1
|
Julian A, Ruthotto L. PyHySCO: GPU-enabled susceptibility artifact distortion correction in seconds. Front Neurosci 2024; 18:1406821. [PMID: 38863882 PMCID: PMC11165994 DOI: 10.3389/fnins.2024.1406821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Over the past decade, reversed gradient polarity (RGP) methods have become a popular approach for correcting susceptibility artifacts in echo-planar imaging (EPI). Although several post-processing tools for RGP are available, their implementations do not fully leverage recent hardware, algorithmic, and computational advances, leading to correction times of several minutes per image volume. To enable 3D RGP correction in seconds, we introduce PyTorch Hyperelastic Susceptibility Correction (PyHySCO), a user-friendly EPI distortion correction tool implemented in PyTorch that enables multi-threading and efficient use of graphics processing units (GPUs). PyHySCO uses a time-tested physical distortion model and mathematical formulation and is, therefore, reliable without training. An algorithmic improvement in PyHySCO is its use of the one-dimensional distortion correction method by Chang and Fitzpatrick to initialize the non-linear optimization. PyHySCO is published under the GNU public license and can be used from the command line or its Python interface. Our extensive numerical validation using 3T and 7T data from the Human Connectome Project suggests that PyHySCO can achieve accuracy comparable to that of leading RGP tools at a fraction of the cost. We also validate the new initialization scheme, compare different optimization algorithms, and test the algorithm on different hardware and arithmetic precisions.
Collapse
Affiliation(s)
- Abigail Julian
- Department of Computer Science, Emory University, Atlanta, GA, United States
| | - Lars Ruthotto
- Department of Computer Science, Emory University, Atlanta, GA, United States
- Department of Mathematics, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Wu Z, Chen D, Pan C, Zhang G, Chen S, Shi J, Meng C, Zhao X, Tao B, Chen D, Liu W, Ding H, Tang Z. Surgical Robotics for Intracerebral Hemorrhage Treatment: State of the Art and Future Directions. Ann Biomed Eng 2023; 51:1933-1941. [PMID: 37405558 PMCID: PMC10409846 DOI: 10.1007/s10439-023-03295-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype with high mortality and disability, and there are no proven medical treatments that can improve the functional outcome of ICH patients. Robot-assisted neurosurgery is a significant advancement in the development of minimally invasive surgery for ICH. This review encompasses the latest advances and future directions of surgical robots for ICH. First, three robotic systems for neurosurgery applied to ICH are illustrated. Second, the key technologies of robot-assisted surgery for ICH are introduced in aspects of stereotactic technique and navigation, the puncture instrument, and hematoma evacuation. Finally, the limitations of current surgical robots are summarized, and the possible development direction is discussed, which is named "multisensor fusion and intelligent aspiration control of minimally invasive surgical robot for ICH". It is expected that the new generation of surgical robots for ICH will facilitate quantitative, precise, individualized, standardized treatment strategies for ICH.
Collapse
Affiliation(s)
- Zhuojin Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Shi
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cai Meng
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Xingwei Zhao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Tao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Diansheng Chen
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Wenjie Liu
- Beijing WanTeFu Medical Instrument Co., Ltd, Beijing, 102299, China
| | - Han Ding
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Arnold TC, Freeman CW, Litt B, Stein JM. Low-field MRI: Clinical promise and challenges. J Magn Reson Imaging 2023; 57:25-44. [PMID: 36120962 PMCID: PMC9771987 DOI: 10.1002/jmri.28408] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/03/2023] Open
Abstract
Modern MRI scanners have trended toward higher field strengths to maximize signal and resolution while minimizing scan time. However, high-field devices remain expensive to install and operate, making them scarce outside of high-income countries and major population centers. Low-field strength scanners have drawn renewed academic, industry, and philanthropic interest due to advantages that could dramatically increase imaging access, including lower cost and portability. Nevertheless, low-field MRI still faces inherent limitations in image quality that come with decreased signal. In this article, we review advantages and disadvantages of low-field MRI scanners, describe hardware and software innovations that accentuate advantages and mitigate disadvantages, and consider clinical applications for a new generation of low-field devices. In our review, we explore how these devices are being or could be used for high acuity brain imaging, outpatient neuroimaging, MRI-guided procedures, pediatric imaging, and musculoskeletal imaging. Challenges for their successful clinical translation include selecting and validating appropriate use cases, integrating with standards of care in high resource settings, expanding options with actionable information in low resource settings, and facilitating health care providers and clinical practice in new ways. By embracing both the promise and challenges of low-field MRI, clinicians and researchers have an opportunity to transform medical care for patients around the world. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.
Collapse
Affiliation(s)
- Thomas Campbell Arnold
- Department of Bioengineering, School of Engineering & Applied ScienceUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Colbey W. Freeman
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Brian Litt
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Neurology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Joel M. Stein
- Center for Neuroengineering and TherapeuticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Sharma M, Wang D, Palmisciano P, Ugiliweneza B, Woo S, Nelson M, Miller D, Savage J, Boakye M, Andaluz N, Mistry AM, Chen CC, Williams BJ. Is intraoperative MRI use in malignant brain tumor surgery a health care burden? A matched analysis of MarketScan Database. J Neurooncol 2022; 160:331-339. [DOI: 10.1007/s11060-022-04142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
|
5
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
6
|
Shear wave elastography for intracranial epidermoid tumors. Clin Neurol Neurosurg 2021; 207:106531. [PMID: 34182236 DOI: 10.1016/j.clineuro.2021.106531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ultrasound elastography (USE) is a novel technique that assesses the mechanical properties of body tissues in real time. Based on elasticity measurements, USE enables the differentiation of tumor tissue from surrounding normal tissue. OBJECTIVES We aimed to evaluate an intraoperative SWE technique for differentiating tumor tissue (epidermoid cyst) from the surrounding normal brain tissue based on elastic properties. METHODS We prospectively report the intraoperative elasticity assessments of four patients diagnosed with epidermoid cysts. Along with standard ultrasonography, intraoperative shear wave elastography (SWE) was used to identify tumor tissue and assess the elasticity of each tumor and the surrounding normal brain. RESULTS USE enabled the differentiation between epidermoid cysts and the surrounding normal brain tissue in real time intraoperatively; visual data (SWE elasticity map) and quantitative data (elasticity measurements in kilopascals) were utilized to identify the epidermoid cyst based on its elastic properties. The area representing the epidermoid cyst had an increased elasticity on SWE view and high mean elasticity values (193.7 ± 70.9 kPa in case 1, 168 ± 24.5 kPa in case 2, 205.1 ± 6.7 kPa in case 3, and 101.3 ± 12.6 kPa in case 4). The area representing the adjacent normal brain tissue on SWE view had lower mean elasticity values (14.9 ± 1.9 kPa in case 1, 22.6 ± 8.3 kPa in case 2, and 23.8 ± 1.4 kPa in case 4). CONCLUSION This study demonstrates the feasibility and promising value of SWE as an intraoperative tool during epidermoid cyst resection. Epidermoid tissue remnants that are hidden from the microscopic view can be detected using SWE.
Collapse
|
7
|
Quon JL, Chen LC, Kim L, Grant GA, Edwards MSB, Cheshier SH, Yeom KW. Deep Learning for Automated Delineation of Pediatric Cerebral Arteries on Pre-operative Brain Magnetic Resonance Imaging. Front Surg 2020; 7:517375. [PMID: 33195383 PMCID: PMC7649258 DOI: 10.3389/fsurg.2020.517375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Surgical resection of brain tumors is often limited by adjacent critical structures such as blood vessels. Current intraoperative navigations systems are limited; most are based on two-dimensional (2D) guidance systems that require manual segmentation of any regions of interest (ROI; eloquent structures to avoid or tumor to resect). They additionally require time- and labor-intensive processing for any reconstruction steps. We aimed to develop a deep learning model for real-time fully automated segmentation of the intracranial vessels on preoperative non-angiogram imaging sequences. Methods: We identified 48 pediatric patients (10-months to 22-years old) with high resolution (0.5-1 mm axial thickness) isovolumetric, pre-operative T2 magnetic resonance images (MRIs). Twenty-eight patients had anatomically normal brains, and 20 patients had tumors or other lesions near the skull base. Manually segmented intracranial vessels (internal carotid, middle cerebral, anterior cerebral, posterior cerebral, and basilar arteries) served as ground truth labels. Patients were divided into 80/5/15% training/validation/testing sets. A modified 2-D Unet convolutional neural network (CNN) architecture implemented with 5 layers was trained to maximize the Dice coefficient, a measure of the correct overlap between the predicted vessels and ground truth labels. Results: The model was able to delineate the intracranial vessels in a held-out test set of normal and tumor MRIs with an overall Dice coefficient of 0.75. While manual segmentation took 1-2 h per patient, model prediction took, on average, 8.3 s per patient. Conclusions: We present a deep learning model that can rapidly and automatically identify the intracranial vessels on pre-operative MRIs in patients with normal vascular anatomy and in patients with intracranial lesions. The methodology developed can be translated to other critical brain structures. This study will serve as a foundation for automated high-resolution ROI segmentation for three-dimensional (3D) modeling and integration into an augmented reality navigation platform.
Collapse
Affiliation(s)
- Jennifer L. Quon
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Leo C. Chen
- Department of Urology, Stanford University, Stanford, CA, United States
| | - Lily Kim
- Stanford School of Medicine, Stanford, CA, United States
| | - Gerald A. Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Michael S. B. Edwards
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, University of California, Davis, Davis, CA, United States
| | - Samuel H. Cheshier
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kristen W. Yeom
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Ammar MM, Mahmoud M, Kreasha AEA, Mousa AE. Evaluation of Neuronavigation in Glioma Surgery. OPEN JOURNAL OF MODERN NEUROSURGERY 2020; 10:36-50. [DOI: 10.4236/ojmn.2020.101005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Krivosheya D, Rao G, Tummala S, Kumar V, Suki D, Bastos DCA, Prabhu SS. Impact of Multi-modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors using the Intraoperative MRI. J Neurol Surg A Cent Eur Neurosurg 2019; 82:375-380. [PMID: 31659724 DOI: 10.1055/s-0039-1698383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Preserving the integrity of the corticospinal tract (CST) while maximizing the extent of tumor resection is one of the key principles of brain tumor surgery to prevent new neurologic deficits. Our goal was to determine the impact of the use of perioperative diffusion tensor imaging (DTI) fiber-tracking protocols for location of the CSTs, in conjunction with intraoperative direct electrical stimulation (DES) on patient neurologic outcomes. The role of combining DES and CST shift in intraoperative magnetic resonance imaging (iMRI) to enhance extent of resection (EOR) has not been studied previously. METHODS A total of 53 patients underwent resection of tumors adjacent to the motor gyrus and the underlying CST between June 5, 2009, and April 16, 2013. All cases were performed in the iMRI (BrainSuite 1.5 T). Preoperative DTI mapping and intraoperative cortical and subcortical DES including postoperative DTI mapping were performed in all patients. There were 32 men and 21 women with 40 high-grade gliomas (76%), 4 low-grade gliomas (8%), and 9 (17%) metastases. Thirty-four patients (64%) were newly diagnosed, and 19 (36%) had a previous resection. There were 31 (59%) right-sided and 22 (42%) left-sided tumors. Eighteen patients (34%) had a re-resection after the first intraoperative scan. Most patients had motor-only mapping, and one patient had both speech and motor mapping. Relative to the resection margin, the CST after the first iMRI was designated as having an outward shift (OS), inward shift (IS), or no shift (NS). RESULTS A gross total resection (GTR) was achieved in 41 patients (77%), subtotal resection in 4 (7.5%), and a partial resection in 8 (15%). Eighteen patients had a re-resection, and the mean EOR increased from 84% to 95% (p = 0.002). Of the 18 patients, 7 had an IS, 8 an OS, and in 3 NS was noted. More patients in the OS group had a GTR compared with the IS or NS groups (p = 0.004). Patients were divided into four groups based on the proximity of the tumor to the CST as measured from the preoperative scan. Group 1 (32%) included patients whose tumors were 0 to 5 mm from the CST based on preoperative scans; group 2 (28%), 6 to 10 mm; group 3 (13%), 11 to 15 mm; and group 4 (26%), 16 to 20 mm, respectively. Patients in group 4 had fewer neurologic complications compared with other groups at 1 and 3 months postoperatively (p = 0.001 and p = 0.007, respectively) despite achieving a similar degree of resection (p = 0.61). Furthermore, the current of intraoperative DES was correlated to the distance of the tumor to the CST, and the regression equation showed a close linear relationship between the two parameters. CONCLUSIONS Combining information about intraoperative CST and DES in the iMRI can enhance resection in brain tumors (77% had a GTR). The relative relationship between the positions of the CST to the resection cavity can be a dynamic process that could further influence the surgeon's decision about the stimulation parameters and EOR. Also, the patients with an OS of the CST relative to the resection cavity had a GTR comparable with the other groups.
Collapse
Affiliation(s)
- Daria Krivosheya
- Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ganesh Rao
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sudhakar Tummala
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Vinodh Kumar
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dima Suki
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Dheigo C A Bastos
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Sujit S Prabhu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| |
Collapse
|
10
|
High Speed Pneumatic Stepper Motor for MRI Applications. Ann Biomed Eng 2018; 47:826-835. [DOI: 10.1007/s10439-018-02174-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
|
11
|
Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Real-Time Imaging of Brain Tumor for Image-Guided Surgery. Adv Healthc Mater 2018; 7:e1800066. [PMID: 29719137 PMCID: PMC6105507 DOI: 10.1002/adhm.201800066] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Indexed: 02/05/2023]
Abstract
The completion of surgical resection is a key prognostic factor in brain tumor treatment. This requires surgeons to identify residual tumors in theater as well as to margin the proximity of the tumor to adjacent normal tissue. Subjective assessments, such as texture palpation or visual tissue differences, are commonly used by oncology surgeons during resection to differentiate cancer lesions from normal tissue, which can potentially result in either an incomplete tumor resection, or accidental removal of normal tissue. Moreover, malignant brain tumors are even more difficult to distinguish from normal brain tissue, and resecting noncancerous tissue may create neurological defects after surgery. To optimize the resection margin in brain tumors, a variety of intraoperative guidance techniques are developed, such as neuronavigation, magnetic resonance imaging, ultrasound, Raman spectroscopy, and optical fluorescence imaging. When combined with appropriate contrast agents, optical fluorescence imaging can provide the neurosurgeon real-time image guidance to improve resection completeness and to decrease surgical complications.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anren Kuang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
12
|
The usefulness of fibrin glue as a support in the dissection of malignant cystic brain tumors. Neurochirurgie 2018; 64:57-62. [PMID: 29429648 DOI: 10.1016/j.neuchi.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND If the complete microsurgical resection of a brain tumor is a logical oncologic goal, the surgical strategy for the cystic component remains controversial secondary to the risk of morbidity. The objective of this study was to analyze the interest of using fibrin glue in the resection of malignant cystic brain tumors (MCBT). METHODS Seven patients (median: 60-years-old (range [52-72]/sex ratio M/F: 2.5) were analyzed prospectively in the Neurosurgery Department at Strasbourg University Hospital, from October 2014 to November 2016. The surgical technique consisted of injecting fibrin glue into the tumor cyst after partial drainage. After the solidification of the glue, the cysts walls were removal by following the dissection plan around the fibrin glue. The primary objective was to evaluate the quality of surgical resection on brain MRI scans postoperatively with the use of ITK-SNAP software for precise measurements of tumor volume. RESULTS Four metastases and 3 glial lesions were operated on with this technique. An average reduction in cystic volume of 64.6% (P=0.016) and 82.1% (P=0.016) for contrast enhancement volume were observed. If two cases (#2 and #7) were excluded, the average contrast enhancement reduction was respectively 94% and 72% for the cystic volume. In addition, there were no complications, tumor recurrence or difference between gliomas and metastases and the Karnofsky score increased by at least 10% in all patients. CONCLUSION This procedure allowed to extend the resection to the cystic component of MCBT without increasing the risk of morbidity related to injury on the underlying parenchyma.
Collapse
|
13
|
Persaud-Sharma D, Burns J, Govea M, Kashan S. Cerebral gliomas: Treatment, prognosis and palliative alternatives. PROGRESS IN PALLIATIVE CARE 2018. [DOI: 10.1080/09699260.2017.1417805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dharam Persaud-Sharma
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Joseph Burns
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Marien Govea
- The Honors College, Florida International University Honors College Bioethics, Miami, FL 33199, USA
| | - Sanaz Kashan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Palliative Care Fellowship Director, Internal Medicine Teaching Faculty, Aventura Hospital & Medical Center, Aventura, FL 33180, USA
| |
Collapse
|
14
|
Ispierto L, Muñoz J, Cladellas JM, Cuadras P, Capellades J, Latorre P, Dávalos A, Vancamp T, Álvarez R. Post-Operative Localization of Deep Brain Stimulation Electrodes in the Subthalamus Using Transcranial Sonography. Neuromodulation 2017; 21:574-581. [PMID: 29178240 DOI: 10.1111/ner.12733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The correct positioning of deep brain stimulation electrodes determines the success of surgery. In this study, we attempt to validate transcranial sonography (TCS) as a method for early postoperative confirmation of electrode location in the subthalamic nucleus (STN). MATERIALS AND METHODS Nineteen patients diagnosed with Parkinson's disease were enrolled in the study. Postoperative TCS was applied to measure the distance between the implanted electrodes and the third ventricle in the axial plane. Whether the electrodes were positioned within or outside the substantia nigra (SN) was evaluated through measurements in the coronal plane. The obtained metrics through TCS were compared with those from postoperative computed tomography (CT) and magnetic resonance imaging (MRI). RESULTS A statistically significant correlation between distances from electrode to third ventricle by TCS and CT/MRI (r = 0.75, p < 0.01) was observed. Distances from third ventricle to electrodes tips were different when sonographically they showed to be inside or outside the SN (p < 0.01). A cut-off value of 8.85mm in these distances was the most sensitive (100%) and specific (90.5%) to predict if electrodes were positioned inside the SN (CI 95% 0.81-10.30, p = 0.001). CONCLUSIONS Transcranial sonography is a useful technique to reliably identify targeted positioning of deep brain stimulation electrodes in or out of the SN.
Collapse
Affiliation(s)
- Lourdes Ispierto
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jorge Muñoz
- Department of Neurosurgery and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Josep Maria Cladellas
- Department of Neurosurgery and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Patricia Cuadras
- Department of Radiology, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jaume Capellades
- Image Diagnosis Institute, Badalona, Spain.,Department of Medical Imaging Consorci MAR Parc de Salut, Barcelona, Spain
| | - Pilar Latorre
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Antoni Dávalos
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| | - Tim Vancamp
- BRAI2N, St. Augustinus Hospital, Wilrijk, Belgium
| | - Ramiro Álvarez
- Department of Neurology and Neurosciences, University Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
15
|
Miner RC. Image-Guided Neurosurgery. J Med Imaging Radiat Sci 2017; 48:328-335. [PMID: 31047466 DOI: 10.1016/j.jmir.2017.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/27/2017] [Indexed: 01/21/2023]
Abstract
Image-guided surgery provides more precise targeting, is less invasive, and has improved outcomes when compared with conventional surgical approaches. Imaging is used to plan, monitor progress, and assess results. Because no one modality offers real-time physiological and anatomical information, a wide range of imaging modalities are used at each phase of the surgery. This article will discuss how various modalities are used in image-guided neurosurgery for common brain pathologies.
Collapse
Affiliation(s)
- Robert C Miner
- Carleton University, Ottawa, Ontario, Canada; Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Roldán P, García S, González J, Reyes LA, Torales J, Valero R, Oleaga L, Enseñat J. Resonancia magnética intraoperatoria de bajo campo para la cirugía de neoplasias cerebrales: experiencia preliminar. Neurocirugia (Astur) 2017; 28:103-110. [DOI: 10.1016/j.neucir.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 10/20/2022]
|
17
|
Yang JYM, Beare R, Seal ML, Harvey AS, Anderson VA, Maixner WJ. A systematic evaluation of intraoperative white matter tract shift in pediatric epilepsy surgery using high-field MRI and probabilistic high angular resolution diffusion imaging tractography. J Neurosurg Pediatr 2017; 19:592-605. [PMID: 28304232 DOI: 10.3171/2016.11.peds16312] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Characterization of intraoperative white matter tract (WMT) shift has the potential to compensate for neuronavigation inaccuracies using preoperative brain imaging. This study aimed to quantify and characterize intraoperative WMT shift from the global hemispheric to the regional tract-based scale and to investigate the impact of intraoperative factors (IOFs). METHODS High angular resolution diffusion imaging (HARDI) diffusion-weighted data were acquired over 5 consecutive perioperative time points (MR1 to MR5) in 16 epilepsy patients (8 male; mean age 9.8 years, range 3.8-15.8 years) using diagnostic and intraoperative 3-T MRI scanners. MR1 was the preoperative planning scan. MR2 was the first intraoperative scan acquired with the patient's head fixed in the surgical position. MR3 was the second intraoperative scan acquired following craniotomy and durotomy, prior to lesion resection. MR4 was the last intraoperative scan acquired following lesion resection, prior to wound closure. MR5 was a postoperative scan acquired at the 3-month follow-up visit. Ten association WMT/WMT segments and 1 projection WMT were generated via a probabilistic tractography algorithm from each MRI scan. Image registration was performed through pairwise MRI alignments using the skull segmentation. The MR1 and MR2 pairing represented the first surgical stage. The MR2 and MR3 pairing represented the second surgical stage. The MR3 and MR4 (or MR5) pairing represented the third surgical stage. The WMT shift was quantified by measuring displacements between a pair of WMT centerlines. Linear mixed-effects regression analyses were carried out for 6 IOFs: head rotation, craniotomy size, durotomy size, resected lesion volume, presence of brain edema, and CSF loss via ventricular penetration. RESULTS The average WMT shift in the operative hemisphere was 2.37 mm (range 1.92-3.03 mm) during the first surgical stage, 2.19 mm (range 1.90-3.65 mm) during the second surgical stage, and 2.92 mm (range 2.19-4.32 mm) during the third surgical stage. Greater WMT shift occurred in the operative than the nonoperative hemisphere, in the WMTs adjacent to the surgical lesion rather than those remote to it, and in the superficial rather than the deep segment of the pyramidal tract. Durotomy size and resection size were significant, independent IOFs affecting WMT shift. The presence of brain edema was a marginally significant IOF. Craniotomy size, degree of head rotation, and ventricular penetration were not significant IOFs affecting WMT shift. CONCLUSIONS WMT shift occurs noticeably in tracts adjacent to the surgical lesions, and those motor tracts superficially placed in the operative hemisphere. Intraoperative probabilistic HARDI tractography following craniotomy, durotomy, and lesion resection may compensate for intraoperative WMT shift and improve neuronavigation accuracy.
Collapse
Affiliation(s)
| | - Richard Beare
- Developmental Imaging Group and.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Marc L Seal
- Developmental Imaging Group and.,Department of Paediatrics and
| | | | - Vicki A Anderson
- Psychology, Royal Children's Hospital.,Clinical Sciences Theme, Murdoch Childrens Research Institute.,Department of Paediatrics and.,School of Psychological Sciences, University of Melbourne; and
| | | |
Collapse
|
18
|
Abdullah AC, Adnan JS, Rahman NAA, Palur R. Limited Evaluation of Image Quality Produced by a Portable Head CT Scanner (CereTom) in a Neurosurgery Centre. Malays J Med Sci 2017; 24:104-112. [PMID: 28381933 DOI: 10.21315/mjms2017.24.1.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Computed tomography (CT) is the preferred diagnostic toolkit for head and brain imaging of head injury. A recent development is the invention of a portable CT scanner that can be beneficial from a clinical point of view. AIM To compare the quality of CT brain images produced by a fixed CT scanner and a portable CT scanner (CereTom). METHODS This work was a single-centre retrospective study of CT brain images from 112 neurosurgical patients. Hounsfield units (HUs) of the images from CereTom were measured for air, water and bone. Three assessors independently evaluated the images from the fixed CT scanner and CereTom. Streak artefacts, visualisation of lesions and grey-white matter differentiation were evaluated at three different levels (centrum semiovale, basal ganglia and middle cerebellar peduncles). Each evaluation was scored 1 (poor), 2 (average) or 3 (good) and summed up to form an ordinal reading of 3 to 9. RESULTS HUs for air, water and bone from CereTom were within the recommended value by the American College of Radiology (ACR). Streak artefact evaluation scores for the fixed CT scanner was 8.54 versus 7.46 (Z = -5.67) for CereTom at the centrum semiovale, 8.38 (SD = 1.12) versus 7.32 (SD = 1.63) at the basal ganglia and 8.21 (SD = 1.30) versus 6.97 (SD = 2.77) at the middle cerebellar peduncles. Grey-white matter differentiation showed scores of 8.27 (SD = 1.04) versus 7.21 (SD = 1.41) at the centrum semiovale, 8.26 (SD = 1.07) versus 7.00 (SD = 1.47) at the basal ganglia and 8.38 (SD = 1.11) versus 6.74 (SD = 1.55) at the middle cerebellar peduncles. Visualisation of lesions showed scores of 8.86 versus 8.21 (Z = -4.24) at the centrum semiovale, 8.93 versus 8.18 (Z = -5.32) at the basal ganglia and 8.79 versus 8.06 (Z = -4.93) at the middle cerebellar peduncles. All results were significant with P-value < 0.01. CONCLUSIONS Results of the study showed a significant difference in image quality produced by the fixed CT scanner and CereTom, with the latter being more inferior than the former. However, HUs of the images produced by CereTom do fulfil the recommendation of the ACR.
Collapse
Affiliation(s)
- Ariz Chong Abdullah
- Department of Neurosurgery, Hospital Sultanah Aminah, Jalan Persiaran Sultan Abu Bakar, 80100 Johor Bahru, Johor, Malaysia; Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Sultanah Zainab 2, 16150 Kubang Kerian, Kelantan, Malaysia; Center for Neuroscience Services and Research, Universiti Sains Malaysia, Jalan Hospital USM, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Johari Siregar Adnan
- Department of Neurosurgery, Hospital Sultanah Aminah, Jalan Persiaran Sultan Abu Bakar, 80100 Johor Bahru, Johor, Malaysia
| | - Noor Azman A Rahman
- Department of Neurosurgery, Hospital Sultanah Aminah, Jalan Persiaran Sultan Abu Bakar, 80100 Johor Bahru, Johor, Malaysia
| | - Ravikant Palur
- Department of Neurosurgery, Hospital Sultanah Aminah, Jalan Persiaran Sultan Abu Bakar, 80100 Johor Bahru, Johor, Malaysia
| |
Collapse
|
19
|
Martin AJ, Larson PS, Ziman N, Levesque N, Volz M, Ostrem JL, Starr PA. Deep brain stimulator implantation in a diagnostic MRI suite: infection history over a 10-year period. J Neurosurg 2017; 126:108-113. [DOI: 10.3171/2015.7.jns15750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
The objective of this study was to assess the incidence of postoperative hardware infection following interventional (i)MRI–guided implantation of deep brain stimulation (DBS) electrodes in a diagnostic MRI scanner.
METHODS
A diagnostic 1.5-T MRI scanner was used over a 10-year period to implant DBS electrodes for movement disorders. The MRI suite did not meet operating room standards with respect to airflow and air filtration but was prepared and used with conventional sterile procedures by an experienced surgical team. Deep brain stimulation leads were implanted while the patient was in the magnet, and patients returned 1–3 weeks later to undergo placement of the implantable pulse generator (IPG) and extender wire in a conventional operating room. Surgical site infections requiring the removal of part or all of the DBS system within 6 months of implantation were scored as postoperative hardware infections in a prospective database.
RESULTS
During the 10-year study period, the authors performed 164 iMRI-guided surgical procedures in which 272 electrodes were implanted. Patients ranged in age from 7 to 78 years, and an overall infection rate of 3.6% was found. Bacterial cultures indicated Staphylococcus epidermis (3 cases), methicillin-susceptible Staphylococcus aureus (2 cases), or Propionibacterium sp. (1 case). A change in sterile practice occurred after the first 10 patients, leading to a reduction in the infection rate to 2.6% (4 cases in 154 procedures) over the remainder of the procedures. Of the 4 infections in this patient subset, all occurred at the IPG site.
CONCLUSIONS
Interventional MRI–guided DBS implantation can be performed in a diagnostic MRI suite with an infection risk comparable to that reported for traditional surgical placement techniques provided that sterile procedures, similar to those used in a regular operating room, are practiced.
Collapse
Affiliation(s)
| | | | - Nathan Ziman
- 3Neurology, University of California, San Francisco, California
| | | | - Monica Volz
- 3Neurology, University of California, San Francisco, California
| | - Jill L. Ostrem
- 3Neurology, University of California, San Francisco, California
| | | |
Collapse
|
20
|
Beare R, Yang JYM, Maixner WJ, Harvey AS, Kean MJ, Anderson VA, Seal ML. Automated alignment of perioperative MRI scans: A technical note and application in pediatric epilepsy surgery. Hum Brain Mapp 2016; 37:3530-43. [PMID: 27198965 DOI: 10.1002/hbm.23257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/03/2016] [Accepted: 04/29/2016] [Indexed: 11/06/2022] Open
Abstract
Conventional image registration utilizing brain voxel information may be erroneous in a neurosurgical setting due to pathology and surgery-related anatomical distortions. We report a novel application of an automated image registration procedure based on skull segmentation for magnetic resonance imaging (MRI) scans acquired before, during and after surgery (i.e., perioperative). The procedure was implemented to assist analysis of intraoperative brain shift in 11 pediatric epilepsy surgery cases, each of whom had up to five consecutive perioperative MRI scans. The procedure consisted of the following steps: (1) Skull segmentation using tissue classification tools. (2) Estimation of rigid body transformation between image pairs using registration driven by the skull segmentation. (3) Composition of transformations to provide transformations between each scan and a common space. The procedure was validated using locations of three types of reference structural landmarks: the skull pin sites, the eye positions, and the scalp skin surface, detected using the peak intensity gradient. The mean target registration error (TRE) scores by skull pin sites and scalp skin rendering were around 1 mm and <1 mm, respectively. Validation by eye position demonstrated >1 mm TRE scores, suggesting it is not a reliable reference landmark in surgical scenarios. Comparable registration accuracy was achieved between opened and closed skull scan pairs and closed and closed skull scan pairs. Our procedure offers a reliable registration framework for processing intrasubject time series perioperative MRI data, with potential of improving intraoperative MRI-based image guidance in neurosurgical practice. Hum Brain Mapp 37:3530-3543, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Richard Beare
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Stroke and Aging Research Group, Monash University, Melbourne, Victoria, Australia
| | - Joseph Yuan-Mou Yang
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Neurosurgery, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Neuroscience Research, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Wirginia J Maixner
- Department of Neurosurgery, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - A Simon Harvey
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Michael J Kean
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Vicki A Anderson
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Child Neuropsychology, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Psychology, Royal Children's Hospital, Melbourne, Victoria, Australia.,School of Psychological Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc L Seal
- Developmental Imaging, Clinical Sciences, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Zheng X, Xu X, Zhang H, Wang Q, Ma X, Chen X, Sun G, Zhang J, Jiang J, Xu B, Zhang J. A Preliminary Experience with Use of Intraoperative Magnetic Resonance Imaging in Thalamic Glioma Surgery: A Case Series of 38 Patients. World Neurosurg 2016; 89:434-41. [DOI: 10.1016/j.wneu.2016.01.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
22
|
Hauser SB, Kockro RA, Actor B, Sarnthein J, Bernays RL. Combining 5-Aminolevulinic Acid Fluorescence and Intraoperative Magnetic Resonance Imaging in Glioblastoma Surgery. Neurosurgery 2015; 78:475-83. [DOI: 10.1227/neu.0000000000001035] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Glioblastoma resection guided by 5-aminolevulinic acid (5-ALA) fluorescence and intraoperative magnetic resonance imaging (iMRI) may improve surgical results and prolong survival.
OBJECTIVE:
To evaluate 5-ALA fluorescence combined with subsequent low-field iMRI for resection control in glioblastoma surgery.
METHODS:
Fourteen patients with suspected glioblastoma suitable for complete resection of contrast-enhancing portions were enrolled. The surgery was carried out using 5-ALA–induced fluorescence and frameless navigation. Areas suspicious for tumor underwent biopsy. After complete resection of fluorescent tissue, low-field iMRI was performed. Areas suspicious for tumor remnant underwent biopsy under navigation guidance and were resected. The histological analysis was blinded.
RESULTS:
In 13 of 14 cases, the diagnosis was glioblastoma multiforme. One lymphoma and 1 case without fluorescence were excluded. In 11 of 12 operations, residual contrast enhancement on iMRI was found after complete resection of 5-ALA fluorescent tissue. In 1 case, the iMRI enhancement was in an eloquent area and did not undergo a biopsy. The 28 biopsies of areas suspicious for tumor on iMRI in the remaining 10 cases showed tumor in 39.3%, infiltration zone in 25%, reactive central nervous system tissue in 32.1%, and normal brain in 3.6%. Ninety-three fluorescent and 24 non-fluorescent tissue samples collected before iMRI contained tumor in 95.7% and 87.5%, respectively.
CONCLUSION:
5-ALA fluorescence–guided resection may leave some glioblastoma tissue undetected. MRI might detect areas suspicious for tumor even after complete resection of all fluorescent tissue; however, due to the limited accuracy of iMRI in predicting tumor remnant (64.3%), resection of this tissue has to be considered with caution in eloquent regions.
Collapse
Affiliation(s)
- Sonja B. Hauser
- Department of Neurosurgery, University Hospital, Zurich, Switzerland
| | - Ralf A. Kockro
- Department of Neurosurgery, Hirslanden Hospital, Zurich, Switzerland
| | - Bertrand Actor
- Department of Neurosurgery, University Hospital, Zurich, Switzerland
| | | | | |
Collapse
|
23
|
Image-Guided Neurosurgery: History and Current Clinical Applications. J Med Imaging Radiat Sci 2015; 46:331-342. [DOI: 10.1016/j.jmir.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022]
|
24
|
Zhang ZZ, Shields LBE, Sun DA, Zhang YP, Hunt MA, Shields CB. The Art of Intraoperative Glioma Identification. Front Oncol 2015; 5:175. [PMID: 26284196 PMCID: PMC4520021 DOI: 10.3389/fonc.2015.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/14/2015] [Indexed: 01/01/2023] Open
Abstract
A major dilemma in brain-tumor surgery is the identification of tumor boundaries to maximize tumor excision and minimize postoperative neurological damage. Gliomas, especially low-grade tumors, and normal brain have a similar color and texture, which poses a challenge to the neurosurgeon. Advances in glioma resection techniques combine the experience of the neurosurgeon and various advanced technologies. Intraoperative methods to delineate gliomas from normal tissue consist of (1) image-based navigation, (2) intraoperative sampling, (3) electrophysiological monitoring, and (4) enhanced visual tumor demarcation. The advantages and disadvantages of each technique are discussed. A combination of these methods is becoming widely accepted in routine glioma surgery. Gross total resection in conjunction with radiation, chemotherapy, or immune/gene therapy may increase the rates of cure in this devastating disease.
Collapse
Affiliation(s)
- Zoe Z Zhang
- Department of Neurosurgery, University of Minnesota , Minneapolis, MN , USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA
| | - David A Sun
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA
| | - Matthew A Hunt
- Department of Neurosurgery, University of Minnesota , Minneapolis, MN , USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA ; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| |
Collapse
|
25
|
Raheja A, Tandon V, Suri A, Sarat Chandra P, Kale SS, Garg A, Pandey RM, Kalaivani M, Mahapatra AK, Sharma BS. Initial experience of using high field strength intraoperative MRI for neurosurgical procedures. J Clin Neurosci 2015; 22:1326-31. [PMID: 26077939 DOI: 10.1016/j.jocn.2015.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/06/2015] [Accepted: 02/14/2015] [Indexed: 11/18/2022]
Abstract
We report our initial experience to optimize neurosurgical procedures using high field strength intraoperative magnetic resonance imaging (IOMRI) in 300 consecutive patients as high field strength IOMRI rapidly becomes the standard of care for neurosurgical procedures. Three sequential groups (groups A, B, C; n=100 each) were compared with respect to time management, complications and technical difficulties to assess improvement in these parameters with experience. We observed a reduction in the number of technical difficulties (p<0.001), time to induction (p<0.001) and total anesthesia time (p=0.007) in sequential groups. IOMRI was performed for neuronavigation guidance (n=252) and intraoperative validation of extent of resection (EOR; n=67). Performing IOMRI increased the EOR over and beyond the primary surgical attempt in 20.5% (29/141) and 18% (11/61) of patients undergoing glioma and pituitary surgery, respectively. Overall, EOR improved in 59.7% of patients undergoing IOMRI (40/67). Intraoperative tractography and real time navigation using re-uploaded IOMRI images (accounting for brain shift) helps in intraoperative planning to reduce complications. IOMRI is an asset to neurosurgeons, helping to augment the EOR, especially in glioma and pituitary surgery, with no significant increase in morbidity to the patient.
Collapse
Affiliation(s)
- Amol Raheja
- Department of Neurosurgery and Gamma Knife, Neurosciences Centre, All India Institute of Medical Sciences, Room 8, Sixth Floor, Ansari Nagar, New Delhi 110029, India
| | - Vivek Tandon
- Department of Neurosurgery and Gamma Knife, Neurosciences Centre, All India Institute of Medical Sciences, Room 8, Sixth Floor, Ansari Nagar, New Delhi 110029, India.
| | - Ashish Suri
- Department of Neurosurgery and Gamma Knife, Neurosciences Centre, All India Institute of Medical Sciences, Room 8, Sixth Floor, Ansari Nagar, New Delhi 110029, India
| | - P Sarat Chandra
- Department of Neurosurgery and Gamma Knife, Neurosciences Centre, All India Institute of Medical Sciences, Room 8, Sixth Floor, Ansari Nagar, New Delhi 110029, India
| | - Shashank S Kale
- Department of Neurosurgery and Gamma Knife, Neurosciences Centre, All India Institute of Medical Sciences, Room 8, Sixth Floor, Ansari Nagar, New Delhi 110029, India
| | - Ajay Garg
- Department of Neuro-radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ravindra M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Mani Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok K Mahapatra
- Department of Neurosurgery and Gamma Knife, Neurosciences Centre, All India Institute of Medical Sciences, Room 8, Sixth Floor, Ansari Nagar, New Delhi 110029, India
| | - Bhawani S Sharma
- Department of Neurosurgery and Gamma Knife, Neurosciences Centre, All India Institute of Medical Sciences, Room 8, Sixth Floor, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
26
|
Magerkurth J, Mancini L, Penny W, Flandin G, Ashburner J, Micallef C, De Vita E, Daga P, White MJ, Buckley C, Yamamoto AK, Ourselin S, Yousry T, Thornton JS, Weiskopf N. Objective Bayesian fMRI analysis-a pilot study in different clinical environments. Front Neurosci 2015; 9:168. [PMID: 26029041 PMCID: PMC4428130 DOI: 10.3389/fnins.2015.00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/26/2015] [Indexed: 11/13/2022] Open
Abstract
Functional MRI (fMRI) used for neurosurgical planning delineates functionally eloquent brain areas by time-series analysis of task-induced BOLD signal changes. Commonly used frequentist statistics protect against false positive results based on a p-value threshold. In surgical planning, false negative results are equally if not more harmful, potentially masking true brain activity leading to erroneous resection of eloquent regions. Bayesian statistics provides an alternative framework, categorizing areas as activated, deactivated, non-activated or with low statistical confidence. This approach has not yet found wide clinical application partly due to the lack of a method to objectively define an effect size threshold. We implemented a Bayesian analysis framework for neurosurgical planning fMRI. It entails an automated effect-size threshold selection method for posterior probability maps accounting for inter-individual BOLD response differences, which was calibrated based on the frequentist results maps thresholded by two clinical experts. We compared Bayesian and frequentist analysis of passive-motor fMRI data from 10 healthy volunteers measured on a pre-operative 3T and an intra-operative 1.5T MRI scanner. As a clinical case study, we tested passive motor task activation in a brain tumor patient at 3T under clinical conditions. With our novel effect size threshold method, the Bayesian analysis revealed regions of all four categories in the 3T data. Activated region foci and extent were consistent with the frequentist analysis results. In the lower signal-to-noise ratio 1.5T intra-operative scanner data, Bayesian analysis provided improved brain-activation detection sensitivity compared with the frequentist analysis, albeit the spatial extents of the activations were smaller than at 3T. Bayesian analysis of fMRI data using operator-independent effect size threshold selection may improve the sensitivity and certainty of information available to guide neurosurgery.
Collapse
Affiliation(s)
- Joerg Magerkurth
- Department for Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK ; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| | - Laura Mancini
- Department for Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK
| | - William Penny
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| | - Guillaume Flandin
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| | - Caroline Micallef
- Department for Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK
| | - Enrico De Vita
- Department for Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK
| | - Pankaj Daga
- Centre for Medical Image Computing, University College London London, UK
| | - Mark J White
- Department for Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK
| | | | - Adam K Yamamoto
- Department for Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK
| | - Sebastien Ourselin
- Centre for Medical Image Computing, University College London London, UK
| | - Tarek Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK
| | - John S Thornton
- Department for Brain Repair and Rehabilitation, UCL Institute of Neurology, University College London London, UK
| | - Nikolaus Weiskopf
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London London, UK
| |
Collapse
|
27
|
Barroso EM, Smits RWH, Bakker Schut TC, ten Hove I, Hardillo JA, Wolvius EB, Baatenburg de Jong RJ, Koljenović S, Puppels GJ. Discrimination between oral cancer and healthy tissue based on water content determined by Raman spectroscopy. Anal Chem 2015; 87:2419-26. [PMID: 25621527 DOI: 10.1021/ac504362y] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tumor-positive resection margins are a major problem in oral cancer surgery. High-wavenumber Raman spectroscopy is a reliable technique to determine the water content of tissues, which may contribute to differentiate between tumor and healthy tissue. The aim of this study was to examine the use of Raman spectroscopy to differentiate tumor from surrounding healthy tissue in oral squamous cell carcinoma. From 14 patients undergoing tongue resection for squamous cell carcinoma, the water content was determined at 170 locations on freshly excised tongue specimens using the Raman bands of the OH-stretching vibrations (3350-3550 cm(-1)) and of the CH-stretching vibrations (2910-2965 cm(-1)). The results were correlated with histopathological assessment of hematoxylin and eosin stained thin tissue sections obtained from the Raman measurement locations. The water content values from squamous cell carcinoma measurements were significantly higher than from surrounding healthy tissue (p-value < 0.0001). Tumor tissue could be detected with a sensitivity of 99% and a specificity of 92% using a cutoff water content value of 69%. Because the Raman measurements are fast and can be carried out on freshly excised tissue without any tissue preparation, this finding signifies an important step toward the development of an intraoperative tool for tumor resection guidance with the aim of enabling oncological radical surgery and improvement of patient outcome.
Collapse
Affiliation(s)
- E M Barroso
- Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, ‡Department of Otorhinolaryngology & Head and Neck Surgery, §Center for Optical Diagnostics & Therapy, Department of Dermatology, ∥Department of Pathology, Erasmus MC, University Medical Center Rotterdam , 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yao C, Lv S, Chen H, Tang W, Guo J, Zhuang D, Chrisochoides N, Wu J, Mao Y, Zhou L. The clinical utility of multimodal MR image-guided needle biopsy in cerebral gliomas. Int J Neurosci 2015; 126:53-61. [PMID: 25539452 DOI: 10.3109/00207454.2014.992429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Our aim was to evaluate the diagnostic value of multimodal Magnetic Resonance (MR) Image in the stereotactic biopsy of cerebral gliomas, and investigate its implications. MATERIALS AND METHODS Twenty-four patients with cerebral gliomas underwent (1)H Magnetic Resonance Spectroscopy ((1)H-MRS)- and intraoperative Magnetic Resonance Imaging (iMRI)-supported stereotactic biopsy, and 23 patients underwent only the preoperative MRI-guided biopsy. The diagnostic yield, morbidity and mortality rates were analyzed. In addition, 20 patients underwent subsequent tumor resection, thus the diagnostic accuracy of the biopsy was further evaluated. RESULTS The diagnostic accuracies of biopsies evaluated by tumor resection in the trial groups were better than control groups (92.3% and 42.9%, respectively, p = 0.031). The diagnostic yield in the trial groups was better than the control groups, but the difference was not statistically significant (100% and 82.6%, respectively, p = 0.05). The morbidity and mortality rates were similar in both groups. CONCLUSIONS Multimodal MR image-guided glioma biopsy is practical and valuable. This technique can increase the diagnostic accuracy in the stereotactic biopsy of cerebral gliomas. Besides, it is likely to increase the diagnostic yield but requires further validation.
Collapse
Affiliation(s)
- Chengjun Yao
- a Glioma Surgery Division.,b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Shunzeng Lv
- c Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | | | - Weijun Tang
- e Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Jun Guo
- f Neurological Surgery Department, First People's Hospital of Yancheng, Jiang Su Province, P. R. China
| | - Dongxiao Zhuang
- a Glioma Surgery Division.,b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | | | - Jinsong Wu
- a Glioma Surgery Division.,b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ying Mao
- b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Liangfu Zhou
- b Department of Neurological Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| |
Collapse
|
29
|
Sun X, Chen Z, Yang S, Zhang J, Yue S, Wang Z, Yang W. Role of high-field intraoperative magnetic resonance imaging on a multi-image fusion-guided stereotactic biopsy of the basal ganglia: A case report. Oncol Lett 2014; 9:223-226. [PMID: 25435963 PMCID: PMC4246638 DOI: 10.3892/ol.2014.2680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/15/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present case study was to investigate the advantages of intraoperative magnetic resonance imaging (iMRI) on the real-time guidance and monitoring of a stereotactic biopsy. The study describes a patient with intracranial lesions, which were examined by conventional MRI and diffusion tensor imaging using a 1.5T intraoperative MRI system. The digital and pre-operative positron emission/computed tomography image data were transferred to a BrainLAB planning workstation, and a variety of images were automatically fused. The BrainLAB software was then used to reconstruct the corticospinal tract (CST) and create a three-dimensional display of the anatomical association between the CST and the brain lesions. A Leksell surgical planning workstation was used to identify the ideal target site and a reasonable needle track for the biopsy. The 1.5T iMRI was used to effectively monitor the intracranial condition during the brain biopsy procedure. Post-operatively, the original symptoms of the patient were not aggravated and no further neurological deficits were apparent. The histopathological diagnosis of non-Hodgkin's B-cell lymphoma was made. Using high-field iMRI, the multi-image fusion-guided stereotactic brain biopsy allows for a higher positive rate of biopsy and a lower incidence of complications. The approach of combining multi-image fusion images with the frame-based stereotactic biopsy may be clinically useful for intracranial lesions of deep functional areas.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuyuan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
30
|
Sommer B, Schlaffer SM, Coras R, Blumcke I, Hamer HM, Stefan H, Buchfelder M. Intraoperative use of high-field MRI in hypothalamic hamartomas associated with epilepsy: clinico-pathological presentation of five adult patients. Acta Neurochir (Wien) 2014; 156:1865-78. [PMID: 25085541 DOI: 10.1007/s00701-014-2172-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/24/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypothalamic harmartomas (HHs) are either occasionally associated with medically intractable epileptic syndromes or precocious puberty. Due to the extraordinary location and the expansive intra-axial growth, surgical resection is difficult and challenging without causing severe neurological, hypothalamic or endocrinological deficits, which account for higher mortality and morbidity. METHODS We present a series of five adult patients with drug-resistant epilepsy who had been operated on for HH using neuronavigation and intraoperative 1.5-T magnetic resonance imaging (MRI). In this retrospective investigation, we compared our surgical strategy and postoperative results to existing series. RESULTS During surgery, we identified remnant HH in the first intraoperative MRI control scan in three out of five patients. After re-segmentation of the residual lesion using neuronavigation, complete resection was achieved in two of the three patients as confirmed by final intraoperative and late follow-up MRI, raising the rate of total resections to four out of five patients. Two patients died during the observation period. One patient suffered from a permanent third nerve palsy and one from a transient monoparesis of the left arm. New endocrinological disturbances included diabetes insipidus centralis in two and secondary hypothyroidism and hypogonadism in one patient. Four out of five patients had favourable seizure control (Engel I or II) after 64.8 (34-83) months of mean follow-up. CONCLUSIONS Neuronavigation and intraoperative MRI are valuable tools to encounter difficulties while performing surgery in patients with HHs. Intraoperative resection control increases the amount of maximum resection.
Collapse
Affiliation(s)
- Bjoern Sommer
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany,
| | | | | | | | | | | | | |
Collapse
|
31
|
Quality of life measures in Italian neurosurgical patients: validity of the EUROHIS-QOL 8-item index. Qual Life Res 2014; 24:441-4. [DOI: 10.1007/s11136-014-0784-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2014] [Indexed: 12/18/2022]
|
32
|
D'Amico RS, Kennedy BC, Bruce JN. Neurosurgical oncology: advances in operative technologies and adjuncts. J Neurooncol 2014; 119:451-63. [PMID: 24969924 DOI: 10.1007/s11060-014-1493-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022]
Abstract
Modern glioma surgery has evolved around the central tenet of safely maximizing resection. Recent surgical adjuncts have focused on increasing the maximum extent of resection while minimizing risk to functional brain. Technologies such as cortical and subcortical stimulation mapping, intraoperative magnetic resonance imaging, functional neuronavigation, navigable intraoperative ultrasound, neuroendoscopy, and fluorescence-guided resection have been developed to augment the identification of tumor while preserving brain anatomy and function. However, whether these technologies offer additional long-term benefits to glioma patients remains to be determined. Here we review advances over the past decade in operative technologies that have offered the most promising benefits for glioblastoma patients.
Collapse
Affiliation(s)
- Randy S D'Amico
- Department of Neurological Surgery, Neurological Institute, Columbia University Medical Center, 4th Floor, 710 West 168th Street, New York, NY, 10032, USA,
| | | | | |
Collapse
|
33
|
Chen Y, Kwok KW, Tse ZTH. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention. Ann Biomed Eng 2014; 42:1823-33. [PMID: 24957635 DOI: 10.1007/s10439-014-1049-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Magnetic resonance imaging allows for visualizing detailed pathological and morphological changes of soft tissue. MR-conditional actuations have been widely investigated for development of image-guided and robot-assisted surgical devices under the Magnetic resonance imaging (MRI). This paper presents a simple design of MR-conditional stepper motor which can provide precise and high-torque actuation without adversely affecting the MR image quality. This stepper motor consists of two MR-conditional pneumatic cylinders and the corresponding supporting structures. Alternating the pressurized air can drive the motor to rotate each step in 3.6° with the motor coupled to a planetary gearbox. Experimental studies were conducted to validate its dynamics performance. Maximum 800 mN m output torque is achieved. The motor accuracy independently varied by two factors: motor operating speed and step size, was also investigated. The motor was tested within a 3T Siemens MRI scanner (MAGNETOM Skyra, Siemens Medical Solutions, Erlangen, Germany) and a 3T GE MRI scanner (GE SignaHDx, GE Healthcare, Milwaukee, WI, USA). The image artifact and the signal-to-noise ratio (SNR) were evaluated for study of its MRI compliancy. The results show that the presented pneumatic stepper motor generated 2.35% SNR reduction in MR images. No observable artifact was presented besides the motor body itself. The proposed motor test also demonstrates a standard to evaluate the pneumatic motor capability for later incorporation with motorized devices used under MRI.
Collapse
Affiliation(s)
- Yue Chen
- College of Engineering, The University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
34
|
Haines SJ, Rockswold GL, Maxwell RE. 75 Years of Neurosurgery at the University of Minnesota. Neurosurgery 2014; 74:553-9; discussion 559-60. [DOI: 10.1227/neu.0000000000000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
White MJ, Thornton JS, Hawkes DJ, Hill DL, Kitchen N, Mancini L, McEvoy AW, Razavi R, Wilson S, Yousry T, Keevil SF. Design, Operation, and Safety of Single-Room Interventional MRI Suites: Practical Experience From Two Centers. J Magn Reson Imaging 2014; 41:34-43. [DOI: 10.1002/jmri.24577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/10/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mark J. White
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | - John S. Thornton
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | | | | | - Neil Kitchen
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | - Laura Mancini
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | - Andrew W. McEvoy
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | | | - Sally Wilson
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
| | - Tarek Yousry
- National Hospital for Neurology and Neurosurgery; Queen Square, London UK
- UCL Institute of Neurology; Queen Square, London UK
| | | |
Collapse
|
36
|
Gonzalez-Martinez J, Vadera S, Mullin J, Enatsu R, Alexopoulos AV, Patwardhan R, Bingaman W, Najm I. Robot-Assisted Stereotactic Laser Ablation in Medically Intractable Epilepsy: Operative Technique. Oper Neurosurg (Hagerstown) 2014; 10 Suppl 2:167-72; discussion 172-3. [DOI: 10.1227/neu.0000000000000286] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Stereotactic laser ablation offers an advantage over open surgical procedures for treatment of epileptic foci, tumors, and other brain pathology. Robot-assisted stereotactic laser ablation could offer an accurate, efficient, minimally invasive, and safe method for placement of an ablation catheter into the target.
OBJECTIVE:
To determine the feasibility of placement of a stereotactic laser ablation catheter into a brain lesion with the use of robotic assistance, via a safe, accurate, efficient, and minimally invasive manner.
METHODS:
A laser ablation catheter (Visualase, Inc) was placed by using robotic guidance (ROSA, Medtech Surgical, Inc) under general anesthesia into a localized epileptogenic periventricular heterotopic lesion in a 19-year-old woman with 10-year refractory focal seizure history. The laser applicator (1.65 mm diameter) position was confirmed by using magnetic resonance imaging (MRI). Ablation using the Visualase system was performed under multiplanar imaging with real-time thermal imaging and treatment estimates in each plane. A postablation MRI sequence (T1 postgadolinium contrast injection) was used to immediately confirm the ablation.
RESULTS:
MRI showed accurate skin entry point and trajectory, with the applicator advanced to the lesion's distal boundary. Ablation was accomplished in less than 3 minutes of heating. The overall procedure, from time of skin incision to end of last ablation, was approximately 90 minutes. After confirmation of proper lesioning by using a T1 contrast-enhanced MRI, the applicator was removed, and the incision was closed using a single stitch. No hemorrhage or other untoward complication was visualized. The patient awoke without any complication, was observed overnight after admitting to a regular floor bed, and was discharged to home the following day.
CONCLUSION:
This technique, using a combination of Visualase laser ablation, ROSA robot, and intraoperative MRI, facilitated a safe, efficacious, efficient, and minimally invasive approach that could be used for placement of 1 or multiple electrodes in the future.
Collapse
Affiliation(s)
| | - Sumeet Vadera
- Epilepsy Center, Neuroscience Institute Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey Mullin
- Epilepsy Center, Neuroscience Institute Cleveland Clinic, Cleveland, Ohio
| | - Rei Enatsu
- Epilepsy Center, Neuroscience Institute Cleveland Clinic, Cleveland, Ohio
| | | | - Ravish Patwardhan
- Epilepsy Center, Neuroscience Institute Cleveland Clinic, Cleveland, Ohio
| | - William Bingaman
- Epilepsy Center, Neuroscience Institute Cleveland Clinic, Cleveland, Ohio
| | - Imad Najm
- Epilepsy Center, Neuroscience Institute Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
37
|
Presurgical language fMRI and postsurgical deficits: a single centre experience. Can J Neurol Sci 2013; 40:819-23. [PMID: 24257223 DOI: 10.1017/s031716710001595x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND In this study, we conducted a retrospective investigation of our initial single-centre experience with the clinical use of functional magnetic resonance imaging (fMRI) of hemisphere dominance for language processing (i.e., language lateralization). We demonstrated its association with surgical outcome and its potential impact on surgical planning and patient management. METHODS Fifty-two cases were reviewed, covering the period from July 2007 to July 2010. Clinical fMRI reports were examined to determine the hemisphere dominance for language processing. Neurological reports were examined to determine if new language deficits were present post-surgery. Neurosurgeon notes were also reviewed to determine if fMRI had an impact on surgical planning. RESULTS Of the cases reviewed, 49 (94%) generated conclusive fMRI. Eleven (22%) patients exhibited fMRI language lateralization contralateral to pathology; zero of nine of these patients that had surgery experienced post-surgical deficits. Twenty-two (44%) patients exhibited fMRI language lateralization ipsilateral to pathology; three of 13 of these patients that had surgery experienced post-surgical deficits. Sixteen (34%) patients exhibited bilateral lateralization of language; five of 13 of these patients that had surgery experienced post-surgery deficits. Several post-fMRI reports indicated that fMRI results had an impact on surgical planning. CONCLUSIONS Our results suggest that fMRI demonstrations of language processing within the hemisphere ipsilateral to pathology (either ipsilateral alone or bilateral) is associated with a greater risk for post-surgical language deficits, and in these cases, fMRI results should be taken into consideration for pre-surgical planning. IRMf du langage avant la chirurgie et déficits après la chirurgie : expérience d'un centre.
Collapse
|
38
|
Resection of subependymal giant cell astrocytoma guided by intraoperative magnetic resonance imaging and neuronavigation. Childs Nerv Syst 2013; 29:1113-21. [PMID: 23397586 DOI: 10.1007/s00381-013-2045-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/25/2013] [Indexed: 02/05/2023]
Abstract
PURPOSE Subependymal giant cell astrocytoma (SEGA) is a rare, benign tumor that occurs mainly in children; complete resection can achieve cure. Guidance of surgery by combined intraoperative magnetic resonance imaging (iMRI) and functional neuronavigation is reported to achieve more radical resection and reduced complications. However, reports about the resection of SEGA with such guidance are rare. We report here our preliminary experience of the resection of SEGA guided by iMRI and neuronavigation, focusing on the feasibility, benefits, and pitfalls of this combination of techniques. METHODS We performed resection of SEGA guided by combined iMRI and functional neuronavigation in seven children. The first iMRI was performed when the surgeon believed that the tumor had been completely resected; the last iMRI was performed immediately after closure. Additional scans were performed as needed. RESULTS Successful resection was achieved in all seven patients using this combination of techniques. The iMRI scans detected residual tumor in three patients and a large, remote epidural hematoma in one patient. Further resection or other surgery was performed in these four patients. Complete resection was eventually achieved in all patients. There were no cases of surgery-related neurological dysfunction, except transient memory loss in one patient. No recurrence of tumor or hydrocephalus was observed in any patients during the follow-up period. CONCLUSIONS Resection of SEGA in children guided by combined iMRI and neuronavigation is feasible and safe. This combination of techniques enables a higher complete resection rate and reduces brain injury and other unexpected events during surgery.
Collapse
|
39
|
Sommer B, Grummich P, Coras R, Kasper BS, Blumcke I, Hamer HM, Stefan H, Buchfelder M, Roessler K. Integration of functional neuronavigation and intraoperative MRI in surgery for drug-resistant extratemporal epilepsy close to eloquent brain areas. Neurosurg Focus 2013; 34:E4. [DOI: 10.3171/2013.2.focus12397] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The authors performed a retrospective study to assess the impact of functional neuronavigation and intraoperative MRI (iMRI) on surgery of extratemporal epileptogenic lesions on postsurgical morbidity and seizure control.
Methods
Twenty-five patients (14 females and 11 males) underwent extratemporal resections for drug-resistant epilepsy close to speech/motor brain areas or adjacent to white matter tracts. The mean age at surgery was 34 years (range 12–67 years). The preoperative mean disease duration was 13.2 years. To avoid awake craniotomy, cortical motor-sensory representation was mapped during preoperative evaluation in 14 patients and speech representation was mapped in 15 patients using functional MRI. In addition, visualization of the pyramidal tract was performed in 11 patients, of the arcuate fascicle in 7 patients, and of the visual tract in 6 patients using diffusion tensor imaging. The mean minimum distance of tailored resection between the eloquent brain areas was 5.6 mm. During surgery, blood oxygen level–dependent imaging and diffusion tensor imaging data were integrated into neuronavigation and displayed through the operating microscope. The postoperative mean follow-up was 44.2 months.
Results
In 20% of these patients, further intraoperative resection was performed because of intraoperatively documented residual lesions according to iMRI findings. At the end of resection, the final iMRI scans confirmed achievement of total resection of the putative epileptogenic lesion in all patients. Postoperatively, transient complications and permanent complications were observed in 20% and 12% of patients, respectively. Favorable postoperative seizure control (Engel Classes I and II) was achieved in 84% and seizure freedom in 72% of these consecutive surgical patients.
Conclusions
By using functional neuronavigation and iMRI for treatment of epileptogenic brain lesions, the authors achieved a maximum extent of resection despite the lesions' proximity to eloquent brain cortex and fiber tracts in all cases. The authors' results underline possible benefits of this technique leading to a favorable seizure outcome with acceptable neurological deficit rates in difficult-to-treat extratemporal epilepsy.
Collapse
Affiliation(s)
| | | | - Roland Coras
- 3Neuropathology, University Hospital Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Kubben PL, Wesseling P, Lammens M, Schijns OEMG, Ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Correlation between contrast enhancement on intraoperative magnetic resonance imaging and histopathology in glioblastoma. Surg Neurol Int 2012; 3:158. [PMID: 23372974 PMCID: PMC3551502 DOI: 10.4103/2152-7806.105097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/06/2012] [Indexed: 01/03/2023] Open
Abstract
Object: Glioblastoma is a highly malignant brain tumor, for which standard treatment consists of surgery, radiotherapy, and chemotherapy. Increasing extent of tumor resection (EOTR) is associated with prolonged survival. Intraoperative magnetic resonance imaging (iMRI) is used to increase EOTR, based on contrast enhanced MR images. The correlation between intraoperative contrast enhancement and tumor has not been studied systematically. Methods: For this prospective cohort study, we recruited 10 patients with a supratentorial brain tumor suspect for a glioblastoma. After initial resection, a 0.15 Tesla iMRI scan was made and neuronavigation-guided biopsies were taken from the border of the resection cavity. Scores for gadolinium-based contrast enhancement on iMRI and for tissue characteristics in histological slides of the biopsies were used to calculate correlations (expressed in Kendall's tau). Results: A total of 39 biopsy samples was available for further analysis. Contrast enhancement was significantly correlated with World Health Organization (WHO) grade (tau 0.50), vascular changes (tau 0.53), necrosis (tau 0.49), and increased cellularity (tau 0.26). Specificity of enhancement patterns scored as “thick linear” and “tumor-like” for detection of (high grade) tumor was 1, but decreased to circa 0.75 if “thin linear” enhancement was included. Sensitivity for both enhancement patterns varied around 0.39-0.48 and 0.61-0.70, respectively. Conclusions: Presence of intraoperative contrast enhancement is a good predictor for presence of tumor, but absence of contrast enhancement is a bad predictor for absence of tumor. The use of gadolinium-based contrast enhancement on iMRI to maximize glioblastoma resection should be evaluated against other methods to increase resection, like new contrast agents, other imaging modalities, and “functional neurooncology” – an approach to achieve surgical resection guided by functional rather than oncological-anatomical boundaries.
Collapse
Affiliation(s)
- Pieter L Kubben
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Brell M, Roldán P, González E, Llinàs P, Ibáñez J. [First intraoperative magnetic resonance imaging in a Spanish hospital of the public healthcare system: initial experience, feasibility and difficulties in our environment]. Neurocirugia (Astur) 2012; 24:11-21. [PMID: 23154131 DOI: 10.1016/j.neucir.2012.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Intraoperative MRI is considered the gold standard among all intraoperative imaging technologies currently available. Its main indication is in the intraoperative detection of residual disease during tumour resections. We present our initial experience with the first intraoperative low-field MRI in a Spanish hospital of the public healthcare system. We evaluate its usefulness and accuracy to detect residual tumours and compare its intraoperative results with images obtained postoperatively using conventional high-field devices. MATERIAL AND METHODS We retrospectively reviewed the first 21 patients operated on the aid of this technology. Maximal safe resection was the surgical goal in all cases. Surgeries were performed using conventional instrumentation and the required assistance in each case. RESULTS The mean number of intraoperative studies was 2.3 per procedure (range: 2 to 4). Intraoperative studies proved that the surgical goal had been achieved in 15 patients (71.4%), and detected residual tumour in 6 cases (28.5%). After comparing the last intraoperative image and the postoperative study, 2 cases (9.5%) were considered as "false negatives". CONCLUSIONS Intraoperative MRI is a safe, reliable and useful tool for guided resection of brain tumours. Low-field devices provide images of sufficient quality at a lower cost; therefore their universalisation seems feasible.
Collapse
Affiliation(s)
- Marta Brell
- Servicio de Neurocirugía, Hospital Universitario Son Espases, Palma de Mallorca, España.
| | | | | | | | | |
Collapse
|
42
|
Larson PS, Starr PA, Bates G, Tansey L, Richardson RM, Martin AJ. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery 2012; 70:95-103; discussion 103. [PMID: 21796000 DOI: 10.1227/neu.0b013e31822f4a91] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Deep brain stimulation electrode placement with interventional magnetic resonance imaging (MRI) has previously been reported using a commercially available skull-mounted aiming device (Medtronic Nexframe MR) and native MRI scanner software. This first-generation method has technical limitations that are inherent to the hardware and software used. A novel system (SurgiVision ClearPoint) consisting of an aiming device (SMARTFrame) and software has been developed specifically for interventional MRI, including deep brain stimulation. OBJECTIVE To report a series of phantom and cadaver tests performed to determine the capability, preliminary accuracy, and workflow of the system. METHODS Eighteen experiments using a water phantom were used to determine the predictive accuracy of the software. Sixteen experiments using a gelatin-filled skull phantom were used to determine targeting accuracy of the aiming device. Six procedures in 3 cadaver heads were performed to compare the workflow and accuracy of ClearPoint with Nexframe MR. RESULTS Software prediction experiments showed an average error of 0.9 ± 0.5 mm in magnitude in pitch and roll (mean pitch error, -0.2 ± 0.7 mm; mean roll error, 0.2 ± 0.7 mm) and an average error of 0.7 ± 0.3 mm in X-Y translation with a slight anterior (0.5 ± 0.3 mm) and lateral (0.4 ± 0.3 mm) bias. Targeting accuracy experiments showed an average radial error of 0.5 ± 0.3 mm. Cadaver experiments showed a radial error of 0.2 ± 0.1 mm with the ClearPoint system (average procedure time, 88 ± 14 minutes) vs 0.6 ± 0.2 mm with the Nexframe MR (average procedure time, 92 ± 12 minutes). CONCLUSION This novel system provides the submillimetric accuracy required for stereotactic interventions, including deep brain stimulation placement. It also overcomes technical limitations inherent in the first-generation interventional MRI system.
Collapse
Affiliation(s)
- Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143-0112, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Walter U. Intra- and post-operative monitoring of deep brain implants using transcranial ultrasound. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.permed.2012.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Marcu L, Hartl BA. Fluorescence Lifetime Spectroscopy and Imaging in Neurosurgery. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:1465-1477. [PMID: 28053498 PMCID: PMC5205025 DOI: 10.1109/jstqe.2012.2185823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Clinical outcome of patients diagnosed with primary brain tumor has been correlated with the extent of surgical resection. In treating this disease, the neurosurgeon must balance between an aggressive, radical resection and minimizing the loss of healthy, functionally significant brain tissue. Numerous intra-operative methodologies and technological approaches have been explored as a means to improve the accuracy of surgical resection. This paper presents an overview of current conventional techniques and new emerging technologies with potential to impact the area of image-guided surgery of brain tumors. Emphasis is placed on techniques based on endogenous fluorescence lifetime contrast and their potential for intraoperative diagnosis of brain tumors.
Collapse
Affiliation(s)
- Laura Marcu
- University of California, Davis, Davis, CA 95616 USA
| | - Brad A Hartl
- University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
45
|
Yoo J, Schafer S, Uneri A, Otake Y, Khanna AJ, Siewerdsen JH. An electromagnetic “Tracker-in-Table” configuration for X-ray fluoroscopy and cone-beam CT-guided surgery. Int J Comput Assist Radiol Surg 2012; 8:1-13. [PMID: 22585463 DOI: 10.1007/s11548-012-0744-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 04/26/2012] [Indexed: 11/25/2022]
Affiliation(s)
- J Yoo
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
46
|
Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 2012; 35:381-91; discussion 391. [DOI: 10.1007/s10143-012-0374-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/20/2011] [Accepted: 10/08/2011] [Indexed: 11/26/2022]
|
47
|
Zhao Q, Jiang H, Cao Z, Yang L, Mao H, Lipowska M. A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins. Med Phys 2012; 38:5873-8. [PMID: 22047351 DOI: 10.1118/1.3641877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Accurate identification of tumor margins presents a major challenge in the surgical treatment of human cancers. Inability of complete removal of tumor lesions after surgery causes local recurrence and increases the incidence of developing tumor metastasis. It is clear that novel approaches that allow defining tumor margins intraoperatively for removal of small tumor lesions in the surgical cavity is critical for improving prognosis of cancer patients. To facilitate image-guided surgery using targeted optical imaging probes, we have developed a reflection-mode fluorescence molecular tomography (FMT) system with a handheld probe that is able to provide three-dimensional tumor margin information. METHODS The imaging method and system were validated using both simulated and phantom experiments. We further examined the accuracy of the handheld FMT system in an orthotopic mouse mammary tumor model following systemic delivery of near-infrared (NIR) dye-labeled and urokinase plasminogen activator receptor targeted magnet iron oxide nanoparticles. RESULTS Our results show that when the targets are located within 5 mm beneath the surface of the media, fluorescent images can be reliably detected and reconstructed with an average positional error of 0.5 mm laterally and 1.5 mm axially. For in vivo imaging in the mouse tumor model, the location and size of the tumor detected by FMT correlated well with that measured by the magnetic resonance imaging (MRI). CONCLUSIONS Our system can three-dimensionally image targets located at a depth of up to 7 mm. The in vivo results suggest that in combination with targeted optical imaging probes, this handheld FMT system can be potentially used as an intraoperative tool for the detection of tumor margins and for image-guided surgery.
Collapse
Affiliation(s)
- Qing Zhao
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
48
|
Implementation of a mobile 0.15-T intraoperative MR system in pediatric neuro-oncological surgery: feasibility and correlation with early postoperative high-field strength MRI. Childs Nerv Syst 2012; 28:1171-80. [PMID: 22684477 PMCID: PMC3402673 DOI: 10.1007/s00381-012-1815-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 05/18/2012] [Indexed: 11/02/2022]
Abstract
INTRODUCTION We analyze our preliminary experience using the PoleStar N20 mobile intraoperative MR (iMR) system as an adjunct for pediatric brain tumor resection. METHODS We analyzed 11 resections in nine children between 1 month and 17 years old. After resection, we acquired iMR scans to detect residual tumor and update neuronavigation. We compared final iMR interpretation by the neurosurgeon with early postoperative MR interpretation by a neuroradiologist. RESULTS Patient positioning was straightforward, and image quality (T1 7-min 4-mm sequences) sufficient in all cases. In five cases, contrast enhancement suspect for residual tumor was noted on initial postresection iMR images. In one case, a slight discrepancy with postoperative imaging after 3 months was no longer visible after 1 year. No serious perioperative adverse events related to the PoleStar N20 were encountered, except for transient shoulder pain in two. CONCLUSIONS Using the PoleStar N20 iMR system is technically feasible and safe for both supra- and infratentorial tumor resections in children of all ages. Their small head and shoulders favor positioning in the magnet bore and allow the field of view to cover more than the area of primary interest, e.g., the ventricles in an infratentorial case. Standard surgical equipment may be used without significant limitations. In this series, the use of iMR leads to an increased extent of tumor resection in 45 % of cases. Correlation between iMR and early postoperative MR is excellent, provided image quality is optimal and interpretation is carefully done by someone sufficiently familiar with the system.
Collapse
|
49
|
Makary M, Chiocca EA, Erminy N, Antor M, Bergese SD, Abdel-Rasoul M, Fernandez S, Dzwonczyk R. Clinical and economic outcomes of low-field intraoperative MRI-guided tumor resection neurosurgery. J Magn Reson Imaging 2011; 34:1022-30. [PMID: 22002753 DOI: 10.1002/jmri.22739] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 07/14/2011] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To compare low-field (0.15 T) intraoperative magnetic resonance imaging (iMRI)-guided tumor resection with both conventional magnetic resonance imaging (cMRI)-guided tumor resection and high-field (1.5 T) iMRI-guided resection from the clinical and economic point of view. MATERIALS AND METHODS We retrospectively compared 65 iMRI patients with 65 cMRI patients in terms of hospital length of stay, repeat resection rate, repeat resection interval, complication rate, cost to the patient, cost to the hospital, and cost effectiveness. In addition, we compared our low-field results with previously published high-field results. RESULTS The complication rate was lower for iMRI vs. cMRI in patients presenting for their initial tumor resection (45 vs. 57 complications, P = 0.048). The iMRI repeat resection interval was longer for this cohort (20.1 vs. 6.7 months, P = 0.020). iMRI was more cost-effective than cMRI for patients who had repeat resections ($10,690/RFY vs. $76,874/RFY, P < 0.001). We found no other clinical or economic differences between iMRI- and cMRI-guided tumor resection surgeries. Overall, we did not find the advantages to low-field iMRI that have been reported for high-field iMRI. CONCLUSION There is no adequate justification for the widespread installation of low-field iMRI in its current development state.
Collapse
Affiliation(s)
- Mina Makary
- College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kubben PL, ter Meulen KJ, Schijns OEMG, ter Laak-Poort MP, van Overbeeke JJ, van Santbrink H. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol 2011; 12:1062-70. [PMID: 21868286 DOI: 10.1016/s1470-2045(11)70130-9] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We did a systematic review to address the added value of intraoperative MRI (iMRI)-guided resection of glioblastoma multiforme compared with conventional neuronavigation-guided resection, with respect to extent of tumour resection (EOTR), quality of life, and survival. 12 non-randomised cohort studies matched all selection criteria and were used for qualitative synthesis. Most of the studies included descriptive statistics of patient populations of mixed pathology, and iMRI systems of varying field strengths between 0·15 and 1·5 Tesla. Most studies provided information on EOTR, but did not always mention how iMRI affected the surgical strategy. Only a few studies included information on quality of life or survival for subpopulations with glioblastoma multiforme or high-grade glioma. Several limitations and sources of bias were apparent, which affected the conclusions drawn and might have led to overestimation of the added value of iMRI-guided surgery for resection of glioblastoma multiforme. Based on the available literature, there is, at best, level 2 evidence that iMRI-guided surgery is more effective than conventional neuronavigation-guided surgery in increasing EOTR, enhancing quality of life, or prolonging survival after resection of glioblastoma multiforme.
Collapse
Affiliation(s)
- Pieter L Kubben
- Department of Neurosurgery, Maastricht University Medical Center, AZ Maastricht, Netherlands.
| | | | | | | | | | | |
Collapse
|