional ECG gating techniques. SG techniques represent an important practical advance in clinical MRI because they enable the acquisition of high temporal and spatial resolution cardiac cine images without the need for ECG gating and with no loss in imaging efficiency.
Collapse
Affiliation(s)
- Andrew C Larson
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-1061, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Crowe ME, Larson AC, Zhang Q, Carr J, White RD, Li D, Simonetti OP. Automated rectilinear self-gated cardiac cine imaging. Magn Reson Med 2004; 52:782-8. [PMID: 15389958 DOI: 10.1002/mrm.20212] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ECG-based gating in cardiac MR imaging requires additional patient preparation time, is susceptible to RF and magnetic interference, and is ineffective in a significant percentage of patients. "Wireless" or "self-gating" techniques have been described using either interleaved central k-space lines or projection reconstruction to obtain MR signals synchronous with the cardiac cycle. However, the interleaved, central line method results in a doubling of the acquisition time, while radial streak artifacts are encountered with the projection reconstruction method. In this work, a new self-gating technique is presented to overcome these limitations. A retrospectively gated TrueFISP cine sequence was modified to acquire a short second echo after the readout and phase gradients are rewound. The information obtained from this second echo was used to derive a gating signal. This technique was compared to ECG-based gating in 10 healthy volunteers and shown to have no significant difference in image quality. The results indicate that this method could serve as an alternative gating strategy without the need for external physiological signal detection.
Collapse
Affiliation(s)
- Mark E Crowe
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Coronary artery imaging with magnetic resonance imaging carries the potential for a noninvasive, essentially risk-free screening test for those at risk for coronary heart disease. Many physiologic and anatomic challenges including cardiac and respiratory motion and the small size, tortuosity, and variable flow characteristics of the coronary arteries hamper effort to achieve this goal. This article reviews the efforts of several research groups to surmount these difficulties through the use of 2D and 3D techniques; spin echo, gradient echo, and ultrafast sequences; saturation pulses; and contrast agents. Promising results have been and continue to be reported although no obvious optimal solution has yet been determined.
Collapse
Affiliation(s)
- C B Paschal
- Department of Radiology, University Hospitals of Cleveland, Ohio 44106
| | | | | | | |
Collapse
|