1
|
De Assis GG, Murawska-Ciałowicz E. BDNF Modulation by microRNAs: An Update on the Experimental Evidence. Cells 2024; 13:880. [PMID: 38786102 PMCID: PMC11119608 DOI: 10.3390/cells13100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
MicroRNAs can interfere with protein function by suppressing their messenger RNA translation or the synthesis of its related factors. The function of brain-derived neurotrophic factor (BDNF) is essential to the proper formation and function of the nervous system and is seen to be regulated by many microRNAs. However, understanding how microRNAs influence BDNF actions within cells requires a wider comprehension of their integrative regulatory mechanisms. Aim: In this literature review, we have synthesized the evidence of microRNA regulation on BDNF in cells and tissues, and provided an analytical discussion about direct and indirect mechanisms that appeared to be involved in BDNF regulation by microRNAs. Methods: Searches were conducted on PubMed.gov using the terms "BDNF" AND "MicroRNA" and "brain-derived neurotrophic factor" AND "MicroRNA", updated on 1 September 2023. Papers without open access were requested from the authors. One hundred and seventy-one papers were included for review and discussion. Results and Discussion: The local regulation of BDNF by microRNAs involves a complex interaction between a series of microRNAs with target proteins that can either inhibit or enhance BDNF expression, at the core of cell metabolism. Therefore, understanding this homeostatic balance provides resources for the future development of vector-delivery-based therapies for the neuroprotective effects of BDNF.
Collapse
Affiliation(s)
- Gilmara Gomes De Assis
- Department of Restorative Dentistry, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
2
|
Tsampasian V, Cameron D, Sobhan R, Bazoukis G, Vassiliou VS. Phosphorus Magnetic Resonance Spectroscopy ( 31P MRS) and Cardiovascular Disease: The Importance of Energy. Medicina (B Aires) 2023; 59:medicina59010174. [PMID: 36676798 PMCID: PMC9866867 DOI: 10.3390/medicina59010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Background and Objectives: The heart is the organ with the highest metabolic demand in the body, and it relies on high ATP turnover and efficient energy substrate utilisation in order to function normally. The derangement of myocardial energetics may lead to abnormalities in cardiac metabolism, which herald the symptoms of heart failure (HF). In addition, phosphorus magnetic resonance spectroscopy (31P MRS) is the only available non-invasive method that allows clinicians and researchers to evaluate the myocardial metabolic state in vivo. This review summarises the importance of myocardial energetics and provides a systematic review of all the available research studies utilising 31P MRS to evaluate patients with a range of cardiac pathologies. Materials and Methods: We have performed a systematic review of all available studies that used 31P MRS for the investigation of myocardial energetics in cardiovascular disease. Results: A systematic search of the Medline database, the Cochrane library, and Web of Science yielded 1092 results, out of which 62 studies were included in the systematic review. The 31P MRS has been used in numerous studies and has demonstrated that impaired myocardial energetics is often the beginning of pathological processes in several cardiac pathologies. Conclusions: The 31P MRS has become a valuable tool in the understanding of myocardial metabolic changes and their impact on the diagnosis, risk stratification, and prognosis of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Vasiliki Tsampasian
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
- Correspondence: (V.T.); (V.S.V.)
| | - Donnie Cameron
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Rashed Sobhan
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
| | - George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca 6301, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2417, Cyprus
| | - Vassilios S. Vassiliou
- Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, Research Park, Rosalind Franklin Rd, Norwich NR4 7UQ, UK
- Correspondence: (V.T.); (V.S.V.)
| |
Collapse
|
3
|
Wibowo PG, Charman SJ, Okwose NC, Velicki L, Popovic D, Hollingsworth KG, Macgowan GA, Jakovljevic DG. Association between cardiac high-energy phosphate metabolism and whole body metabolism in healthy female adults. Physiol Res 2021; 70:393-399. [PMID: 33982584 DOI: 10.33549/physiolres.934627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Decline in cardiac high-energy phosphate metabolism [phosphocreatine-to-ATP (PCr/ATP) ratio] and whole body metabolism increase the risk of heart failure and metabolic diseases. The aim of the present study was to assess the relationship between PCr/ATP ratio and measures of body metabolic function. A total of 35 healthy women (56+/-14.0 years of age) underwent cardiac 31P magnetic resonance spectroscopy to assess PCr/ATP ratio - an index of cardiac high-energy phosphate metabolism. Fasting and 2-hour glucose levels were assessed using oral glucose tolerance test. Indirect calorimetry was performed to determine oxygen consumption and resting metabolic rate. There were no significant relationships between PCr/ATP ratio and resting metabolic rate (r=-0.09, p=0.62), oxygen consumption (r=-0.11, p=0.54), fasting glucose levels (r=-0.31, p=0.07), and 2-hour plasma glucose (r=-0.10, p=0.58). Adjusted analysis for covariates including age, body mass index, fat mass, and physical activity, had no significant influence on the relationship between PCr/ATP ratio and body metabolism. In conclusion, the lack of relationship between cardiac PCr/ATP ratio, glucose control and metabolic rate may suggest that overall metabolic function does not influence cardiac high-energy phosphate metabolism.
Collapse
Affiliation(s)
- P G Wibowo
- Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SCAM, Glatz JFC, Wildberger JE, Kooi ME. MRS: a noninvasive window into cardiac metabolism. NMR IN BIOMEDICINE 2015; 28:747-66. [PMID: 26010681 DOI: 10.1002/nbm.3320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 05/21/2023]
Abstract
A well-functioning heart requires a constant supply of a balanced mixture of nutrients to be used for the production of adequate amounts of adenosine triphosphate, which is the main energy source for most cellular functions. Defects in cardiac energy metabolism are linked to several myocardial disorders. MRS can be used to study in vivo changes in cardiac metabolism noninvasively. MR techniques allow repeated measurements, so that disease progression and the response to treatment or to a lifestyle intervention can be monitored. It has also been shown that MRS can predict clinical heart failure and death. This article focuses on in vivo MRS to assess cardiac metabolism in humans and experimental animals, as experimental animals are often used to investigate the mechanisms underlying the development of metabolic diseases. Various MR techniques, such as cardiac (31) P-MRS, (1) H-MRS, hyperpolarized (13) C-MRS and Dixon MRI, are described. A short overview of current and emerging applications is given. Cardiac MRS is a promising technique for the investigation of the relationship between cardiac metabolism and cardiac disease. However, further optimization of scan time and signal-to-noise ratio is required before broad clinical application. In this respect, the ongoing development of advanced shimming algorithms, radiofrequency pulses, pulse sequences, (multichannel) detection coils, the use of hyperpolarized nuclei and scanning at higher magnetic field strengths offer future perspective for clinical applications of MRS.
Collapse
Affiliation(s)
- Petronella A van Ewijk
- Maastricht University Medical Center, Human Biology, Maastricht, the Netherlands
- Maastricht University Medical Center, Radiology, Maastricht, the Netherlands
- Maastricht University Medical Center, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht, the Netherlands
| | - Vera B Schrauwen-Hinderling
- Maastricht University Medical Center, Human Biology, Maastricht, the Netherlands
- Maastricht University Medical Center, Radiology, Maastricht, the Netherlands
- Maastricht University Medical Center, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht, the Netherlands
| | | | - Jan F C Glatz
- Maastricht University Medical Center, Molecular Genetics, Maastricht, the Netherlands
- Maastricht University Medical Center, CARIM - Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | | | - M Eline Kooi
- Maastricht University Medical Center, Radiology, Maastricht, the Netherlands
- Maastricht University Medical Center, NUTRIM - School for Nutrition, Toxicology and Metabolism, Maastricht, the Netherlands
- Maastricht University Medical Center, CARIM - Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| |
Collapse
|
5
|
Jameel MN, Zhang J. Myocardial energetics in left ventricular hypertrophy. Curr Cardiol Rev 2011; 5:243-50. [PMID: 20676284 PMCID: PMC2822148 DOI: 10.2174/157340309788970379] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 11/25/2009] [Accepted: 01/13/2009] [Indexed: 11/22/2022] Open
Abstract
The heart carries out its pumping function by converting the chemical energy stored in fatty acids and glucose into the mechanical energy of actin-myosin interaction of myofibrils. Development of congestive heart failure is usually preceded by a period of compensated left ventricular hypertrophy (LVH) and alterations in myocardial bioenergetics have been considered to play an important role in this transition. Myocardial energetic state that is reflected by the ratio of Phosphocreatine to Adenosine Triphosphate (PCr/ATP) is significantly decreased in hearts with LVH. The severity of this abnormality is linearly related to the severity of cardiac hypertrophy as well as left ventricular (LV) dysfunction, and is independent of a persistent myocardial ischemia. The decrease in PCr/ATP is accompanied by a decrease in creatine kinase flux and alterations in substrate utilization in LVH hearts. Moreover, there is a profound heterogeneity in alterations in myocardial energy metabolism in hearts with post-infarction hypertrophy with the most severe abnormality present in the inner layers of the periscar border zone (BZ). This review will discuss various aspects of myocardial energetics in animal models of three different types of LVH (pressure-overload, volume overload and post-infarction) with a brief description of myocardial energetics in humans with LVH.
Collapse
Affiliation(s)
- Mohammad N Jameel
- Department of Cardiology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
6
|
Burkhard T, Herzog C, Linzbach S, Spyridopoulos I, Huebner F, Vogl TJ. Cardiac 31P-MRS compared to echocardiographic findings in patients with hypertensive heart disease without overt systolic dysfunction—Preliminary results. Eur J Radiol 2009; 71:69-74. [DOI: 10.1016/j.ejrad.2008.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
|
7
|
Rofsky NM. Nephrogenic systemic fibrosis: considerations for the cardiologist. JACC Cardiovasc Imaging 2009; 1:457-9. [PMID: 19356467 DOI: 10.1016/j.jcmg.2008.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 05/16/2008] [Indexed: 10/21/2022]
|
8
|
Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation 2009; 119:1918-24. [PMID: 19332463 DOI: 10.1161/circulationaha.108.823187] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Energy metabolism is essential for myocellular viability. The high-energy phosphates adenosine triphosphate (ATP) and phosphocreatine (PCr) are reduced in human myocardial infarction (MI), reflecting myocyte loss and/or decreased intracellular ATP generation by creatine kinase (CK), the prime energy reserve of the heart. The pseudo-first-order CK rate constant, k, measures intracellular CK reaction kinetics and is independent of myocyte number within sampled tissue. CK flux is defined as the product of [PCr] and k. CK flux and k have never been measured in human MI. METHODS AND RESULTS Myocardial CK metabolite concentrations, k, and CK flux were measured noninvasively in 15 patients 7 weeks to 16 years after anterior MI using phosphorus magnetic resonance spectroscopy. In patients, mean myocardial [ATP] and [PCr] were 39% to 44% lower than in 15 control subjects (PCr=5.4+/-1.2 versus 9.6+/-1.1 micromol/g wet weight in MI versus control subjects, respectively, P<0.001; ATP=3.4+/-1.1 versus 5.5+/-1.3 micromol/g wet weight, P<0.001). The myocardial CK rate constant, k, was normal in MI subjects (0.31+/-0.08 s(-1)) compared with control subjects (0.33+/-0.07 s(-1)), as was PCr/ATP (1.74+/-0.27 in MI versus 1.87+/-0.45). However, CK flux was halved in MI [to 1.7+/-0.5 versus 3.3+/-0.8 micromol(g . s)(-1); P<0.001]. CONCLUSIONS These first observations of CK kinetics in prior human MI demonstrate that CK ATP supply is significantly reduced as a result of substrate depletion, likely attributable to myocyte loss. That k and PCr/ATP are unchanged in MI is consistent with the preservation of intracellular CK metabolism in surviving myocytes. Importantly, the results support therapies that primarily ameliorate the effects of tissue and substrate loss after MI and those that reduce energy demand rather than those that increase energy transfer or workload in surviving tissue.
Collapse
Affiliation(s)
- Paul A Bottomley
- Division of MR Research, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Magnetic resonance spectroscopy (MRS) allows for the non-invasive detection of a wide variety of metabolites in the heart. To study the metabolic changes that occur in heart failure, (31)P- and (1)H-MRS have been applied in both patients and experimental animal studies. (31)P-MRS allows for the detection of phosphocreatine (PCr), ATP, inorganic phosphate (Pi) and intracellular pH, while (1)H-MRS allows for the detection of total creatine. All these compounds are involved in the regulation of the available energy from ATP hydrolysis via the creatine kinase (CK) reaction. Using cardiac MRS, it has been found that the PCr/CK system is impaired in the failing heart. In both, patients and experimental models, PCr levels as well as total creatine levels are reduced, and in severe heart failure ATP is also reduced. PCr/ATP ratios correlate with the clinical severity of heart failure and, importantly, are a prognostic indicator of mortality in patients. In addition, the chemical flux through the CK reaction, measured with (31)P saturation transfer MRS, is reduced more than the steady-state levels of high-energy phosphates in failing myocardium in both experimental models and in patients. Experimental studies suggest that these changes can result in increased free ADP levels when the failing heart is stressed. Increased free ADP levels, in turn, result in a reduction in the available free energy of ATP hydrolysis, which may directly contribute to contractile dysfunction. Data from transgenic mouse models also suggest that an intact creatine/CK system is critical for situations of cardiac stress.
Collapse
Affiliation(s)
- Michiel Ten Hove
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | | |
Collapse
|
10
|
Nishimura M, Murase M, Hashimoto T, Kobayashi H, Yamazaki S, Imai R, Okino K, Fujita H, Inoue N, Takahashi H, Ono T. Insulin resistance and impaired myocardial fatty acid metabolism in dialysis patients with normal coronary arteries. Kidney Int 2006; 69:553-9. [PMID: 16395255 DOI: 10.1038/sj.ki.5000100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated whether insulin resistance is associated with impaired cardiac fatty acid metabolism in maintenance hemodialysis patients without coronary artery disease. We studied 55 nondiabetic (63+/-11 years old) and 51 diabetic (61+/-10 years old) hemodialysis patients with normal coronary arteries, using single-photon emission computed tomography (SPECT) with an iodinated fatty acid analogue, iodine-123-beta-methyl iodophenyl-pentadecanoic acid ((123)I-BMIPP), to evaluate cardiac fatty acid metabolism. SPECT imaging was graded regionally from 0 (normal) to 4 (absence of tracer) to calculate a summed score for 17 left ventricular segments. Insulin resistance was determined using the homeostasis model assessment index of insulin resistance (HOMA-IR). HOMA-IR correlated with summed BMIPP score in nondiabetic and diabetic patients. Stepwise multiple regression analysis showed that HOMA-IR was independently associated with BMIPP summed score in nondiabetic (beta=0.774, t=9.218, P=0.0001) and diabetic patients (beta=0.792, t=9.079, P=0.0001). Left ventricular ejection fraction was lower in nondiabetic subjects with BMIPP summed score of at least 6 plus HOMA-IR of at least 4 than in others with lower values for both assessments (53.1+/-13.8%, n=20 vs 67.7+/-9.1%, n=23, P=0.0002); this was also true in diabetic subjects (50.9+/-15.2%, n=24 vs 71.0+/-13.6%, n=11, P=0.0007). Association between insulin resistance and impaired cardiac fatty acid metabolism may contribute to left ventricular dysfunction in patients with maintenance hemodialysis without coronary diseases.
Collapse
MESH Headings
- Aged
- Coronary Disease/metabolism
- Coronary Disease/physiopathology
- Coronary Vessels/physiology
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/physiopathology
- Endothelium, Vascular/physiopathology
- Fatty Acids/metabolism
- Female
- Glucose/metabolism
- Heart Failure/etiology
- Heart Failure/physiopathology
- Homeostasis
- Humans
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Insulin Resistance
- Iodobenzenes
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/physiopathology
- Kidney Failure, Chronic/therapy
- Male
- Middle Aged
- Models, Biological
- Myocardium/metabolism
- Regression Analysis
- Renal Dialysis
- Tomography, Emission-Computed, Single-Photon
- Ventricular Function, Left/physiology
Collapse
Affiliation(s)
- M Nishimura
- Cardiovascular Division, Toujinkai Hospital, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Heyne JP, Rzanny R, Hansch A, Leder U, Reichenbach JR, Kaiser WA. 31P-MR spectroscopic imaging in hypertensive heart disease. Eur Radiol 2006; 16:1796-802. [PMID: 16514468 DOI: 10.1007/s00330-006-0170-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 11/05/2005] [Accepted: 01/20/2006] [Indexed: 10/25/2022]
Abstract
Hypertensive heart disease (HHD) causes structural changes (e.g., fibrosis) that result in diastolic and systolic myocardial dysfunction. Alterations of (31)P metabolism and cardiac energy impairments were assessed in patients with HHD by MR spectroscopy (MRS) and correlated with left ventricular systolic function. Thirty-six patients with HHD and 20 healthy controls (mean age 35.2+/-10.7 years) were examined with (31)P-MRS at 1.5 T by using an ECG-gated CSI sequence. Twenty-five patients (mean age 64.3+/-9.3 years) had diastolic dysfunction, but preserved systolic function (HHD-D), whereas 11 patients (62.3+/-11.4 years) suffered from additional impaired systolic function (HHD-S). In both patient groups, the PCr/gamma-ATP ratio was lower than in the controls (controls: 2.07+/-0.17; P<0.001), and in HHD-S was lower than in HHD-D (1.43+/-0.21 vs. 1.65+/-0.25; P=0.012). PCr/gamma-ATP ratios were linearly correlated with LVEF (Pearson's r: 0.39; P=0.025). In the HHD-S group, the PDE/gamma-ATP ratio was significantly lower (0.56+/-0.36) than in the controls (1.14+/-0.42; P=0.001). In contrast to the group of HHD-D patients, whose slightly decreased PCr/gamma-ATP ratios compared to controls may be explained by age differences, the more distinct changes observed in HHD-S patients indicate an altered energy metabolism. The observed metabolic changes were related to functional impairments, as indicated by a reduced LVEF. Reduced PDE/ATP ratios indicate changes in the phospholipid metabolism.
Collapse
Affiliation(s)
- J-P Heyne
- Institute of Diagnostic and Interventional Radiology, Friedrich Schiller University, Erlanger Allee 101, 07747 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2005; 18:205-12. [PMID: 15920785 DOI: 10.1002/nbm.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|