1
|
Josset A, Vappou J, Ishak O, Cabras P, Breton É. Effectiveness of fat suppression methods and influence on proton-resonance frequency shift (PRFS) MR thermometry. Magn Reson Imaging 2025; 118:110340. [PMID: 39892478 DOI: 10.1016/j.mri.2025.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE To evaluate the effectiveness of fat suppression techniques experimentally and illustrate their influence on the accuracy of PRFS MR-thermometry. METHODS The residual magnitudes of the main fat peaks are measured using a water-fat decomposition algorithm in an oil phantom and in vivo in swine bone marrow, either with spectral fat saturation (FS), water excitation (WE) or fast water excitation (FWE), as implemented on 1.5 T whole-body clinical MRIs. Thermometry experiments in tissue-mimicking oil-water phantoms (10 and 30 % fat) allow determining temperature errors in PRFS MR-thermometry with no fat suppression, FS and WE, compared against reference fiber optic thermometry. RESULTS WE attenuates the signal of the main methylene fat peak more than FS (2 % and 22 % amplitude attenuation in the oil phantom, respectively), while the olefinic and glycerol peaks surrounding the water peak remain unaltered with both FS and WE. Within the 37 °C to 60 °C temperature range explored, FS and WE strongly attenuate temperature errors compared to PRFS without fat suppression. The residual fat signal after FS and WE leads to errors in PRFS thermometry, that increase with the fat content and oscillate with TE and temperature. In our tests limited to a single MR provider, fat suppression with WE appears to suppress fat signal more effectively. CONCLUSIONS We propose a protocol to quantify the remaining fraction of each spectral fat peak after fat suppression. In PRFS thermometry, despite spectral fat suppression, the remnant fat signal leads to temperature underestimation or overestimation depending on TE, fat fraction and temperature range. Fat suppression techniques should be evaluated specifically for quantitative MRI methods such as PRFS thermometry.
Collapse
Affiliation(s)
- Anne Josset
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| | - Jonathan Vappou
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| | - Ounay Ishak
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| | - Paolo Cabras
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France; Image Guided Therapy, Pessac, France.
| | - Élodie Breton
- Université de Strasbourg, CNRS, INSERM, ICube, UMR7357, Strasbourg, France.
| |
Collapse
|
2
|
Richards N, Malmberg M, Odéen H, Johnson S, Kline M, Merrill R, Hadley R, Parker DL, Payne A. In vivo simultaneous proton resonance frequency shift thermometry and single reference variable flip angle T 1 measurements. Magn Reson Med 2025; 93:2070-2085. [PMID: 39831523 DOI: 10.1002/mrm.30413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE The single reference variable flip angle sequence with a multi-echo stack of stars acquisition (SR-VFA-SoS) simultaneously measures temperature change using proton resonance frequency (PRF) shift and T1-based thermometry methods. This work evaluates SR-VFA-SoS thermometry in MR-guided focused ultrasound in an in vivo rabbit model. METHODS Simultaneous PRF shift thermometry and T1-based thermometry were obtained in a New Zealand white rabbit model (n = 7) during MR-guided focused ultrasound surgery using the SR-VFA-SoS sequence at 3 T. Distinct locations in muscle (n = 16), fat (n = 12), or the interface of both tissues (n = 23) were heated. The T1-temperature coefficient of fat was determined using least-squares fitting of inversion recovery-based T1 maps of untreated fat harvested from the animal and was applied to the in vivo measured heat-induced T1 changes to create temperature maps. RESULTS Using k-space weighted image contrast reconstruction, temporal resolution of 1.71 s was achieved for simultaneous thermometry at 1.5 × 1.5 × 2 mm voxel resolution. PRF shift thermometry was not sensitive to heating in fat. T1 changes were observed in fat at the ultrasound focus. The mean T1-temperature coefficient for fat was determined to be 1.9%/°C ± 0.2%/°C. Precision was 0.76°C ± 0.18°C for PRF shift thermometry in muscle and 1.93°C ± 0.60°C for T1-based thermometry in fat. Sonications in muscle showed an increase in T1 of 2.4%/°C ± 0.9%/°C. CONCLUSION The SR-VFA-SoS sequence was shown to simultaneously measure temperature change using PRF shift and T1-based methods in an in vivo model, providing thermometry for both aqueous and fat tissues.
Collapse
Affiliation(s)
- Nicholas Richards
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Michael Malmberg
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Sara Johnson
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Michelle Kline
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Robb Merrill
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Rock Hadley
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Fiorito M, Yushchenko M, Cicolari D, Sarracanie M, Salameh N. Fast, interleaved, Look-Locker-based T 1 mapping with a variable averaging approach: Towards temperature mapping at low magnetic field. NMR IN BIOMEDICINE 2023; 36:e4826. [PMID: 36057925 PMCID: PMC10078420 DOI: 10.1002/nbm.4826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Proton resonance frequency shift (PRFS) is currently the gold standard method for magnetic resonance thermometry. However, the linearity between the temperature-dependent phase accumulation and the static magnetic field B0 confines its use to rather high-field scanners. Applications such as thermal therapies could naturally benefit from lower field MRI settings through leveraging increased accessibility, a lower physical and economical footprint, and further consideration of the technical challenges associated with the integration of heating systems into conventional clinical scanners. T 1 -based thermometry has been proposed as an alternative to the gold standard; however, because of longer acquisition times, it has found clinical use solely with adipose tissue where PRFS fails. At low field, the enhanced T 1 dispersion, combined with reduced relaxation times, make T 1 mapping an appealing candidate. Here, an interleaved Look-Locker-based T 1 mapping sequence was proposed for temperature quantification at 0.1 T. A variable averaging scheme was introduced, to maximize the signal-to-noise ratio throughout T 1 recovery. In calibrated samples, an average T 1 accuracy of 85% ± 4% was achieved in 10 min, compared with the 77% ± 7% obtained using a standard averaging scheme. Temperature maps between 29.0 and 41.7°C were eventually reconstructed, with a precision of 3.0 ± 1.1°C and an accuracy of 1.5 ± 1.0°C. Accounting for longer thermal treatments and less strict temperature constraints, applications such as MR-guided mild hyperthermia treatments at low field could be envisioned.
Collapse
Affiliation(s)
- Marco Fiorito
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| | - Maksym Yushchenko
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| | | | - Mathieu Sarracanie
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| | - Najat Salameh
- Department of Biomedical EngineeringCenter for Adaptable MRI Technology, University of BaselAllschwilSwitzerland
| |
Collapse
|
4
|
Xu G, Zhao Z, Xu K, Zhu J, Roe AW, Xu B, Zhang X, Li J, Xu D. Magnetic resonance temperature imaging of laser-induced thermotherapy using proton resonance frequency shift: evaluation of different sequences in phantom and porcine brain at 7 T. Jpn J Radiol 2022; 40:768-780. [DOI: 10.1007/s11604-022-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
5
|
Torres-Jiménez J, Esteban-Villarrubia J, Ferreiro-Monteagudo R, Carrato A. Local Treatments in the Unresectable Patient with Colorectal Cancer Metastasis: A Review from the Point of View of the Medical Oncologist. Cancers (Basel) 2021; 13:5938. [PMID: 34885047 PMCID: PMC8656541 DOI: 10.3390/cancers13235938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
For patients with isolated liver metastases from colorectal cancer who are not candidates for potentially curative resections, non-surgical local treatments may be useful. Non-surgical local treatments are classified according to how the treatment is administered. Local treatments are applied directly on hepatic parenchyma, such as radiofrequency, microwave hyperthermia and cryotherapy. Locoregional therapies are delivered through the hepatic artery, such as chemoinfusion, chemoembolization or selective internal radiation with Yttrium 90 radioembolization. The purpose of this review is to describe the different interventional therapies that are available for these patients in routine clinical practice, the most important clinical trials that have tried to demonstrate the effectiveness of each therapy and recommendations from principal medical oncologic societies.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| | - Reyes Ferreiro-Monteagudo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| |
Collapse
|
6
|
Lena B, Bartels LW, Ferrer CJ, Moonen CTW, Viergever MA, Bos C. Interleaved water and fat MR thermometry for monitoring high intensity focused ultrasound ablation of bone lesions. Magn Reson Med 2021; 86:2647-2655. [PMID: 34061390 PMCID: PMC8596687 DOI: 10.1002/mrm.28877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE To demonstrate that interleaved MR thermometry can monitor temperature in water and fat with adequate temporal resolution. This is relevant for high intensity focused uUltrasounds (HIFU) treatment of bone lesions, which are often found near aqueous tissues, as muscle, or embedded in adipose tissues, as subcutaneous fat and bone marrow. METHODS Proton resonance frequency shift (PRFS)-based thermometry scans and T1 -based 2D variable flip angle (2D-VFA) thermometry scans were acquired alternatingly over time. Temperature in water was monitored using PRFS thermometry, and in fat by 2D-VFA thermometry with slice profile effect correction. The feasibility of interleaved water/fat temperature monitoring was studied ex vivo in porcine bone during MR-HIFU sonication. Precision and stability of measurements in vivo were evaluated in a healthy volunteer under non-heating conditions. RESULTS The method allowed observing temperature change over time in muscle and fat, including bone marrow, during MR-HIFU sonication, with a temporal resolution of 6.1 s. In vivo, the apparent temperature change was stable on the time scale of the experiment: In 7 min the systematic drift was <0.042°C/min in muscle (PRFS after drift correction) and <0.096°C/min in bone marrow (2D-VFA). The SD of the temperature change averaged over time was 0.98°C (PRFS) and 2.7°C (2D-VFA). CONCLUSIONS Interleaved MR thermometry allows temperature measurements in water and fat with a temporal resolution high enough for monitoring HIFU ablation. Specifically, combined fat and water thermometry provides uninterrupted information on temperature changes in tissue close to the bone cortex.
Collapse
Affiliation(s)
- Beatrice Lena
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Cyril J. Ferrer
- Imaging DivisionUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | - Max A. Viergever
- Image Sciences InstituteUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Clemens Bos
- Imaging DivisionUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
7
|
McLean M, Parker DL, Odéen H, Payne A. A T1-based correction method for proton resonance frequency shift thermometry in breast tissue. Med Phys 2021; 48:4719-4729. [PMID: 34265109 DOI: 10.1002/mp.15085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Develop and evaluate the effectiveness of a T1-based correction method for errors in proton resonant frequency shift thermometry due to non-local field effects caused by heating in fatty breast tissues. METHODS Computational models of human breast tissue were created by segmenting MRI data from a healthy human volunteer. MR-guided focused ultrasound (MRgFUS) heating and MR thermometry measurements were simulated in several locations in the heterogeneous segmented breast models. A T1-based correction method for PRF thermometry errors was applied and the maximum positive and negative errors and the root mean squared error (RMSE) in a region around each heating location was evaluated with and without correction. The method uses T1 measurements to estimate the temperature change in fatty tissues and correct for their influence. Experimental data from a heating study in cadaver breast tissue were analyzed, and the expected PRFS error computed. RESULTS The simulated MR thermometry had maximum single voxel errors ranging between 10% and 18% when no correction was applied. Applying the correction led to a considerable improvement, lowering the maximum error range to 2%-5%. The 5th to 95th percentile interval of the temperature error distribution was also lowered with correction, from approximately 3.5 to 1°C. This correction worked even when T1 times were uniformly raised or lowered by 5%-10%. The experimental data showed predicted errors of 15%. CONCLUSIONS This simulation study demonstrates that the T1-based correction method reduces MR thermometry errors due to non-local effects from heating in fatty tissues, potentially improving the accuracy of thermometry measurements during MRgFUS treatments. The presented correction method is reliant on having a patient-specific 3D model of the breast, and may be limited by the accuracy of the fat temperatures which in turn may be limited by noise or bias present in the T1 measurements.
Collapse
|
8
|
Bitton RR, Rosenberg J, LeBlang S, Napoli A, Meyer J, Butts Pauly K, Hurwitz M, Ghanouni P. MRI-Guided Focused Ultrasound of Osseous Metastases: Treatment Parameters Associated With Successful Pain Reduction. Invest Radiol 2021; 56:141-146. [PMID: 32858582 DOI: 10.1097/rli.0000000000000721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND A phase 3 multicenter trial demonstrated that magnetic resonance imaging (MRI)-guided focused ultrasound (US) is a safe, noninvasive treatment that alleviated pain from bone metastases. However, outcomes varied among institutions (from 0%-100% treatment success). PURPOSE The aim of this study was to identify patient selection, technical treatment, and imaging parameters that predict successful pain relief of osseous metastases after MRI-guided focused US. MATERIALS AND METHODS This was a secondary analysis of a phase 3 clinical study that included participants who received MRI-guided focused US treatment for painful osseous metastases. Noncontrast CT was obtained before treatment. T2-weighted and T1-weighted postcontrast MRIs at 1.5 T or 3 T were obtained before, at the time of, and at 3 months after treatment. Numerical Rating Scale pain scores and morphine equivalent daily dose data were obtained over a 3-month follow-up period. At the 3-month endpoint, participants were categorized as pain relief responders or nonresponders based on Numerical Rating Scale and morphine equivalent daily dose data. Demographics, technical parameters, and imaging features associated with pain relief were determined using stepwise univariable and multivariable models. Responder rates between the subgroup of participants with all predictive parameters and that with none of the parameters were compared using Fisher exact test. RESULTS The analysis included 99 participants (mean age, 59 ± 14 years; 56 women). The 3 variables that predicted successful pain relief were energy density on the bone surface (EDBS) (P = 0.001), the presence of postprocedural periosteal devascularization (black band, BB+) (P = 0.005), and female sex (P = 0.02). The subgroup of participants with BB+ and EDBS greater than 5 J/mm2 had a larger decrease in mean pain score (5.2; 95% confidence interval, 4.6-5.8) compared with those without (BB-, EDBS ≤ 5 J/mm2) (1.1; 95% confidence interval, 0.8-3.0; P < 0.001). Participants with all 3 predictive variables had a pain relief responder rate of 93% compared with 0% in participants having none of the predictive variables (P < 0.001). CONCLUSIONS High EDBS during treatment, postprocedural periosteal devascularization around the tumor site (BB+), and female sex increased the likelihood of pain relief after MRI-guided focused US of osseous metastasis.
Collapse
Affiliation(s)
- Rachel R Bitton
- From the Department of Radiology, Stanford University, Stanford, CA
| | | | | | - Alessandro Napoli
- Department of Radiological Sciences, University of Rome, Rome, Italy
| | - Joshua Meyer
- Department of Radiation Oncology, Fox Chase Cancer Center
| | - Kim Butts Pauly
- From the Department of Radiology, Stanford University, Stanford, CA
| | - Mark Hurwitz
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Pejman Ghanouni
- From the Department of Radiology, Stanford University, Stanford, CA
| |
Collapse
|
9
|
Zaltieri M, Massaroni C, Cauti FM, Schena E. Techniques for Temperature Monitoring of Myocardial Tissue Undergoing Radiofrequency Ablation Treatments: An Overview. SENSORS (BASEL, SWITZERLAND) 2021; 21:1453. [PMID: 33669692 PMCID: PMC7922285 DOI: 10.3390/s21041453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022]
Abstract
Cardiac radiofrequency ablation (RFA) has received substantial attention for the treatment of multiple arrhythmias. In this scenario, there is an ever-growing demand for monitoring the temperature trend inside the tissue as it may allow an accurate control of the treatment effects, with a consequent improvement of the clinical outcomes. There are many methods for monitoring temperature in tissues undergoing RFA, which can be divided into invasive and non-invasive. This paper aims to provide an overview of the currently available techniques for temperature detection in this clinical scenario. Firstly, we describe the heat generation during RFA, then we report the principle of work of the most popular thermometric techniques and their features. Finally, we introduce their main applications in the field of cardiac RFA to explore the applicability in clinical settings of each method.
Collapse
Affiliation(s)
- Martina Zaltieri
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| | - Filippo Maria Cauti
- Arrhythmology Unit, Cardiology Division, S. Giovanni Calibita Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.)
| |
Collapse
|
10
|
Blackwell J, Kraśny MJ, O'Brien A, Ashkan K, Galligan J, Destrade M, Colgan N. Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices. J Magn Reson Imaging 2020; 55:389-403. [PMID: 33217099 DOI: 10.1002/jmri.27446] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging (MRI) has become a popular modality in guiding minimally invasive thermal therapies, due to its advanced, nonionizing, imaging capabilities and its ability to record changes in temperature. A variety of MR thermometry techniques have been developed over the years, and proton resonance frequency (PRF) shift thermometry is the current clinical gold standard to treat a variety of cancers. It is used extensively to guide hyperthermic thermal ablation techniques such as high-intensity focused ultrasound (HIFU) and laser-induced thermal therapy (LITT). Essential attributes of PRF shift thermometry include excellent linearity with temperature, good sensitivity, and independence from tissue type. This noninvasive temperature mapping method gives accurate quantitative measures of the temperature evolution inside biological tissues. In this review, the current status and new developments in the fields of MR-guided HIFU and LITT are presented with an emphasis on breast, prostate, bone, uterine, and brain treatments. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 3.
Collapse
Affiliation(s)
- James Blackwell
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland.,School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Marcin J Kraśny
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| | - Aoife O'Brien
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Keyoumars Ashkan
- Neurosurgical Department, King's College Hospital Foundation Trust, London, UK.,Harley Street Clinic, London Neurosurgery Partnership, London, UK
| | - Josette Galligan
- Department of Medical Physics and Bioengineering, St. James' Hospital, Dublin, Ireland
| | - Michel Destrade
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Niall Colgan
- Advanced Biological Imaging Laboratory, School of Physics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Camacho JC, Petre EN, Sofocleous CT. Thermal Ablation of Metastatic Colon Cancer to the Liver. Semin Intervent Radiol 2019; 36:310-318. [PMID: 31680722 DOI: 10.1055/s-0039-1698754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is responsible for approximately 10% of cancer-related deaths in the Western world. Liver metastases are frequently seen at the time of diagnosis and throughout the course of the disease. Surgical resection is often considered as it provides long-term survival; however, few patients are candidates for resection. Percutaneous ablative therapies are also used in the management of this patient population. Different thermal ablation (TA) technologies are available including radiofrequency ablation, microwave ablation (MWA), laser, and cryoablation. There is growing evidence about the role of interventional oncology and image-guided percutaneous ablation in the management of metastatic colorectal liver disease. This article aims to outline the technical considerations, outcomes, and rational of TA in the management of patients with CRC liver metastases, focusing on the emerging role of MWA.
Collapse
Affiliation(s)
- Juan C Camacho
- Department of Radiology, Weill-Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elena N Petre
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Constantinos T Sofocleous
- Department of Radiology, Weill-Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
12
|
Zhang L, Armstrong T, Li X, Wu HH. A variable flip angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonant frequency shift and T 1 -based thermometry. Magn Reson Med 2019; 82:2062-2076. [PMID: 31257639 DOI: 10.1002/mrm.27883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/02/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop and evaluate a variable-flip-angle golden-angle-ordered 3D stack-of-radial MRI technique for simultaneous proton resonance frequency shift (PRF) and T1 -based thermometry in aqueous and adipose tissues, respectively. METHODS The proposed technique acquires multiecho radial k-space data in segments with alternating flip angles to measure 3D temperature maps dynamically on the basis of PRF and T1 . A sliding-window k-space weighted image contrast filter is used to increase temporal resolution. PRF is measured in aqueous tissues and T1 in adipose tissues using fat/water masks. The accuracy for T1 quantification was evaluated in a reference T1 /T2 phantom. In vivo nonheating experiments were conducted in healthy subjects to evaluate the stability of PRF and T1 in the brain, prostate, and breast. The proposed technique was used to monitor high-intensity focused ultrasound (HIFU) ablation in ex vivo porcine fat/muscle tissues and compared to temperature probe readings. RESULTS The proposed technique achieved 3D coverage with 1.1-mm to 1.3-mm in-plane resolution and 2-s to 5-s temporal resolution. During 20 to 30 min of nonheating in vivo scans, the temporal coefficient of variation for T1 was <5% in the brain, prostate, and breast fatty tissues, while the standard deviation of relative PRF temperature change was within 3°C in aqueous tissues. During ex vivo HIFU ablation, the temperatures measured by PRF and T1 were consistent with temperature probe readings, with an absolute mean difference within 2°C. CONCLUSION The proposed technique achieves simultaneous PRF and T1 -based dynamic 3D MR temperature mapping in aqueous and adipose tissues. It may be used to improve MRI-guided thermal procedures.
Collapse
Affiliation(s)
- Le Zhang
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Tess Armstrong
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California
| | - Xinzhou Li
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| | - Holden H Wu
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
13
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
14
|
Poorman ME, Braškutė I, Bartels LW, Grissom WA. Multi-echo MR thermometry using iterative separation of baseline water and fat images. Magn Reson Med 2018; 81:2385-2398. [PMID: 30394582 DOI: 10.1002/mrm.27567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To perform multi-echo water/fat separated proton resonance frequency (PRF)-shift temperature mapping. METHODS State-of-the-art, iterative multi-echo water/fat separation algorithms produce high-quality water and fat images in the absence of heating but are not suitable for real-time imaging due to their long compute times and potential errors in heated regions. Existing fat-referenced PRF-shift temperature reconstruction methods partially address these limitations but do not address motion or large time-varying and spatially inhomogeneous B0 shifts. We describe a model-based temperature reconstruction method that overcomes these limitations by fitting a library of separated water and fat images measured before heating directly to multi-echo data measured during heating, while accounting for the PRF shift with temperature. RESULTS Simulations in a mixed water/fat phantom with focal heating showed that the proposed algorithm reconstructed more accurate temperature maps in mixed tissues compared to a fat-referenced thermometry method. In a porcine phantom experiment with focused ultrasound heating at 1.5 Tesla, temperature maps were accurate to within 1∘ C of fiber optic probe temperature measurements and were calculated in 0.47 s per time point. Free-breathing breast and liver imaging experiments demonstrated motion and off-resonance compensation. The algorithm can also accurately reconstruct water/fat separated temperature maps from a single echo during heating. CONCLUSIONS The proposed model-based water/fat separated algorithm produces accurate PRF-shift temperature maps in mixed water and fat tissues in the presence of spatiotemporally varying off-resonance and motion.
Collapse
Affiliation(s)
- Megan E Poorman
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Ieva Braškutė
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lambertus W Bartels
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - William A Grissom
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
15
|
Johnson SL, Christensen DA, Dillon CR, Payne A. Validation of hybrid angular spectrum acoustic and thermal modelling in phantoms. Int J Hyperthermia 2018; 35:578-590. [PMID: 30320518 PMCID: PMC6365205 DOI: 10.1080/02656736.2018.1513168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
In focused ultrasound (FUS) thermal ablation of diseased tissue, acoustic beam and thermal simulations enable treatment planning and optimization. In this study, a treatment-planning methodology that uses the hybrid angular spectrum (HAS) method and the Pennes' bioheat equation (PBHE) is experimentally validated in homogeneous tissue-mimicking phantoms. Simulated three-dimensional temperature profiles are compared to volumetric MR thermometry imaging (MRTI) of FUS sonications in the phantoms, whose acoustic and thermal properties are independently measured. Additionally, Monte Carlo (MC) uncertainty analysis is performed to quantify the effect of tissue property uncertainties on simulation results. The mean error between simulated and experimental spatiotemporal peak temperature rise was +0.33°C (+6.9%). Despite this error, the experimental temperature rise fell within the expected uncertainty of the simulation, as determined by the MC analysis. The average errors of the simulated transverse and longitudinal full width half maximum (FWHM) of the profiles were -1.9% and 7.5%, respectively. A linear regression and local sensitivity analysis revealed that simulated temperature amplitude is more sensitive to uncertainties in simulation inputs than in the profile width and shape. Acoustic power, acoustic attenuation and thermal conductivity had the greatest impact on peak temperature rise uncertainty; thermal conductivity and volumetric heat capacity had the greatest impact on FWHM uncertainty. This study validates that using the HAS and PBHE method can adequately predict temperature profiles from single sonications in homogeneous media. Further, it informs the need to accurately measure or predict patient-specific properties for improved treatment planning of ablative FUS surgeries.
Collapse
Affiliation(s)
- Sara L. Johnson
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Douglas A. Christensen
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Computer and Electrical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Christopher R. Dillon
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Chen Y, Ge M, Ali R, Jiang H, Huang X, Qiu B. Quantitative MR thermometry based on phase-drift correction PRF shift method at 0.35 T. Biomed Eng Online 2018; 17:39. [PMID: 29631576 PMCID: PMC5892038 DOI: 10.1186/s12938-018-0472-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/30/2018] [Indexed: 11/30/2022] Open
Abstract
Background Noninvasive magnetic resonance thermometry (MRT) at low-field using proton resonance frequency shift (PRFS) is a promising technique for monitoring ablation temperature, since low-field MR scanners with open-configuration are more suitable for interventional procedures than closed systems. In this study, phase-drift correction PRFS with first-order polynomial fitting method was proposed to investigate the feasibility and accuracy of quantitative MR thermography during hyperthermia procedures in a 0.35 T open MR scanner. Methods Unheated phantom and ex vivo porcine liver experiments were performed to evaluate the optimal polynomial order for phase-drift correction PRFS. The temperature estimation approach was tested in brain temperature experiments of three healthy volunteers at room temperature, and in ex vivo porcine liver microwave ablation experiments. The output power of the microwave generator was set at 40 W for 330 s. In the unheated experiments, the temperature root mean square error (RMSE) in the inner region of interest was calculated to assess the best-fitting order for polynomial fit. For ablation experiments, relative temperature difference profile measured by the phase-drift correction PRFS was compared with the temperature changes recorded by fiber optic temperature probe around the microwave ablation antenna within the target thermal region. Results The phase-drift correction PRFS using first-order polynomial fitting could achieve the smallest temperature RMSE in unheated phantom, ex vivo porcine liver and in vivo human brain experiments. In the ex vivo porcine liver microwave ablation procedure, the temperature error between MRT and fiber optic probe of all but six temperature points were less than 2 °C. Overall, the RMSE of all temperature points was 1.49 °C. Conclusions Both in vivo and ex vivo experiments showed that MR thermometry based on the phase-drift correction PRFS with first-order polynomial fitting could be applied to monitor temperature changes during microwave ablation in a low-field open-configuration whole-body MR scanner.
Collapse
Affiliation(s)
- Yuping Chen
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Mengke Ge
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Rizwan Ali
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Hejun Jiang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoyan Huang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
17
|
Zhang L, McCallister A, Koshlap KM, Branca RT. Correlation distance dependence of the resonance frequency of intermolecular zero quantum coherences and its implication for MR thermometry. Magn Reson Med 2017; 79:1429-1438. [PMID: 28656726 DOI: 10.1002/mrm.26801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/04/2017] [Accepted: 05/27/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE Because the resonance frequency of water-fat intermolecular zero-quantum coherences (iZQCs) reflects the water-fat frequency separation at the microscopic scale, these frequencies have been proposed and used as a mean to obtain more accurate temperature information. The purpose of this work was to investigate the dependence of the water-fat iZQC resonance frequency on sample microstructure and on the specific choice of the correlation distance. METHODS The effect of water-fat susceptibility gradients on the water-methylene iZQC resonance frequency was first computed and then measured for different water-fat emulsions and for a mixture of porcine muscle and fat. Similar measurements were also performed for mixed heteronuclear spin systems. RESULTS A strong dependence of the iZQC resonance frequency on the sample microstructure and on the specific choice of the correlation distance was found for spin systems like water and fat that do not mix, but not for spin systems that mix at the molecular level. CONCLUSIONS Because water and fat spins do not mix at the molecular level, the water-fat iZQC resonance frequency and its temperature coefficient are not only affected by sample microstructure but also by the specific choice of the correlation distance. Magn Reson Med 79:1429-1438, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Le Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karl M Koshlap
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
18
|
Zhang L, Burant A, McCallister A, Zhao V, Koshlap KM, Degan S, Antonacci M, Branca RT. Accurate MR thermometry by hyperpolarized 129 Xe. Magn Reson Med 2016; 78:1070-1079. [PMID: 27759913 DOI: 10.1002/mrm.26506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate the temperature dependence of the resonance frequency of lipid-dissolved xenon (LDX) and to assess the accuracy of LDX-based MR thermometry. METHODS The chemical shift temperature dependence of water protons, methylene protons, and LDX was measured from samples containing tissues with varying fat contents using a high-resolution NMR spectrometer. LDX results were then used to acquire relative and absolute temperature maps in vivo and the results were compared with PRF-based MR thermometry. RESULTS The temperature dependence of proton resonance frequency (PRF) is strongly affected by the specific distribution of water and fat. A redistribution of water and fat compartments can reduce the apparent temperature dependence of the water chemical shift from -0.01 ppm/°C to -0.006 ppm, whereas the LDX chemical shift shows a consistent temperature dependence of -0.21 ppm/°C. The use of the methylene protons resonance frequency as internal reference improves the accuracy of LDX-based MR thermometry, but degrades that of PRF-based MR thermometry, as microscopic susceptibility gradients affected lipid and water spins differently. CONCLUSION The LDX resonance frequency, with its higher temperature dependence, provides more accurate and precise temperature measurements, both in vitro and in vivo. More importantly, the resonance frequency of nearby methylene protons can be used to extract absolute temperature information. Magn Reson Med 78:1070-1079, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Le Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victor Zhao
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Karl M Koshlap
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Simone Degan
- Center for Molecular and Biomolecular Imaging, Department of Radiology and Dermatology, Duke University, Durham, North Carolina, USA
| | - Michael Antonacci
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Hartmann J, Gellermann J, Brandt T, Schmidt M, Pyatykh S, Hesser J, Ott O, Fietkau R, Bert C. Optimization of Single Voxel MR Spectroscopy Sequence Parameters and Data Analysis Methods for Thermometry in Deep Hyperthermia Treatments. Technol Cancer Res Treat 2016; 16:470-481. [PMID: 27422012 DOI: 10.1177/1533034616656310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The difference in the resonance frequency of water and methylene moieties of lipids quantifies in magnetic resonance spectroscopy the absolute temperature using a predefined calibration curve. The purpose of this study was the investigation of peak evaluation methods and the magnetic resonance spectroscopy sequence (point-resolved spectroscopy) parameter optimization that enables thermometry during deep hyperthermia treatments. MATERIALS AND METHODS Different Lorentz peak-fitting methods and a peak finding method using singular value decomposition of a Hankel matrix were compared. Phantom measurements on organic substances (mayonnaise and pork) were performed inside the hyperthermia 1.5-T magnetic resonance imaging system for the parameter optimization study. Parameter settings such as voxel size, echo time, and flip angle were varied and investigated. RESULTS Usually all peak analyzing methods were applicable. Lorentz peak-fitting method in MATLAB proved to be the most stable regardless of the number of fitted peaks, yet the slowest method. The examinations yielded an optimal parameter combination of 8 cm3 voxel volume, 55 millisecond echo time, and a 90° excitation pulse flip angle. CONCLUSION The Lorentz peak-fitting method in MATLAB was the most reliable peak analyzing method. Measurements in homogeneous and heterogeneous phantoms resulted in optimized parameters for the magnetic resonance spectroscopy sequence for thermometry.
Collapse
Affiliation(s)
- J Hartmann
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - J Gellermann
- 2 Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.,3 Praxis/Zentrum für Strahlentherapie und Radioonkologie, Berlin, Germany
| | - T Brandt
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Schmidt
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - S Pyatykh
- 4 Medical Faculty Mannheim, Experimental Radiation Oncology, Heidelberg University, Mannheim, Germany
| | - J Hesser
- 4 Medical Faculty Mannheim, Experimental Radiation Oncology, Heidelberg University, Mannheim, Germany
| | - O Ott
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - R Fietkau
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Bert
- 1 Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
20
|
He G, Sun C, Zhang X, Zuo L, Qin H, Zheng M, Zhou X, Liu L. Echocardiography-guided percutaneous per-ventricular laser ablation of ventricular septum: in vivo study in a canine model. Lasers Med Sci 2016; 31:645-51. [PMID: 26861985 PMCID: PMC4851689 DOI: 10.1007/s10103-016-1881-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/14/2016] [Indexed: 10/31/2022]
Abstract
Surgical myectomy and ethanol ablation are established intervention strategies for left ventricular outflow obstruction in hypertrophic cardiomyopathy. Safety and efficacy limitations of these interventions call for a minimally invasive, potentially safer, and more efficacious strategy. In this study, we aimed to evaluate the feasibility of echocardiography-guided percutaneous per-ventricular laser ablation of a ventricular septum in a canine model. Six domestic dogs were chosen for the study. A 21G needle was inserted into the right ventricle with its tip reaching the targeted basal to mid-septum, after which laser ablation was performed as follows: 1-W laser for 3 min (180 J) at the basal segment and 5 min (300 J) at middle segment of the septum, respectively. Echocardiography, blood chemistry tests, and pathology examination were performed to assess the results of laser ablation. No death or major complications, i.e., tamponade, pericardial effusion, or ventricular fibrillation, occurred. The laser-ablated areas were well demarcated in the results of the pathological examination. The diameters of the ablated regions were 4.42 ± 0.57 and 5.28 ± 0.83 mm for 3 and 5 min ablation, respectively. Pre-ablation and post-ablation, cardiac enzymes were found to increase significantly while no significant differences were found among M-mode, 2D (LVEF), pulsed-wave (PW) Doppler, and tissue Doppler imaging (TDI) measurements. Contrast echocardiography confirmed the perfusion defects in the ablated regions. Microscopically, the ablated myocardium showed coagulative changes and a sparse distribution of disappearing nuclei and an increase in eosinophil number were observed. Our study suggests that percutaneous and per-ventricular laser ablation of the septum is feasible, potentially safe and efficacious, and warrants further investigation and validation.
Collapse
Affiliation(s)
- Guangbin He
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China
| | - Chao Sun
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China
| | - Xiangkong Zhang
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China.,Ultrasound Department, Ningxia Medical University, Yin Chuan, China
| | - Lei Zuo
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China
| | - Haiying Qin
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China
| | - Minjuan Zheng
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China
| | - Xiaodong Zhou
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China.
| | - Liwen Liu
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Changle West Road 15 Hao, Xi'an, ShaanXi Province, 710032, China.
| |
Collapse
|
21
|
Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, Thieme A, Budach V, Wust P, Niendorf T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int J Hyperthermia 2015; 32:63-75. [DOI: 10.3109/02656736.2015.1108462] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
22
|
Costanzo GGD, Francica G, Pacella CM. Laser ablation for small hepatocellular carcinoma: State of the art and future perspectives. World J Hepatol 2014; 6:704-715. [PMID: 25349642 PMCID: PMC4209416 DOI: 10.4254/wjh.v6.i10.704] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 06/17/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
During the last two decades, various local thermal ablative techniques for the treatment of unresectable hepatocellular carcinoma (HCC) have been developed. According to internationally endorsed guidelines, percutaneous thermal ablation is the mainstay of treatment in patients with small HCC who are not candidates for surgical resection or transplantation. Laser ablation (LA) represents one of currently available loco-ablative techniques. In this article, the general principles, technique, image guidance, and patient selection are reported. Primary effectiveness, long-term outcome, and complications are also discussed. A review of published data suggests that LA is equivalent to the more popular and widespread radiofrequency ablation in both local tumor control and long-term outcome in the percutaneous treatment of early HCC. In addition, the LA technique using multiple thin laser fibres allows improved ablative effectiveness in HCCs greater than 3 cm. Reference centres should be equipped with all the available techniques so as to be able to use the best and the most suitable procedure for each type of lesion for each patient.
Collapse
|
23
|
Abstract
Tumor ablation is a minimally invasive technique that is commonly used in the treatment of tumors of the liver, kidney, bone, and lung. During tumor ablation, thermal energy is used to heat or cool tissue to cytotoxic levels (less than -40°C or more than 60°C). An additional technique is being developed that targets the permeability of the cell membrane and is ostensibly nonthermal. Within the classification of tumor ablation, there are several modalities used worldwide: radiofrequency, microwave, laser, high-intensity focused ultrasound, cryoablation, and irreversible electroporation. Each technique, although similar in purpose, has specific and optimal indications. This review serves to discuss general principles and technique, reviews each modality, and discusses modality selection.
Collapse
Affiliation(s)
- Erica M Knavel
- Department of Radiology, University of Wisconsin Madison, Clinical Sciences Center, Madison, WI.
| | | |
Collapse
|
24
|
Baron P, Deckers R, de Greef M, Merckel LG, Bakker CJG, Bouwman JG, Bleys RLAW, van den Bosch MAAJ, Bartels LW. Correction of proton resonance frequency shift MR-thermometry errors caused by heat-induced magnetic susceptibility changes during high intensity focused ultrasound ablations in tissues containing fat. Magn Reson Med 2013; 72:1580-9. [PMID: 24347129 DOI: 10.1002/mrm.25063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE In this study, we aim to demonstrate the sensitivity of proton resonance frequency shift (PRFS) -based thermometry to heat-induced magnetic susceptibility changes and to present and evaluate a model-based correction procedure. THEORY AND METHODS To demonstrate the expected temperature effect, field disturbances during high intensity focused ultrasound sonications were monitored in breast fat samples with a three-dimensional (3D) gradient echo sequence. To evaluate the correction procedure, the interface of tissue-mimicking ethylene glycol gel and fat was sonicated. During sonication, the temperature was monitored with a 2D dual flip angle multi-echo gradient echo sequence, allowing for PRFS-based relative and referenced temperature measurements in the gel and T1 -based temperature measurements in fat. The PRFS-based measurement in the gel was corrected by minimizing the discrepancy between the observed 2D temperature profile and the profile predicted by a 3D thermal model. RESULTS The HIFU sonications of breast fat resulted in a magnetic field disturbance which completely disappeared after cooling. For the correction method, the 5th to 95th percentile interval of the PRFS-thermometry error in the gel decreased from 3.8°C before correction to 2.0-2.3°C after correction. CONCLUSION This study has shown the effects of magnetic susceptibility changes induced by heating of breast fatty tissue samples. The resultant errors can be reduced by the use of a model-based correction procedure.
Collapse
Affiliation(s)
- Paul Baron
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Origin of B0 orientation dependent R2(*) (=1/T2(*)) in white matter. Neuroimage 2013; 73:71-9. [PMID: 23376494 DOI: 10.1016/j.neuroimage.2013.01.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 12/20/2022] Open
Abstract
Recent MRI studies have demonstrated that the relative orientation of white matter fibers to the B0 field significantly affects R2(*) measurement. In this work, the origin of this effect was investigated by measuring R2 and R2(*) in multiple orientations and fitting the results to magnetic susceptibility-based models and magic angle-based models. To further explore the source of magnetic susceptibility effect, the contribution of tissue iron to the orientation dependent R2(*) contrast was investigated. Additionally, the effects of temperature on R2(*) and orientation dependent R2(*) contrasts were studied to understand the differences reported between a fixed specimen at room temperature and in vivo at body temperature. The results suggest that the B0 dependent R2(*) variation is better explained by the magnetic susceptibility-based model with susceptibility anisotropy. However, extracting tissue iron did not reduce the orientation dependent R2(*) contrast, suggesting iron is not the origin of the contrast. This leaves susceptibility effects from myelin as the most probable origin of the contrast. Temperature showed large contribution on both R2(*) and orientation dependent R2(*) contrasts, explaining a portion of the contrast difference between the in-vivo and in-vitro conditions.
Collapse
|
26
|
Hofstetter LW, Yeo DTB, Dixon WT, Kempf JG, Davis CE, Foo TK. Fat-referenced MR thermometry in the breast and prostate using IDEAL. J Magn Reson Imaging 2012; 36:722-32. [PMID: 22581513 DOI: 10.1002/jmri.23692] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/02/2012] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To demonstrate a three-echo fat-referenced MR thermometry technique that estimates and corrects for time-varying phase disturbances in heterogeneous tissues. MATERIALS AND METHODS Fat protons do not exhibit a temperature-dependent frequency shift. Fat-referenced thermometry methods exploit this insensitivity and use the signal from fat to measure and correct for magnetic field disturbances. In this study, we present a fat-referenced method that uses interpolation of the fat signal to correct for phase disturbances in fat free regions. Phantom and ex vivo tissue cool-down experiments were performed to evaluate the accuracy of this method in the absence of motion. Non-heated in vivo imaging of the breast and prostate was performed to demonstrate measurement robustness in the presence of systemic and motion-induced field disturbances. Measurement accuracy of the method was compared to conventional proton resonance frequency shift MR thermometry. RESULTS In the ex vivo porcine tissue experiment, maximum measurement error of the fat-referenced method was reduced 42% from 3.3 to 1.9°C when compared to conventional MR thermometry. In the breasts, measurement errors were reduced by up to 70% from 6.4 to 1.9°C. CONCLUSION Ex vivo and in vivo results show that the proposed method reduces measurement errors in the heterogeneous tissue experiments when compared to conventional MR thermometry.
Collapse
|
27
|
Le K, Li X, Figueroa D, Towner RA, Garteiser P, Saunders D, Smith N, Liu H, Hode T, Nordquist RE, Chen WR. Assessment of thermal effects of interstitial laser phototherapy on mammary tumors using proton resonance frequency method. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:128001. [PMID: 22191937 PMCID: PMC3245746 DOI: 10.1117/1.3659200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 05/31/2023]
Abstract
Laser immunotherapy (LIT) uses a synergistic approach to treat cancer systemically through local laser irradiation and immunological stimulation. Currently, LIT utilizes dye-assisted noninvasive laser irradiation to achieve selective photothermal interaction. However, LIT faces difficulties treating deeper tumors or tumors with heavily pigmented overlying skin. To circumvent these barriers, we use interstitial laser irradiation to induce the desired photothermal effects. The purpose of this study is to analyze the thermal effects of interstitial irradiation using proton resonance frequency (PRF). An 805-nm near-infrared laser with an interstitial cylindrical diffuser was used to treat rat mammary tumors. Different power settings (1.0, 1.25, and 1.5 W) were applied with an irradiation duration of 10 min. The temperature distributions of the treated tumors were measured by a 7 T magnetic resonance imager using PRF. We found that temperature distributions in tissue depended on both laser power and time settings, and that variance in tissue composition has a major influence in temperature elevation. The temperature elevations measured during interstitial laser irradiation by PRF and thermocouple were consistent, with some variations due to tissue composition and the positioning of the thermocouple's needle probes. Our results indicated that, for a tissue irradiation of 10 min, the elevation of rat tumor temperature ranged from 8 to 11°C for 1 W and 8 to 15°C for 1.5 W. This is the first time a 7 T magnetic resonance imager has been used to monitor interstitial laser irradiation via PRF. Our work provides a basic understanding of the photothermal interaction needed to control the thermal damage inside a tumor using interstitial laser treatment. Our work may lead to an optimal protocol for future cancer treatment using interstitial phototherapy in conjunction with immunotherapy.
Collapse
Affiliation(s)
- Kelvin Le
- University of Central Oklahoma, Department of Engineering and Physics, Edmond, Oklahoma 73034, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hey S, de Smet M, Stehning C, Grüll H, Keupp J, Moonen C, Ries M. Simultaneous T1 measurements and proton resonance frequency shift based thermometry using variable flip angles. Magn Reson Med 2011; 67:457-63. [DOI: 10.1002/mrm.22987] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 03/30/2011] [Accepted: 04/08/2011] [Indexed: 11/11/2022]
|
29
|
Regression of peripapillary choroidal neovascularization after oscillatory transpupillary thermotherapy and anti-VEGF pharmacotherapy. Eur J Ophthalmol 2011; 21:162-72. [PMID: 20623469 DOI: 10.5301/ejo.2010.3272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2010] [Indexed: 11/20/2022]
Abstract
PURPOSE We prospectively evaluated a new treatment for recalcitrant choroidal neovascularization (CNV) in 4 patients. We used an infrared laser (810 nm) in oscillatory thermotherapy (OTT) mode combined with indocyanine green (ICG) dye, utilizing the beneficial effect of both thermotherapy and photodynamic therapy. We describe preliminary experiences with ICG-assisted OTT (I-OTT) combined with intravitreal bevacizumab/dexamethasone for refractory peripapillary CNV resistant to standard therapy. METHODS Clinical examination, funduscopy, fluorescein angiography, and optical coherence tomography were performed at baseline and postoperatively. Infrared laser spot size was approximately one-half the lesion size (oscillation 2-3 Hz). Intravitreal injections of bevacizumab (1.25 mg) and dexamethasone (1000 µg) were done during the same visit. RESULTS Mean follow-up was 12.5 months (range 5-17). Mean energy level was 325 mW (range 200-500) in oscillatory mode (2-3 Hz/sec) pre- and post-ICG infusion. Indocyanine green dose was approximately 1 mg/kg (75 mg/patient). All patients had a single treatment. Mean visual acuity improved in 1 patient from 20/60 to 20/30 and remained the same in the other 3 (20/20, 20/40, and 20/400). At final examination, there was no evidence of clinical or angiographic activity of CNV. CONCLUSIONS Indocyanine green-assisted OTT has the potential to treat CNV in wet age-related macular degeneration. It may reduce thermal side effects and eliminate or reduce the need for frequent intravitreal treatment. We postulate that I-OTT has a synergistic effect of thermal energy combined with a weak photosensitizer (ICG) applied in an individualized manner, which minimizes thermal damage to retinal and choroidal tissue. Additional anti-vascular endothelial growth factor pharmacotherapy enhances the effect of I-OTT on abnormal new vessels.
Collapse
|
30
|
Sprinkhuizen SM, Bakker CJG, Ippel JH, Boelens R, Viergever MA, Bartels LW. Temperature dependence of the magnetic volume susceptibility of human breast fat tissue: an NMR study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 25:33-9. [DOI: 10.1007/s10334-011-0250-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/25/2011] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
|
31
|
Ahmed M, Brace CL, Lee FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258:351-69. [PMID: 21273519 DOI: 10.1148/radiol.10081634] [Citation(s) in RCA: 553] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Image-guided tumor ablation with both thermal and nonthermal sources has received substantial attention for the treatment of many focal malignancies. Increasing interest has been accompanied by continual advances in energy delivery, application technique, and therapeutic combinations with the intent to improve the efficacy and/or specificity of ablative therapies. This review outlines clinical percutaneous tumor ablation technology, detailing the science, devices, techniques, technical obstacles, current trends, and future goals in percutaneous tumor ablation. Methods such as chemical ablation, cryoablation, high-temperature ablation (radiofrequency, microwave, laser, and ultrasound), and irreversible electroporation will be discussed. Advances in technique will also be covered, including combination therapies, tissue property modulation, and the role of computer modeling for treatment optimization.
Collapse
Affiliation(s)
- Muneeb Ahmed
- Laboratory for Minimally Invasive Tumor Therapy, Section of Interventional Radiology, and Section of Abdominal Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 1 Deaconess Rd, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
32
|
Intraoperative imaging in neurosurgery: where will the future take us? ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 109:21-5. [PMID: 20960316 DOI: 10.1007/978-3-211-99651-5_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intraoperative MRI (ioMRI) dates back to the 1990s and since then has been successfully applied in neurosurgery for three primary reasons with the last one becoming the most significant today: (1) brain shift-corrected navigation, (2) monitoring/controlling thermal ablations, and (3) identifying residual tumor for resection. IoMRI, which today is moving into other applications, including treatment of vasculature and the spine, requires advanced 3T MRI platforms for faster and more flexible image acquisitions, higher image quality, and better spatial and temporal resolution; functional capabilities including fMRI and DTI; non-rigid registration algorithms to register pre- and intraoperative images; non-MRI imaging improvements to continuously monitor brain shift to identify when a new 3D MRI data set is needed intraoperatively; more integration of imaging and MRI-compatible navigational and robot-assisted systems; and greater computational capabilities to handle the processing of data. The Brigham and Women's Hospital's "AMIGO" suite is described as a setting for progress to continue in ioMRI by incorporating other modalities including molecular imaging. A call to action is made to have other researchers and clinicians in the field of image guided therapy to work together to integrate imaging with therapy delivery systems (such as laser, MRgFUS, endoscopic, and robotic surgery devices).
Collapse
|
33
|
Sprinkhuizen SM, Konings MK, van der Bom MJ, Viergever MA, Bakker CJG, Bartels LW. Temperature-induced tissue susceptibility changes lead to significant temperature errors in PRFS-based MR thermometry during thermal interventions. Magn Reson Med 2010; 64:1360-72. [DOI: 10.1002/mrm.22531] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Sprinkhuizen SM, Bakker CJG, Bartels LW. Absolute MR thermometry using time-domain analysis of multi-gradient-echo magnitude images. Magn Reson Med 2010; 64:239-48. [DOI: 10.1002/mrm.22429] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Jenista ER, Galiana G, Branca RT, Yarmolenko PS, Stokes AM, Dewhirst MW, Warren WS. Application of mixed spin iMQCs for temperature and chemical-selective imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2010; 204:208-18. [PMID: 20303808 PMCID: PMC2874652 DOI: 10.1016/j.jmr.2010.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 05/16/2023]
Abstract
The development of accurate and non-invasive temperature imaging techniques has a wide variety of applications in fields such as medicine, chemistry and materials science. Accurate detection of temperature both in phantoms and in vivo can be obtained using iMQCs (intermolecular multiple quantum coherences), as demonstrated in a recent paper. This paper describes the underlying theory of iMQC temperature detection, as well as extensions of that work allowing not only for imaging of absolute temperature but also for imaging of analyte concentrations through chemically-selective spin density imaging.
Collapse
Affiliation(s)
- Elizabeth R Jenista
- Center for Molecular and Biomolecular Imaging, 2220 French Family Science Center, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Pan X, Li C, Ying K, Weng D, Qin W, Li K. Model-based PRFS thermometry using fat as the internal reference and the extended Prony algorithm for model fitting. Magn Reson Imaging 2010; 28:418-26. [DOI: 10.1016/j.mri.2009.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/05/2009] [Accepted: 11/25/2009] [Indexed: 10/19/2022]
|
37
|
Jenista ER, Branca RT, Warren WS. Absolute temperature imaging using intermolecular multiple quantum MRI. Int J Hyperthermia 2010; 26:725-34. [PMID: 20849265 PMCID: PMC3108856 DOI: 10.3109/02656736.2010.499527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE A review of MRI temperature imaging methods based on intermolecular multiple quantum coherences (iMQCs) is presented. Temperature imaging based on iMQCs can provide absolute temperature maps that circumvent the artefacts that other proton frequency shift techniques suffer from such as distortions to the detected temperature due to susceptibility changes and magnetic field inhomogeneities. Thermometry based on iMQCs is promising in high-fat tissues such as the breast, since it relies on the fat signal as an internal reference. This review covers the theoretical background of iMQCs, and the necessary adaptations for temperature imaging using iMQCs. MATERIALS AND METHODS Data is presented from several papers on iMQC temperature imaging. These studies were done at 7T in both phantoms and in vivo. Results from phantoms of cream (homogeneous mixture of water and fat) are presented as well as in vivo temperature maps in obese mice. RESULTS Thermometry based on iMQCs offers the potential to provide temperature maps which are free of artefacts due to susceptibility and magnetic field inhomogeneities, and detect temperature on an absolute scale. CONCLUSIONS The data presented in the papers reviewed highlights the promise of iMQC-based temperature imaging in fatty tissues such as the breast. The change in susceptibility of fat with temperature makes standard proton frequency shift methods (even with fat suppression) challenging and iMQC-based imaging offers an alternative approach.
Collapse
|
38
|
Kettenbach J, Kuroda K, Hata N, Morrison P, McDannold NJ, Gering D, Saiviroonporn P, Zientara GP, Black PM, Kikinis R, Jolesz FA. Laser-induced thermotherapy of cerebral neoplasia under MR tomographic control. MINIM INVASIV THER 2009. [DOI: 10.3109/13645709809152908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Abstract
Among various proton magnetic resonance (MR) parameters, such as longitudinal relaxation time, transverse relaxation time, diffusion coefficient and chemical shift, the chemical shift of water protons is recognized as the most reliable indicator of temperature. The chemical shift is the only frequency-based parameter and is independent of the other parameters, which are measured based on the intensity of the MR signal. In this paper, the basic principle and the recent progress in imaging temperature by spectroscopic techniques using the water proton chemical shift are discussed. The advantages of spectroscopic imaging over phase mapping for measuring temperature are that the former can distinguish water resonance from other resonances, and that another resonance can be used as an internal reference to reduce the effects of external magnetic field instability, tissue susceptibility and inter-scan tissue movement or deformation. Methods utilizing various magnetic resonance spectroscopy (MRS) techniques, such as single voxel spectroscopy, conventional magnetic resonance spectroscopic imaging (MRSI), echo planar spectroscopic imaging (EPSI) and line scan echo planar spectroscopic imaging (LSEPSI) are discussed.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Molecular Imaging Research Group, Institute of Biomedical Research and Innovation, Kobe, Japan.
| |
Collapse
|
40
|
McDannold N. Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: Review of validation studies. Int J Hyperthermia 2009; 21:533-46. [PMID: 16147438 DOI: 10.1080/02656730500096073] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
MRI-based temperature imaging that exploits the temperature-sensitive water proton resonant frequency shift is currently the only available method for reliable quantification of temperature changes in vivo. Extensive pre-clinical work has been performed to validate this method for guiding thermal therapies. That work has shown the method to be useful for all stages of the thermal therapy, from resolving heating below the threshold for damage to ensuring that the thermal exposure is sufficient within the target volume and protecting surrounding critical structures and to accurately predicting the extent of the ablated volume. In this paper, these validation studies will be reviewed. In addition, clinical studies that have shown this method feasible in human treatments will be overviewed.
Collapse
Affiliation(s)
- N McDannold
- Department of Radiology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
41
|
McDannold N, Tempany C, Jolesz F, Hynynen K. Evaluation of referenceless thermometry in MRI-guided focused ultrasound surgery of uterine fibroids. J Magn Reson Imaging 2009; 28:1026-32. [PMID: 18821603 DOI: 10.1002/jmri.21506] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To clinically assess a previously described method (Rieke et.al., Magn Reson Med 2004) to produce more motion-robust MRI-based temperature images using data acquired during MRI-guided focused ultrasound surgery (MRgFUS) of uterine fibroids. MATERIALS AND METHODS The method ("referenceless thermometry") uses surface fitting in nonheated regions of individual phase images to extrapolate and then remove background phase variations that are unrelated to temperature changes. We tested this method using images from 100 sonications selected from 33 patient MRgFUS treatments. Temperature measurements and thermal dose contours estimated with the referenceless method were compared with those produced with the standard phase-difference technique. Fitting accuracy and noise level were also measured. RESULTS In 92/100 sonications, the difference between the two measurements was less than 3 degrees C. The average difference in the measurements was 1.5 +/- 1.4 degrees C. Small motion artifacts were observed in the phase-difference imaging when the difference was greater than 3 degrees C. The method failed in two cases. The mean absolute error in the surface fit in baseline images corresponded to a temperature error of 0.8 +/- 1.4 degrees C. The noise level was approximately 40% lower than the phase-difference method. Thermal dose contours calculated from the two methods agreed well on average. CONCLUSION Based on the small error when compared with the standard technique, this method appears to be adequate for temperature monitoring of MRgFUS in uterine fibroids and may prove useful for monitoring temperature changes in moving organs.
Collapse
Affiliation(s)
- Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Minimally invasive thermal therapy as local treatment of benign and malignant diseases has received increasing interest in recent years. Safety and efficacy of the treatment require accurate temperature measurement throughout the thermal procedure. Noninvasive temperature monitoring is feasible with magnetic resonance (MR) imaging based on temperature-sensitive MR parameters such as the proton resonance frequency (PRF), the diffusion coefficient (D), T1 and T2 relaxation times, magnetization transfer, the proton density, as well as temperature-sensitive contrast agents. In this article the principles of temperature measurements with these methods are reviewed and their usefulness for monitoring in vivo procedures is discussed. Whereas most measurements give a temperature change relative to a baseline condition, temperature-sensitive contrast agents and spectroscopic imaging can provide absolute temperature measurements. The excellent linearity and temperature dependence of the PRF and its near independence of tissue type have made PRF-based phase mapping methods the preferred choice for many in vivo applications. Accelerated MRI imaging techniques for real-time monitoring with the PRF method are discussed. Special attention is paid to acquisition and reconstruction methods for reducing temperature measurement artifacts introduced by tissue motion, which is often unavoidable during in vivo applications.
Collapse
Affiliation(s)
- Viola Rieke
- Department of Radiology, Stanford University, Stanford, CA 94305-5488, USA.
| | | |
Collapse
|
43
|
McDannold N, Barnes AS, Rybicki FJ, Oshio K, Chen NK, Hynynen K, Mulkern RV. Temperature mapping considerations in the breast with line scan echo planar spectroscopic imaging. Magn Reson Med 2008; 58:1117-23. [PMID: 18046702 DOI: 10.1002/mrm.21322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A line-scan echo planar spectroscopic imaging (LSEPSI) sequence was used to serially acquire spectra from 4,096 voxels every 6.4 s throughout the breasts of nine female subjects in vivo. Data from the serial acquisitions were analyzed to determine the potential of the technique to characterize temperature changes using either the water frequency alone or the water-methylene frequency difference. Fluctuations of the apparent temperature change under these conditions of no heating were smallest using the water-methylene frequency difference, most probably due to a substantial reduction of motion effects both within and without the imaged plane. The approach offers considerable advantages over other methods for temperature change monitoring in the breast with magnetic resonance but suffers from some limitations, including the unavailability of lipid and water resonances in some voxels as well as a surprisingly large distribution of water-methylene frequency differences, which may preclude absolute temperature measurement.
Collapse
Affiliation(s)
- Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Seror O, Lepetit-Coiffé M, Le Bail B, de Senneville BD, Trillaud H, Moonen C, Quesson B. Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo. Eur Radiol 2007; 18:408-16. [PMID: 17899103 DOI: 10.1007/s00330-007-0761-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/03/2007] [Accepted: 08/27/2007] [Indexed: 02/02/2023]
Abstract
To evaluate the feasibility and accuracy of MR thermometry based on the thermal dose (TD) concept for monitoring radiofrequency (RF) ablations, 13 RF ablations in pig livers were performed under continuous MR thermometry at 1.5 T with a filtered clinical RF device. Respiratory gated fast gradient echo images were acquired simultaneously to RF deposition for providing MR temperature maps with the proton resonant frequency technique. Residual motion, signal to noise ratio (SNR) and standard deviation (SD) of MR temperature images were quantitatively analyzed to detect and reject artifacted images in the time series. SD of temperature measurement remained under 2 degrees C. Macroscopic analysis of liver ablations showed a white zone (Wz) surrounded by a red zone (Rz). A detailed histological analysis confirmed the ongoing nature of the coagulation necrosis in both Wz and Rz. Average differences (+/-SD) between macroscopic size measurements of Wz and Rz and TD predictions of ablation zones were 4.1 (+/-1.93) mm and -0.71 (+/-2.47) mm, respectively. Correlation values between TD and Wz and TD and Rz were 0.97 and 0.99, respectively. MR thermometry monitoring based on TD is an accurate method to delineate the size of the ablation zone during the RF procedure and provides a clinical endpoint.
Collapse
Affiliation(s)
- Olivier Seror
- Imagerie Moléculaire et Fonctionnelle: de la physiologie à la thérapie, ERT CNRS/Université Victor Segalen Bordeaux 2, 33000 Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Breen MS, Breen M, Butts K, Chen L, Saidel GM, Wilson DL. MRI-guided Thermal Ablation Therapy: Model and Parameter Estimates to Predict Cell Death from MR Thermometry Images. Ann Biomed Eng 2007; 35:1391-403. [PMID: 17436111 DOI: 10.1007/s10439-007-9300-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Accepted: 03/23/2007] [Indexed: 11/27/2022]
Abstract
Solid tumors and other pathologies can be treated using laser thermal ablation under interventional magnetic resonance imaging (iMRI) guidance. A model was developed to predict cell death from magnetic resonance (MR) thermometry measurements based on the temperature-time history, and validated using in vivo rabbit brain data. To align post-ablation T2-weighted spin-echo MR lesion images to gradient-echo MR images, from which temperature is derived, a registration method was used that aligned fiducials placed near the thermal lesion. The outer boundary of the hyperintense rim in the post-ablation MR lesion image was used as the boundary for cell death, as verified from histology. Model parameters were simultaneously estimated using an iterative optimization algorithm applied to every interesting voxel in 328 images from multiple experiments having various temperature histories. For a necrotic region of 766 voxels across all lesions, the model provided a voxel specificity and sensitivity of 98.1 and 78.5%, respectively. Mislabeled voxels were typically within one voxel from the segmented necrotic boundary with median distances of 0.77 and 0.22 mm for false positives (FP) and false negatives (FN), respectively. As compared to the critical temperature cell death model and the generalized Arrhenius model, our model typically predicted fewer FP and FN. This is good evidence that iMRI temperature maps can be used with our model to predict therapeutic regions in real-time during treatment.
Collapse
Affiliation(s)
- Michael S Breen
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden Building, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
46
|
McDannold N, Hynynen K. Quality assurance and system stability of a clinical MRI-guided focused ultrasound system: four-year experience. Med Phys 2007; 33:4307-13. [PMID: 17153409 DOI: 10.1118/1.2352853] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
To retrospectively evaluate the four-year experience of a quality assurance method for a MRI-guided focused ultrasound system that uses temperature maps acquired during heating in an ultrasound/MRI phantom. This quality assurance method was performed before 148 clinical uterine fibroid thermal ablation treatments. The stability of the peak temperature rise, the targeting accuracy, the shape of the heated zone, and the noise level in the imaging was evaluated. The peak temperature rise was mostly stable for the first three years. An increase in heating was observed when the system was replaced after year three. Detection of this increase was taken into account in the subsequent clinical treatments. A small secondary hotspot was detected by the temperature maps and was seen to be resolved after system calibration. The average standard deviation in unheated regions of the phantom in the temperature maps was 0.5 +/- 0.2 degrees C; it was less than 1 degrees C in all but one procedure. The average initial targeting error was 2.8 +/- 1.8 and 2.8 +/- 2.1 mm in two radial directions and 7.7 +/- 2.9 mm along the ultrasound beam direction. The width of the heating profile was consistent over the four years. This simple method to evaluate the performance appeared to be sensitive to small changes in system performance, which was adequately stable over a four-year time period.
Collapse
Affiliation(s)
- Nathan McDannold
- Harvard Medical School, Brigham and Women's Hospital, Department of Radiology, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
47
|
Kim JE, Shah KB, Han DP, Connor TB. Transpupillary Thermotherapy With Indocyanine Green Dye Enhancement for the Treatment of Occult Subfoveal Choroidal Neovascularization in Age-Related Macular Degeneration. Ophthalmic Surg Lasers Imaging Retina 2006; 37:272-7. [PMID: 16898386 DOI: 10.3928/15428877-20060701-02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Transpupillary thermotherapy (TTT) with indocyanine green (ICG) dye enhancement (TTT+) and TTT alone were compared for safety and effectiveness as a treatment of occult subfoveal choroidal neovascularization in age-related macular degeneration. PATIENTS AND METHODS Twenty-one patients were randomized to receive TTT (12 eyes) or TTT+ (9 eyes) and observed for at least 6 months. ETDRS visual acuity and fluorescein and ICG angiography were obtained every 3 months. RESULTS The median initial visual acuity was 20/80 in the TTT group and 20/100 in the TTT+ group. At 6 months, loss of less than 3 lines of visual acuity was present in 7 of 12 eyes (58%) in the TTT group and 5 of 9 eyes (56%) in the TTT+ group. At the final examination, there was no active choroidal neovascularization exudation in 6 of 12 eyes (50%) in the TTT group and 5 of 9 eyes (56%) in the TTT+ group. The median final visual acuity was 20/125 in the TTT group and 20/160 in the TTT+ group. Ocular or systemic complications were not encountered in either group. CONCLUSION TTT with ICG dye enhancement was as safe and effective as TTT alone in this study. However, modifications of treatment protocol would be needed to see whether there is any advantage to using ICG dye enhancement.
Collapse
Affiliation(s)
- Judy E Kim
- The Eye Institute, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
48
|
Denis de Senneville B, Quesson B, Moonen CTW. Magnetic resonance temperature imaging. Int J Hyperthermia 2005; 21:515-31. [PMID: 16147437 DOI: 10.1080/02656730500133785] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Continuous, real-time, 3D temperature mapping during a hyperthermic procedure may provide (i) enhanced safety by visualizing temperature maps in and around the treated region, (ii) improved efficiency by adapting local energy deposition with feedback coupling algorithms and (iii) therapy end-points based on the accumulated thermal dose. Non-invasive mapping of temperature changes can be achieved with MRI and may be based on temperature dependent MRI parameters. The excellent linearity of the temperature dependency of the proton resonance frequency (PRF) and its near-independence with respect to tissue type make the PRF-based methods the preferred choice for many applications, in particular at mid- to-high field strength (> or =0.5 T). The PRF methods employ RF-spoiled gradient echo imaging methods and incorporate fat suppression techniques for most organs. A standard deviation of less than 1 degrees C, for a temporal resolution below 1 s and a spatial resolution of approximately 2 mm is feasible for immobile tissues. Special attention is paid to methods for reducing artifacts in MR temperature mapping caused by intra-scan and inter-scan motion and motion and temperature-induced susceptibility effects in mobile tissues. Real-time image processing and visualization techniques, together with accelerated MRI acquisition techniques, are described because of their potential for therapy guidance.
Collapse
Affiliation(s)
- B Denis de Senneville
- Laboratory for Molecular and Functional Imaging, ERT CNRS, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | | | | |
Collapse
|
49
|
Vitzthum HE, Winkler D, Strauss G, Lindner D, Krupp W, Schneider JP, Schober R, Meixensberger J. NEUROGATE: a new MR-compatible device for realizing minimally invasive treatment of intracerebral tumors. ACTA ACUST UNITED AC 2005; 9:45-50. [PMID: 15792936 DOI: 10.3109/10929080400006358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors report on the handling and the practicability of a newly developed MR-compatible device, the NEUROGATE (Daum GmbH, Germany), which allows precise planning, simulation and control of stereotactic biopsy in patients with suspect intracranial lesions, and which allows minimally invasive maneuvers to be performed in a comfortable way. Twenty-eight patients were examined stereotactically in the Signa SP interventional 0.5 Tesla MRI (General Electric Medical Systems, USA), including 15 patients with malignant intracerebral tumors and poor general medical conditions (8 gliomas, 7 metastases) who were treated by laser-induced interstitial thermotherapy (LITT) after definite intraoperative neuropathological diagnosis. As a special stereotactic holding device, the NEUROGATE was favored as a reliable tool for stereotaxy and minimally invasive procedures.
Collapse
|
50
|
Miura S, Nishiwaki H, Ieki Y, Hirata Y, Honda Y, Sugino Y, Okazaki Y. Chorioretinal temperature monitoring during transpupillary thermotherapy for choroidal neovascularisation. Br J Ophthalmol 2005; 89:475-9. [PMID: 15774927 PMCID: PMC1772589 DOI: 10.1136/bjo.2004.049189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIMS To investigate the difference in temperature rise between normal choroid and choroidal revascularisation (CNV) during transpupillary thermotherapy (TTT) and the relation between laser spot size and power in the rat fundus. METHODS A modified slit lamp, which was installed with two laser wavelengths (490 nm for illumination and fluorescein excitation and 810 nm for hyperthermia), was developed for TTT and temperature monitoring. Temperature rise during TTT was monitored by observing fluorescence released from thermosensitive liposomes encapsulating carboxyfluorescein. Two types of liposomes were prepared; their phase transition temperatures were 40 degrees C and 46 degrees C, respectively. Laser power settings required to observe fluorescence released from 46 degrees C liposome in normal choroid or CNV were compared. Next, the power settings with 0.5 mm and 0.25 mm spot sizes were compared following administration of 40 degrees C liposome or 46 degrees C liposome. RESULTS The minimum power values when release from 46 degrees C liposome was observed showed a significant difference in distribution of power values between normal choroid and CNV. CNV required significantly higher power than normal choroid. With 40 degrees C liposome, the power was 9.7 (1.9) mW (mean (SD)) at a spot size of 0.25 mm, and 12.1 (1.6) mW at 0.5 mm, respectively. When using 46 degrees C liposome, the power setting was 10.2 (1.2) mW at a spot size of 0.25 mm, and 14.6 (2.2) mW at 0.5 mm, respectively. CONCLUSIONS CNV demonstrated varying heat conduction, compared with normal choroid. Laser power required to raise the temperature should not necessarily be doubled, even when the spot size is doubled. Close attention should be given to the selection of power settings when performing TTT for CNV.
Collapse
Affiliation(s)
- S Miura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|