1
|
Lemaire M, Vibert É, Azoulay D, Salloum C, Ciacio O, Pittau G, Allard MA, Sa Cunha A, Adam R, Cherqui D, Golse N. Early portal vein thrombosis after hepatectomy for perihilar cholangiocarcinoma: Incidence, risk factors, and management. J Visc Surg 2023; 160:417-426. [PMID: 37407290 DOI: 10.1016/j.jviscsurg.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
AIM To study the incidence, risk factors and management of portal vein thrombosis (PVT) after hepatectomy for perihilar cholangiocarcinoma (PHCC). PATIENTS AND METHOD Single-center retrospective analysis of 86 consecutive patients who underwent major hepatectomy for PHCC, between 2012 and 2019, with comparison of the characteristics of the groups with (PVT+) and without (PVT-) postoperative portal vein thrombosis. RESULTS Seven patients (8%) presented with PVT diagnosed during the first postoperative week. Preoperative portal embolization had been performed in 71% of patients in the PVT+ group versus 34% in the PVT- group (P=0.1). Portal reconstruction was performed in 100% and 38% of PVT+ and PVT- patients, respectively (P=0.002). In view of the gravity of the clinical and/or biochemical picture, five (71%) patients underwent urgent re-operation with portal thrombectomy, one of whom died early (hemorrhagic shock after surgical treatment of PVT). Two patients had exclusively medical treatment. Complete recanalization of the portal vein was achieved in the short and medium term in the six survivors. After a mean follow-up of 21 months, there was no statistically significant difference in overall survival between the two groups. FINDINGS Post-hepatectomy PVT for PHCC is a not-infrequent and potentially lethal event. Rapid management, adapted to the extension of the thrombus and the severity of the thrombosis (hepatic function, signs of portal hypertension) makes it possible to limit the impact on postoperative mortality. We did not identify any modifiable risk factor. However, when it is oncologically and anatomically feasible, left±extended hepatectomy (without portal embolization) may be less risky than extended right hepatectomy, and portal vein resection should only be performed if there is strong suspicion of tumor invasion.
Collapse
Affiliation(s)
- Mégane Lemaire
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Éric Vibert
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France; UMRS 1193, Paris-Saclay University, Inserm, Pathogenesis and treatment of liver diseases, FHU Hepatinov, 94800 Villejuif, France
| | - Daniel Azoulay
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Chady Salloum
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Oriana Ciacio
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Gabriella Pittau
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Marc-Antoine Allard
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Antonio Sa Cunha
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France; UMRS 1193, Paris-Saclay University, Inserm, Pathogenesis and treatment of liver diseases, FHU Hepatinov, 94800 Villejuif, France
| | - René Adam
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France; "Chronotherapy, Cancers and Transplantation" Research Team, Paris-Saclay University, France INSERM, Paris, France
| | - Daniel Cherqui
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France; UMRS 1193, Paris-Saclay University, Inserm, Pathogenesis and treatment of liver diseases, FHU Hepatinov, 94800 Villejuif, France
| | - Nicolas Golse
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance publique-Hôpitaux de Paris, 94800 Villejuif, France; UMRS 1193, Paris-Saclay University, Inserm, Pathogenesis and treatment of liver diseases, FHU Hepatinov, 94800 Villejuif, France.
| |
Collapse
|
2
|
Danielsen KV, Nabilou P, Wiese SS, Hove JD, Bendtsen F, Møller S. Effect of beta-blockers on multiple haemodynamics in cirrhosis: A cross-over study by MR-imaging and hepatic vein catheterization. Liver Int 2023; 43:2245-2255. [PMID: 37387503 DOI: 10.1111/liv.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Non-selective beta-blockers (NSBB) are widely used in the treatment of patients with cirrhosis. Only about 50% respond with a sufficient reduction in their hepatic venous pressure gradient (HVPG) and NSBB may induce detrimental cardiac and renal effects in the presence of severe decompensation. We aimed to assess the effects of NSBB on haemodynamics using magnetic resonance imaging (MRI) and to assess if these haemodynamic changes were related to the disease severity and HVPG response. METHOD A prospective cross-over study of 39 patients with cirrhosis. Patients underwent hepatic vein catheterization and MRI with assessments of HVPG, cardiac function, systemic and splanchnic haemodynamics before and after propranolol infusion. RESULTS Propranolol induced significant decreases in cardiac output (-12%) and blood flow of all vascular compartments, with the largest reductions seen in the azygos venous (-28%), portal venous (-21%), splenic (-19%) and superior mesenteric artery (-16%) blood flow. Renal artery blood flow fell by -5% in the total cohort, with a more pronounced reduction in patients without ascites than in those with ascites (-8% vs. -3%, p = .01). Twenty-four patients were NSBB responders. Their changes in HVPG after NSBB were not significantly associated with other haemodynamic changes. CONCLUSION The changes in cardiac, systemic and splanchnic haemodynamics did not differ between NSBB responders and non-responders. The effects of acute NSBB blockade on renal flow seem to depend on the severity of the hyperdynamic state, with the largest reduction in renal blood flow in compensated patients compared to decompensated patients with cirrhosis. However, future studies are needed to assess the effects of NSBB on haemodynamics and renal blood flow in patients with diuretic-resistant ascites.
Collapse
Affiliation(s)
- Karen Vagner Danielsen
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Centre of Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Puria Nabilou
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Signe Skovgaard Wiese
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens Dahlgaard Hove
- Department of Clinical Physiology and Nuclear Medicine, Centre of Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Cardiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bendtsen
- Gastro Unit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Centre of Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Hyodo R, Takehara Y, Mizuno T, Ichikawa K, Horiguchi R, Kawakatsu S, Mizuno T, Ebata T, Naganawa S, Jin N, Ichiba Y. Four-dimensional Flow MRI Assessment of Portal Hemodynamics and Hepatic Regeneration after Portal Vein Embolization. Radiology 2023; 308:e230709. [PMID: 37750777 DOI: 10.1148/radiol.230709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Background Percutaneous transhepatic portal vein (PV) embolization (PVE) is a standard preoperative procedure for advanced biliary cancer when the future liver remnant (FLR) is insufficient, yet the effect of this procedure on portal hemodynamics is still unclear. Purpose To assess whether four-dimensional (4D) MRI flowmetry can be used to estimate FLR volume and to identify the optimal time for this measurement. Materials and Methods This prospective single-center study enrolled consecutive adult patients with biliary cancer who underwent percutaneous transhepatic PVE for the right liver between June 2020 and November 2022. Portal hemodynamics were assessed using 4D flow MRI before PVE and within 1 day (0-day group) or 3-4 days (3-day group) after PVE. FLR volume was measured using CT before PVE and after PVE but before surgery. Blood flow changes were analyzed with the Wilcoxon signed rank test, and correlations with Spearman rank correlation. Results The 0-day group included 24 participants (median age, 72 years [IQR, 69-77 years]; 17 male participants), and the 3-day group included 13 participants (median age, 71 years [IQR, 68-78 years]; eight male participants). Both groups showed increased left PV (LPV) flow rate after PVE (0-day group: from median 3.72 mL/sec [IQR, 2.83-4.55 mL/sec] to 9.48 mL/sec [IQR, 8.12-10.7 mL/sec], P < .001; 3-day group: from median 3.65 mL/sec [IQR, 2.14-3.79 mL/sec] to 8.16 mL/sec [IQR, 6.82-8.98 mL/sec], P < .001). LPV flow change correlated with FLR volume change relative to the number of days from PVE to presurgery CT only in the 3-day group (ρ = 0.62, P = .02; 0-day group, P = .11). The output of the regression equation for estimating presurgery FLR volume correlated with CT-measured volume (ρ = 0.78; P = .002). Conclusion Four-dimensional flow MRI demonstrated increased blood flow in residual portal branches 3-4 days after PVE, offering insights for estimating presurgery FLR volume. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Roldán-Alzate and Oechtering in this issue.
Collapse
Affiliation(s)
- Ryota Hyodo
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Yasuo Takehara
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Takashi Mizuno
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Kazushige Ichikawa
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Ryota Horiguchi
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Shoji Kawakatsu
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Takashi Mizuno
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Tomoki Ebata
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Shinji Naganawa
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Ning Jin
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| | - Yoshito Ichiba
- From the Department of Radiology (R. Hyodo, Y.T., S.N.), Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging (Y.T.), and Department of Surgery (S.K., T.M.[2], T.E.), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Radiological Technology, Nagoya University Hospital, Nagoya, Japan (T.M.[1], K.I.); Department of Radiology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (R. Horiguchi); Siemens Medical Solutions USA, Malvern, Pa (J.N.); and Siemens Healthcare, Tokyo, Japan (Y.I.)
| |
Collapse
|
4
|
Shamim AMKM, Panagiotopoulos N, Spahic A, Harris DT, Roldán-Alzate A, Wieben O, Reeder SB, Oechtering TH, Johnson KM. Fat mitigation strategies to improve image quality of radial 4D flow MRI in obese subjects. Magn Reson Med 2023; 90:444-457. [PMID: 37036023 PMCID: PMC10231668 DOI: 10.1002/mrm.29652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE This study addresses the challenges in obtaining abdominal 4D flow MRI of obese patients. We aimed to evaluate spectral saturation and inner volume excitation as methods to mitigating artifacts originating from adipose signals, with the goal of enhancing image quality and improving quantification. METHODS Radial 4D flow MRI acquisitions with fat mitigation (inner volume excitation [IVE] and intermittent fat saturation [FS]) were compared to a standard slab selective excitation (SSE) in a test-retest study of 15 obese participants. IVE selectively excited a cylindrical region of interest, avoiding contamination from peripheral adipose tissue, while FS globally suppressed fat based on spectral selection. Acquisitions were evaluated qualitatively based on expert ratings and quantitatively based on conservation of mass, test-retest repeatability, and a divergence free quality metric. Errors were evaluated statistically using the absolute and relative errors, regression, and Bland-Altman analysis. RESULTS IVE demonstrated superior performance quantitatively in the conservation of mass analysis in the portal vein, with higher correlation and lower bias in regression analysis. IVE also produced flow fields with the lowest divergence error and was rated best in overall image quality, delineating small vessels, and producing the least streaking artifacts. Evaluation results did not differ significantly between FS and SSE. Test-retest reproducibility was similarly high for all sequences, with data suggesting biological variations dominate the technical variability. CONCLUSION IVE improved hemodynamic assessment of radial 4D flow MRI in the abdomen of obese participants while FS did not lead to significant improvements in image quality or flow metrics.
Collapse
Affiliation(s)
- A M K Muntasir Shamim
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Nikolaos Panagiotopoulos
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Universität zu Lübeck, Department of Radiology and Nuclear Medicine, Lübeck, Germany
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David T. Harris
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alejandro Roldán-Alzate
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Mechanical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Scott B. Reeder
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Mechanical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Thekla Helene Oechtering
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Universität zu Lübeck, Department of Radiology and Nuclear Medicine, Lübeck, Germany
| | - Kevin M. Johnson
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Huang A, Roberts GS, Roldán-Alzate A, Wieben O, Reeder SB, Oechtering TH. Reference values for 4D flow magnetic resonance imaging of the portal venous system. Abdom Radiol (NY) 2023; 48:2049-2059. [PMID: 37016247 PMCID: PMC10518803 DOI: 10.1007/s00261-023-03892-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
PURPOSE The purpose of this work was to establish normal reference values for 4D flow MRI-derived flow, velocity, and vessel diameters, and to define characteristic flow patterns in the portal venous system of healthy adult subjects. METHODS For this retrospective study, we screened all available 4D flow MRI exams of the upper abdomen in healthy adults acquired at our institution between 2012 and 2022 at either 1.5 T or 3.0 T MRI after ≥ 5 h fasting. Flow, velocity, and effective diameter were quantified in the 8 planes in the portal venous system (splenic vein, superior mesenteric vein, main, right, and left portal veins). Vessel delineation was manually adjusted over time. Reference ranges for were defined as the mean ± 2 standard deviations. Three readers noted helical and vortical flow on time-resolved pathline visualizations. Conservation of mass flow analysis was performed for quality assurance. RESULTS We included 44 healthy subjects (26 female, 18-74 years) in the analysis. We report reference values for mean and peak flow, mean velocity, and vessel diameter in the healthy portal vein using 4D flow MRI. Normal flow patterns in the portal vein included faint helical (66%) or linear flow (34%). Conservation of mass analysis demonstrated a relative error of 1.1 ± 4.6% standard deviation (SD) at the splenomesenteric confluence and - 1.4 ± 4.1% SD at the portal bifurcation. CONCLUSION We have reported normal hemodynamic values that are necessary baseline data for emerging clinical applications of 4D flow MRI in the portal venous system. Results are consistent with previously published values from smaller cohorts.
Collapse
Affiliation(s)
- Andrew Huang
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Section of Vascular Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Emergency Medicine, University of Wisconsin, Madison, WI, USA
| | - Thekla H Oechtering
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
- Department of Radiology and Nuclear Medicine, Universität zu Lübeck, Lübeck, Germany.
| |
Collapse
|
6
|
Roos PR, Rijnberg FM, Westenberg JJM, Lamb HJ. Particle Tracing Based on
4D
Flow Magnetic Resonance Imaging: A Systematic Review into Methods, Applications, and Current Developments. J Magn Reson Imaging 2022; 57:1320-1339. [PMID: 36484213 DOI: 10.1002/jmri.28540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Particle tracing based on 4D Flow MRI has been applied as a quantitative and qualitative postprocessing technique to study temporally evolving blood flow patterns. PURPOSE To systematically review the various methods to perform 4D Flow MRI-based particle tracing, as well as the clinical value, clinical applications, and current developments of the technique. STUDY TYPE The study type is systematic review. SUBJECTS Patients with cardiovascular disease (such as Marfan, Fontan, Tetralogy of Fallot), healthy controls, and cardiovascular phantoms that received 4D Flow MRI with particle tracing. FIELD STRENGTH/SEQUENCE Three-dimensional three-directional cine phase-contrast MRI, at 1.5 T and 3 T. ASSESSMENT Two systematic searches were performed on the PubMed database using Boolean operators and the relevant key terms covering 4D Flow MRI and particle tracing. One systematic search was focused on particle tracing methods, whereas the other on applications. Additional articles from other sources were sought out and included after a similar inspection. Particle tracing methods, clinical applications, clinical value, and current developments were extracted. STATISTICAL TESTS The main results of the included studies are summarized, without additional statistical analysis. RESULTS Of 127 unique articles retrieved from the initial search, 56 were included (28 for methods and 54 for applications). Most articles that described particle tracing methods used an adaptive timestep, a fourth order Runge-Kutta integration method, and linear interpolation in the time dimension. Particle tracing was applied in heart chambers, aorta, venae cavae, Fontan circulation, pulmonary arteries, abdominal vasculature, peripheral arteries, carotid arteries, and cerebral vasculature. Applications were grouped as intravascular, intracardiac, flow stasis, and research. DATA CONCLUSIONS Particle tracing based on 4D Flow MRI gives unique insight into blood flow in several cardiovascular diseases, but the quality depends heavily on the MRI data quality. Further studies are required to evaluate the clinical value of the technique for different cardiovascular diseases. EVIDENCE LEVEL 5. TECHNICAL EFFICACY Stage 1.
Collapse
Affiliation(s)
- Paul R. Roos
- Department of Radiology Leiden University Medical Center Leiden The Netherlands
| | - Friso M. Rijnberg
- Department of Cardiothoracic Surgery Leiden University Medical Center Leiden The Netherlands
| | | | - Hildo J. Lamb
- Department of Radiology Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|
7
|
Bane O, Stocker D, Kennedy P, Hectors SJ, Bollache E, Schnell S, Schiano T, Thung S, Fischman A, Markl M, Taouli B. 4D flow MRI in abdominal vessels: prospective comparison of k-t accelerated free breathing acquisition to standard respiratory navigator gated acquisition. Sci Rep 2022; 12:19886. [PMID: 36400918 PMCID: PMC9674613 DOI: 10.1038/s41598-022-23864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Volumetric phase-contrast magnetic resonance imaging with three-dimensional velocity encoding (4D flow MRI) has shown utility as a non-invasive tool to examine altered blood flow in chronic liver disease. Novel 4D flow MRI pulse sequences with spatio-temporal acceleration can mitigate the long acquisition times of standard 4D flow MRI, which are an impediment to clinical adoption. The purpose of our study was to demonstrate feasibility of a free-breathing, spatio-temporal (k-t) accelerated 4D flow MRI acquisition for flow quantification in abdominal vessels and to compare its image quality, flow quantification and inter-observer reproducibility with a standard respiratory navigator-gated 4D flow MRI acquisition. Ten prospectively enrolled patients (M/F: 7/3, mean age = 58y) with suspected portal hypertension underwent both 4D flow MRI acquisitions. The k-t accelerated acquisition was approximately three times faster (3:11 min ± 0:12 min/9:17 min ± 1:41 min, p < 0.001) than the standard respiratory-triggered acquisition. Vessel identification agreement was substantial between acquisitions and observers. Average flow had substantial inter-sequence agreement in the portal vein and aorta (CV < 15%) and poorer agreement in hepatic and splenic arteries (CV = 11-38%). The k-t accelerated acquisition recorded reduced velocities in small arteries and reduced splenic vein flow. Respiratory gating combined with increased acceleration and spatial resolution are needed to improve flow measurements in these vessels.
Collapse
Affiliation(s)
- Octavia Bane
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel Stocker
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Paul Kennedy
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Stefanie J. Hectors
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Emilie Bollache
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA ,grid.7429.80000000121866389Laboratoire d’Imagerie Biomédicale, INSERM, Paris, France
| | - Susanne Schnell
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA ,grid.5603.0Department of Medical Physics, Universität Greifswald, Greifswald, Germany
| | - Thomas Schiano
- grid.59734.3c0000 0001 0670 2351Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Swan Thung
- grid.59734.3c0000 0001 0670 2351Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Aaron Fischman
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA
| | - Michael Markl
- grid.16753.360000 0001 2299 3507Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL USA ,grid.16753.360000 0001 2299 3507Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Bachir Taouli
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
8
|
Hyodo R, Takehara Y, Naganawa S. 4D Flow MRI in the portal venous system: imaging and analysis methods, and clinical applications. Radiol Med 2022; 127:1181-1198. [PMID: 36123520 PMCID: PMC9587937 DOI: 10.1007/s11547-022-01553-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 02/07/2023]
Abstract
Thus far, ultrasound, CT, and 2D cine phase-contrast MRI has been adopted to evaluate blood flow and vascular morphology in the portal venous system; however, all these techniques have some shortcomings, such as limited field of view and difficulty in accurately evaluating blood flow. A new imaging technique, namely 3D cine phase-contrast (4D Flow) MRI, can acquire blood flow data of the entire abdomen at once and in a time-resolved manner, allowing visual, quantitative, and comprehensive assessment of blood flow in the portal venous system. In addition, a retrospective blood flow analysis, i.e., "retrospective flowmetry," is possible. Although the development of 4D Flow MRI for the portal system has been delayed compared to that for the arterial system owing to the lower flow velocity of the portal venous system and the presence of respiratory artifacts, several useful reports have recently been published as the technology has advanced. In the first part of this narrative review article, technical considerations of image acquisition and analysis methods of 4D Flow MRI for the portal venous system and the validations of their results are described. In the second part, the current clinical application of 4D Flow MRI for the portal venous system is reviewed.
Collapse
Affiliation(s)
- Ryota Hyodo
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yasuo Takehara
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
9
|
Oechtering TH, Roberts GS, Panagiotopoulos N, Wieben O, Roldán-Alzate A, Reeder SB. Abdominal applications of quantitative 4D flow MRI. Abdom Radiol (NY) 2022; 47:3229-3250. [PMID: 34837521 PMCID: PMC9135957 DOI: 10.1007/s00261-021-03352-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/18/2023]
Abstract
4D flow MRI is a quantitative MRI technique that allows the comprehensive assessment of time-resolved hemodynamics and vascular anatomy over a 3-dimensional imaging volume. It effectively combines several advantages of invasive and non-invasive imaging modalities like ultrasound, angiography, and computed tomography in a single MRI acquisition and provides an unprecedented characterization of velocity fields acquired non-invasively in vivo. Functional and morphological imaging of the abdominal vasculature is especially challenging due to its complex and variable anatomy with a wide range of vessel calibers and flow velocities and the need for large volumetric coverage. Despite these challenges, 4D flow MRI is a promising diagnostic and prognostic tool as many pathologies in the abdomen are associated with changes of either hemodynamics or morphology of arteries, veins, or the portal venous system. In this review article, we will discuss technical aspects of the implementation of abdominal 4D flow MRI ranging from patient preparation and acquisition protocol over post-processing and quality control to final data analysis. In recent years, the range of applications for 4D flow in the abdomen has increased profoundly. Therefore, we will review potential clinical applications and address their clinical importance, relevant quantitative and qualitative parameters, and unmet challenges.
Collapse
Affiliation(s)
- Thekla H. Oechtering
- University of Wisconsin, Department of Radiology, Madison, WI, United States,Universität zu Lübeck, Department of Radiology, Luebeck, Germany
| | - Grant S. Roberts
- University of Wisconsin, Department of Medical Physics, Madison, WI, United States
| | - Nikolaos Panagiotopoulos
- University of Wisconsin, Department of Radiology, Madison, WI, United States,Universität zu Lübeck, Department of Radiology, Luebeck, Germany
| | - Oliver Wieben
- University of Wisconsin, Department of Radiology, Madison, WI, United States,University of Wisconsin, Department of Medical Physics, Madison, WI, United States
| | - Alejandro Roldán-Alzate
- University of Wisconsin, Department of Radiology, Madison, WI, United States,University of Wisconsin, Department of Mechanical Engineering, Madison, WI, United States,University of Wisconsin, Department of Biomedical Engineering, Madison, WI, United States
| | - Scott B. Reeder
- University of Wisconsin, Department of Radiology, Madison, WI, United States,University of Wisconsin, Department of Medical Physics, Madison, WI, United States,University of Wisconsin, Department of Mechanical Engineering, Madison, WI, United States,University of Wisconsin, Department of Biomedical Engineering, Madison, WI, United States,University of Wisconsin, Department of Emergency Medicine, Madison, WI, United States
| |
Collapse
|
10
|
Roldán-Alzate A, Campo CA, Mao L, Said A, Wieben O, Reeder SB. Characterization of mesenteric and portal hemodynamics using 4D flow MRI: the effects of meals and diurnal variation. Abdom Radiol (NY) 2022; 47:2106-2114. [PMID: 35419747 PMCID: PMC10599799 DOI: 10.1007/s00261-022-03513-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To determine the variability of blood flow measurements using 4D flow MRI in the portal and mesenteric circulations and to characterize the effects of meal ingestion, time of day, and between-day (diurnal) variations on portal and mesenteric hemodynamics. METHODS In this IRB-approved and HIPAA-compliant study, 7 healthy and 7 portal hypertension patients imaged. MRI exams were conducted at 3 T using a 32-channel body coil with large volumetric coverage and 1.25-mm isotropic true spatial resolution. Blood flow was quantified (L/min) in the hepatic and splanchnic vasculature. The first MR scan was performed after at least 8 h of fasting. Subsequently, subjects ingested 574 mL EnSure Plus® orally. A second acquisition was started 20 min after the meal ingestion. A third scan was performed before lunch and a fourth acquisition took place 20 min after lunch. A fifth scan was performed around 4 pm. Finally, subjects returned one week later for a repeat morning visit, with identical conditions as the first visit. RESULTS In healthy controls significant increase in blood flow was seen in the PV, SMV, SMA, HA, and SCAo in response to breakfast but only the SCAo, SMA, SMV, and PV had a significant response to lunch. In general, patients with cirrhosis showed reduced response to meals compared to that in healthy controls. Additionally, PV flow in patients had the highest value in the afternoon. CONCLUSION Effects of meal ingestion, time of day, and between-day variations were characterized using Radial 4D flow MRI in patients with cirrhosis and healthy controls.
Collapse
Affiliation(s)
- Alejandro Roldán-Alzate
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792-3252, USA.
- Department of Mechanical Engineering, University of Wisconsin, Madison, USA.
- Department of Biomedical Engineering, University of Wisconsin, Madison, USA.
| | - Camilo A Campo
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792-3252, USA
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, USA
| | - Adnan Said
- Department of Medicine, University of Wisconsin, Madison, USA
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792-3252, USA
- Department of Medical Physics, University of Wisconsin, Madison, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792-3252, USA
- Department of Medical Physics, University of Wisconsin, Madison, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, USA
- Department of Emergency Medicine, University of Wisconsin, Madison, USA
| |
Collapse
|
11
|
Oechtering TH, Roberts GS, Panagiotopoulos N, Wieben O, Reeder SB, Roldán-Alzate A. Clinical Applications of 4D Flow MRI in the Portal Venous System. Magn Reson Med Sci 2022; 21:340-353. [PMID: 35082218 PMCID: PMC9680553 DOI: 10.2463/mrms.rev.2021-0105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/13/2021] [Indexed: 09/27/2023] Open
Abstract
Evaluation of the hemodynamics in the portal venous system plays an essential role in many hepatic pathologies. Changes in portal flow and vessel morphology are often indicative of disease.Routinely used imaging modalities, such as CT, ultrasound, invasive angiography, and MRI, often focus on either hemodynamics or anatomical imaging. In contrast, 4D flow MRI facilitiates a more comprehensive understanding of pathophysiological mechanisms by simultaneously and noninvasively acquiring time-resolved flow and anatomical information in a 3D imaging volume.Though promising, 4D flow MRI in the portal venous system is especially challenging due to small vessel calibers, slow flow velocities, and breathing motion. In this review article, we will discuss how to account for these challenges when planning and conducting 4D flow MRI acquisitions in the upper abdomen. We will address patient preparation, sequence acquisition, postprocessing, quality control, and analysis of 4D flow data.In the second part of this article, we will review potential clinical applications of 4D flow MRI in the portal venous system. The most promising area for clinical utilization is the diagnosis and grading of liver cirrhosis and its complications. Relevant parameters acquired by 4D flow MRI include the detection of reduced or reversed flow in the portal venous system, characterization of portosystemic collaterals, and impaired response to a meal challenge. In patients with cirrhosis, 4D flow MRI has the potential to address the major unmet need of noninvasive detection of gastroesophageal varices at high risk for bleeding. This could replace many unnecessary, purely diagnostic, and invasive esophagogastroduodenoscopy procedures, thereby improving patient compliance with follow-up. Moreover, 4D flow MRI offers unique insights and added value for surgical planning and follow-up of multiple hepatic interventions, including transjugular intrahepatic portosystemic shunts, liver transplantation, and hepatic disease in children. Lastly, we will discuss the path to clinical implementation and remaining challenges.
Collapse
Affiliation(s)
- Thekla H. Oechtering
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Radiology, Universität zu Lübeck, Luebeck, Germany
| | - Grant S. Roberts
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Nikolaos Panagiotopoulos
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Radiology, Universität zu Lübeck, Luebeck, Germany
| | - Oliver Wieben
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Scott B. Reeder
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Emergency, University of Wisconsin Medicine, Madison, WI, USA
| | - Alejandro Roldán-Alzate
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
12
|
Oshima Y, Ogiso S, Imai H, Nakamura M, Wakama S, Tomofuji K, Ito T, Fukumitsu K, Ishii T, Matsuda T, Taura K. Fluid dynamics analyses of the intrahepatic portal vein tributaries using 7-T MRI. HPB (Oxford) 2021; 23:1692-1699. [PMID: 33958282 DOI: 10.1016/j.hpb.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/25/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Assessing portal vein (PV) hemodynamics is an essential part of liver disease management/liver surgery, yet the optimal methods of assessing intrahepatic PV flow have not yet been established. This study investigated the usefulness of 7-Tesla MRI with hemodynamic analysis for detecting small flow changes within narrow intrahepatic PV branches. METHODS Flow data in the main PV was obtained by two methods, two-dimensional cine phase contrast-MRI (2D cine PC-MRI) and three-dimensional non-cine phase contrast-MRI (3D PC-MRI). Hemodynamic parameters, such as flow volume rate, flow velocity, and wall shear stress in intrahepatic PV branches were calculated before and after a meal challenge using 3D PC-MRI and hemodynamic analysis. RESULTS The hemodynamic parameters obtained using 3D PC-MRI and 2D cine PC-MRI were similar. All intrahepatic PV branches were clearly depicted in eight planes, and significant changes in flow volume rate were seen in three planes. Average and maximum velocities, cross-sectional area, and wall shear stress were similar between before and after a meal challenge in all planes. CONCLUSION 7-Tesla 3D PC-MRI combined with hemodynamic analysis is a promising tool for assessing intrahepatic PV flow and enables future studies in small animals to investigate PV hemodynamics associated with liver disease/postoperative liver recovery.
Collapse
Affiliation(s)
- Yu Oshima
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Satoshi Ogiso
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Satoshi Wakama
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsuhiro Tomofuji
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Ito
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Fukumitsu
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takamichi Ishii
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tetsuya Matsuda
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
13
|
Haarbye SO, Nielsen MB, Hansen AE, Lauridsen CA. Four-Dimensional Flow MRI of Abdominal Veins: A Systematic Review. Diagnostics (Basel) 2021; 11:767. [PMID: 33923366 PMCID: PMC8146887 DOI: 10.3390/diagnostics11050767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
The aim of this systematic review is to provide an overview of the use of Four-Dimensional Magnetic Resonance Imaging of vector blood flow (4D Flow MRI) in the abdominal veins. This study was composed according to the PRISMA guidelines 2009. The literature search was conducted in MEDLINE, Cochrane Library, EMBASE, and Web of Science. Quality assessment of the included studies was performed using the QUADAS-2 tool. The initial search yielded 781 studies and 21 studies were included. All studies successfully applied 4D Flow MRI in abdominal veins. Four-Dimensional Flow MRI was capable of discerning between healthy subjects and patients with cirrhosis and/or portal hypertension. The visual quality and inter-observer agreement of 4D Flow MRI were rated as excellent and good to excellent, respectively, and the studies utilized several different MRI data sampling strategies. By applying spiral sampling with compressed sensing to 4D Flow MRI, the blood flow of several abdominal veins could be imaged simultaneously in 18-25 s, without a significant loss of visual quality. Four-Dimensional Flow MRI might be a useful alternative to Doppler sonography for the diagnosis of cirrhosis and portal hypertension. Further clinical studies need to establish consensus regarding MRI sampling strategies in patients and healthy subjects.
Collapse
Affiliation(s)
- Simon O. Haarbye
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, DK-2100 Copenhagen, Denmark
| | - Michael B. Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Clinical Medicine, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Adam E. Hansen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Clinical Medicine, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Carsten A. Lauridsen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark; (M.B.N.); (A.E.H.); (C.A.L.)
- Department of Technology, Faculty of Health and Technology, Metropolitan University College, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Riedel C, Lenz A, Fischer L, Li J, Piecha F, Kluwe J, Adam G, Bannas P. Abdominal Applications of 4D Flow MRI. ROFO-FORTSCHR RONTG 2020; 193:388-398. [PMID: 33264806 DOI: 10.1055/a-1271-7405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Four-dimensional flow magnetic resonance imaging (4D flow MRI) provides volumetric and time-resolved visualization and quantification of blood flow. This review presents an overview of possible applications of 4D flow MRI for non-invasive assessment of abdominal hemodynamics. METHOD This review is based on the authors' experience and the current literature. A PubMed database literature research was performed in December 2019 focusing on abdominal applications of 4D flow MRI. We illustrated the review with exemplary figures and movies of clinical cases from our institution. RESULTS AND CONCLUSION 4D flow MRI offers the possibility of comprehensive assessment of abdominal blood flows in different vascular territories and organ systems. Results of recent studies indicate that 4D flow MRI improves understanding of altered hemodynamics in patients with abdominal disease and may be useful for monitoring therapeutic response. Future studies with larger cohorts aiming to integrate 4D flow MRI in the clinical routine setting are needed. KEY POINTS · 4D flow MRI enables comprehensive visualization of the complex abdominal vasculature. · 4D flow MRI enables quantification of abdominal blood flow velocities and flow rates. · 4D flow MRI may enable deeper understanding of altered hemodynamics in abdominal disease. · Further validation studies are needed prior to broad distribution of abdominal 4D flow MRI. CITATION FORMAT · Riedel C, Lenz A, Fischer L et al. Abdominal Applications of 4D Flow MRI. Fortschr Röntgenstr 2021; 193: 388 - 398.
Collapse
Affiliation(s)
- Christoph Riedel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Lenz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lutz Fischer
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jun Li
- Department of Visceral Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Feilix Piecha
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kluwe
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
15
|
Kennedy P, Bane O, Hectors SJ, Fischman A, Schiano T, Lewis S, Taouli B. Noninvasive imaging assessment of portal hypertension. Abdom Radiol (NY) 2020; 45:3473-3495. [PMID: 32926209 PMCID: PMC10124623 DOI: 10.1007/s00261-020-02729-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Portal hypertension (PH) is a spectrum of complications of chronic liver disease (CLD) and cirrhosis, with manifestations including ascites, gastroesophageal varices, splenomegaly, hypersplenism, hepatic hydrothorax, hepatorenal syndrome, hepatopulmonary syndrome and portopulmonary hypertension. PH can vary in severity and is diagnosed via invasive hepatic venous pressure gradient measurement (HVPG), which is considered the reference standard. Accurate diagnosis of PH and assessment of severity are highly relevant as patients with clinically significant portal hypertension (CSPH) are at higher risk for developing acute variceal bleeding and mortality. In this review, we discuss current and upcoming noninvasive imaging methods for diagnosis and assessment of severity of PH.
Collapse
|
16
|
Bane O, Said D, Weiss A, Stocker D, Kennedy P, Hectors SJ, Khaim R, Salem F, Delaney V, Menon MC, Markl M, Lewis S, Taouli B. 4D flow MRI for the assessment of renal transplant dysfunction: initial results. Eur Radiol 2020; 31:909-919. [PMID: 32870395 DOI: 10.1007/s00330-020-07208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES (1) Determine inter-observer reproducibility and test-retest repeatability of 4D flow parameters in renal allograft vessels; (2) determine if 4D flow measurements in the renal artery (RA) and renal vein (RV) can distinguish between functional and dysfunctional allografts; (3) correlate haemodynamic parameters with estimated glomerular filtration rate (eGFR), perfusion measured with dynamic contrast-enhanced MRI (DCE-MRI) and histopathology. METHODS Twenty-five prospectively recruited renal transplant patients (stable function/chronic renal allograft dysfunction, 12/13) underwent 4D flow MRI at 1.5 T. 4D flow coronal oblique acquisitions were performed in the transplant renal artery (RA) (velocity encoding parameter, VENC = 120 cm/s) and renal vein (RV) (VENC = 45 cm/s). Test-retest repeatability (n = 3) and inter-observer reproducibility (n = 10) were assessed by Cohen's kappa, coefficient of variation (CoV) and Bland-Altman statistics. Haemodynamic parameters were compared between patients and correlated to the estimated glomerular filtration rate, DCE-MRI parameters (n = 10) and histopathology from allograft biopsies (n = 15). RESULTS For inter-observer reproducibility, kappa was > 0.99 and 0.62 and CoV of flow was 12.6% and 7.8% for RA and RV, respectively. For test-retest repeatability, kappa was > 0.99 and 0.5 and CoV of flow was 27.3% and 59.4%, for RA and RV, respectively. RA (p = 0.039) and RV (p = 0.019) flow were both significantly reduced in dysfunctional allografts. Both identified chronic allograft dysfunction with good diagnostic performance (RA: AUC = 0.76, p = 0.036; RV: AUC = 0.8, p = 0.018). RA flow correlated negatively with histopathologic interstitial fibrosis score ci (ρ = - 0.6, p = 0.03). CONCLUSIONS 4D flow parameters had better repeatability in the RA than in the RV. RA and RV flow can identify chronic renal allograft dysfunction, with RA flow correlating with histopathologic interstitial fibrosis score. KEY POINTS • Inter-observer reproducibility of 4D flow measurements was acceptable in both the transplant renal artery and vein, but test-retest repeatability was better in the renal artery than in the renal vein. • Blood flow measurements obtained with 4D flow MRI in the renal artery and renal vein are significantly reduced in dysfunctional renal transplants. • Renal transplant artery flow correlated negatively with histopathologic interstitial fibrosis score.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Daniela Said
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Amanda Weiss
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Daniel Stocker
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Paul Kennedy
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Stefanie J Hectors
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA.,Department of Radiology, Weill Cornell Medicine, New York, New York, NY, USA
| | - Rafael Khaim
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Fadi Salem
- Department of Pathology, ISMMS, New York, NY, USA
| | - Veronica Delaney
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Madhav C Menon
- Division of Renal Medicine, Recanati Miller Transplantation Institute, ISMMS, New York, NY, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA.,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai (ISMMS), 1470 Madison Avenue, New York, NY, 10029, USA. .,BioMedical Engineering and Imaging Institute, ISMMS, New York, NY, USA.
| |
Collapse
|
17
|
Ren XJ. CT and MRI assessment of intestinal blood flow. Shijie Huaren Xiaohua Zazhi 2019; 27:851-856. [DOI: 10.11569/wcjd.v27.i14.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accuracy of multi-slice computed tomography (CT) in the diagnosis of acute mesenteric ischemia is very high, however, it cannot demonstrate the small embolus of blood vessels and abnormal intestinal blood flow. The intestinal blood flow in chronic mesenteric ischemia decreases whereas there are few morphology changes, which leads to a high misdiagnosis rate of CT and CT angiography. In addition, inflammatory bowel disease, intestinal tumors, and portal hypertension can be diagnosed definitely by conventional CT, but the hemodynamics and microcirculation in these conditions cannot be assessed, which affects the accuracy of clinical staging and the assessment of therapeutic effect. For intestinal diseases, especially mesenteric ischemia, therefore, it is needed not only to make CT morphologic diagnosis but also to further assess the abnormal intestinal blood flow. In recent years, more and more CT and magnetic resonance imaging (MRI)-related new techniques for assessing blood flow have emerged, including CT perfusion, spectral CT imaging, magnetic resonance perfusion imaging, and phase contrast MRI. This paper reviews the clinical application and progress of these techniques for assessing intestinal blood flow.
Collapse
Affiliation(s)
- Xiao-Jun Ren
- Department of Radiology, Xidian Group Hospital Affiliated Shaanxi University of Chinese Medicine, Xi'an 710077, Shaanxi Province, China
| |
Collapse
|
18
|
Bane O, Peti S, Wagner M, Hectors S, Dyvorne H, Markl M, Taouli B. Hemodynamic measurements with an abdominal 4D flow MRI sequence with spiral sampling and compressed sensing in patients with chronic liver disease. J Magn Reson Imaging 2018; 49:994-1005. [PMID: 30318674 DOI: 10.1002/jmri.26305] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The test-retest/interobserver repeatability and diagnostic value of 4D flow MRI in liver disease is underreported. PURPOSE To determine the reproducibility/repeatability of flow quantification in abdominal vessels using a spiral 4D flow MRI sequence; to assess the value of 4D flow parameters in diagnosing cirrhosis and degree of portal hypertension. STUDY TYPE Prospective. SUBJECTS Fifty-two patients with chronic liver disease. FIELD STRENGTH/SEQUENCE 1.5T/spiral 4D flow acquired in one breath-hold. ASSESSMENT Thirteen abdominal vessels were identified and segmented by two independent observers to measure maximum and time-averaged through-plane velocity, net flow, and vessel cross-section area. Interobserver agreement and test-retest repeatability were evaluated in 15 and 4 cases, respectively. Prediction of the presence and severity of cirrhosis and portal hypertension was assessed using 4D flow parameters. STATISTICAL TESTS Cohen's kappa coefficient, coefficient of variation (CV), Bland-Altman, Mann-Whitney tests, logistic regression. RESULTS For all vessels combined, measurements showed acceptable agreement between observers, with Cohen's kappa = 0.70 (P < 0.001), CV < 21%, Bland-Altman bias <5%, but high limits of agreement ([-75%,75%]). Test-retest repeatability was excellent in large vessels (CV = 1-15%, bias = 1-25%, Bland-Altman limits of agreement [BALA] = [4%,150%]), and poor in small vessels (CV = 7-130%, bias = 10-200%, BALA = [8%,190%]). Average velocity in the right hepatic vein and average area of the splenic vein were higher in cirrhosis (P = 0.027/0.0039). Flow in the middle hepatic vein strongly correlated with Child-Pugh score (ρ = 0.84, P = 0.0238), while flow in the splenic vein (ρ = 0.43, P = 0.032), time-average (ρ = 0.46, P = 0.02) and peak velocity in the superior mesenteric vein (ρ = 0.45, P = 0.032), and peak velocity in the infrarenal IVC (ρ = 0.39, P = 0.032) positively correlated with an imaging-based portal hypertension score. Average area of the splenic vein predicted cirrhosis (P = 0.019; area under the curve AUC [95% confidence interval, CI] = 0.87 [0.71,1.00]) and clinically significant portal hypertension (P = 0.042; AUC [95% CI] = 0.78 [0.57-0.99]). DATA CONCLUSION Spiral 4D flow allows comprehensive assessment of abdominal vessels in one breath-hold, with substantial interobserver reproducibility, but variable test-retest repeatability. 4D flow may potentially reflect vascular changes due to cirrhosis and portal hypertension. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:994-1005.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven Peti
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathilde Wagner
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Radiology, Groupe Hospitalier Pitié Salpêtrière, Paris, France
| | - Stefanie Hectors
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hadrien Dyvorne
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Catalyzer, Guilford, Connecticut, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Del Chicca F, Schwarz A, Grest P, Willmitzer F, Dennler M, Kircher PR. Cardiac-gated, phase contrast magnetic resonance angiography is a reliable and reproducible technique for quantifying blood flow in canine major cranial abdominal vessels. Vet Radiol Ultrasound 2018; 59:423-431. [PMID: 29667282 DOI: 10.1111/vru.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 11/29/2022] Open
Abstract
Blood flow changes in cranial abdominal vessels are important contributing factors for canine hepatic disease. This prospective, experimental, pilot study aimed to evaluate cardiac-gated, phase contrast magnetic resonance angiography (PCMRA) as a method for characterizing blood flow in canine major cranial abdominal vessels. Eleven, healthy, adult beagle dogs were sampled. Cardiac-gated, phase contrast magnetic resonance angiography of the cranial abdomen was performed in each dog and blood flow was independently measured in each of the major cranial abdominal vessels by three observers, with two observers recording blood flow values once and one observer recording blood flow values three times. Each dog then underwent ultrasonographic examination of the liver with fine needle aspirations and biopsies submitted to cytologic and histologic examination. The mean absolute stroke volume and velocity were respectively 9.6 ± 1.9 ml and -11.1 ± 1.1 cm/s for the cranial abdominal aorta, 2.1 ± 0.6 ml and -6.6 ± 1.9 cm/s for the celiac artery, and 2.3 ± 1.0 ml and -7.9 ± 3.1 cm/s for the cranial mesenteric artery. The mean absolute stroke volume and velocity were respectively 6.7 ± 1.3 ml and 3.9 ± 0.9 cm/s for the caudal vena cava and 2.6 ± 0.9 ml and 3.2 ± 1.2 cm/s for the portal vein. Intraobserver reliability was excellent (intraclass correlation coefficient > 0.9). Interobserver reproducibility was also excellent (intraclass correlation coefficient 0.89-0.99). Results of liver ultrasonography, cytology, and histopathology were unremarkable. Findings indicated that cardiac-gated, phase contrast magnetic resonance angiography is a feasible technique for quantifying blood blow in canine major cranial abdominal vessels. Blood flow values from this sample of healthy beagles can be used as background for future studies on canine hepatic disease.
Collapse
Affiliation(s)
- Francesca Del Chicca
- Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich, Zurich, 8057, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, 3012, Switzerland
| | - Andrea Schwarz
- Section of Anaesthesiology, Equine Department, Vetsuisse Faculty University of Zurich, Zurich, 8057, Switzerland
| | - Paula Grest
- Institute of Veterinary Pathology, Vetsuisse Faculty University of Zurich, Zurich, 8057, Switzerland
| | - Florian Willmitzer
- Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich, Zurich, 8057, Switzerland
| | - Matthias Dennler
- Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich, Zurich, 8057, Switzerland
| | - Patrick R Kircher
- Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
20
|
Frydrychowicz A, Roldan-Alzate A, Winslow E, Consigny D, Campo CA, Motosugi U, Johnson KM, Wieben O, Reeder SB. Comparison of radial 4D Flow-MRI with perivascular ultrasound to quantify blood flow in the abdomen and introduction of a porcine model of pre-hepatic portal hypertension. Eur Radiol 2017; 27:5316-5324. [PMID: 28656461 DOI: 10.1007/s00330-017-4862-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/22/2017] [Accepted: 04/20/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Objectives of this study were to compare radial time-resolved phase contrast magnetic resonance imaging (4D Flow-MRI) with perivascular ultrasound (pvUS) and to explore a porcine model of acute pre-hepatic portal hypertension (PHTN). METHODS Abdominal 4D Flow-MRI and pvUS in portal and splenic vein, hepatic and both renal arteries were performed in 13 pigs of approximately 60 kg. In six pigs, measurements were repeated after partial portal vein (PV) ligature. Inter- and intra-reader comparisons and statistical analysis including Bland-Altman (BA) comparison, paired Student's t tests and linear regression were performed. RESULTS PvUS and 4D Flow-MRI measurements agreed well; flow before partial PV ligature was 322 ± 30 ml/min in pvUS and 297 ± 27 ml/min in MRI (p = 0.294), and average BA difference was 25 ml/min [-322; 372]. Inter- and intra-reader results differed very little, revealed excellent correlation (R 2 = 0.98 and 0.99, respectively) and resulted in BA differences of -5 ml/min [-161; 150] and -2 ml/min [-28; 25], respectively. After PV ligature, PV flow decreased from 356 ± 50 to 298 ± 61 ml/min (p = 0.02), and hepatic arterial flow increased from 277 ± 36 to 331 ± 65 ml/min (p = n.s.). CONCLUSION The successful in vivo comparison of radial 4D Flow-MRI to perivascular ultrasound revealed good agreement of abdominal blood flow although with considerable spread of results. A model of pre-hepatic PHTN was successfully introduced and acute responses monitored. KEY POINTS • Radial 4D Flow-MRI in the abdomen was successfully compared to perivascular ultrasound. • Inter- and intra-reader testing demonstrated excellent reproducibility of upper abdominal 4D Flow-MRI. • A porcine model of acute pre-hepatic portal hypertension was successfully introduced. • 4D Flow-MRI successfully monitored acute changes in a model of portal hypertension.
Collapse
Affiliation(s)
- A Frydrychowicz
- Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53792-3252, USA.
- Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- University of Lübeck, Lübeck, Germany.
| | - A Roldan-Alzate
- Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53792-3252, USA
- Department of Mechanical Engineering, University of Wisconsin, Madison, USA
| | - E Winslow
- Department of Surgery, University of Wisconsin, Madison, USA
| | - D Consigny
- Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53792-3252, USA
| | - C A Campo
- Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53792-3252, USA
| | - U Motosugi
- Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53792-3252, USA
| | - K M Johnson
- Department of Medical Physics, University of Wisconsin, Madison, USA
| | - O Wieben
- Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53792-3252, USA
- Department of Medical Physics, University of Wisconsin, Madison, USA
| | - S B Reeder
- Department of Radiology, School of Medicine and Public Health, E3/366 Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, WI, 53792-3252, USA
- Department of Medical Physics, University of Wisconsin, Madison, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, USA
- Department of Medicine, University of Wisconsin, Madison, USA
- Department of Emergency Medicine, University of Wisconsin, Madison, USA
| |
Collapse
|
21
|
Lawley CM, Broadhouse KM, Callaghan FM, Winlaw DS, Figtree GA, Grieve SM. 4D flow magnetic resonance imaging: role in pediatric congenital heart disease. Asian Cardiovasc Thorac Ann 2017; 26:28-37. [PMID: 28185475 DOI: 10.1177/0218492317694248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Imaging-based evaluation of cardiac structure and function remains paramount in the diagnosis and monitoring of congenital heart disease in childhood. Accurate measurements of intra- and extracardiac hemodynamics are required to inform decision making, allowing planned timing of interventions prior to deterioration of cardiac function. Four-dimensional flow magnetic resonance imaging is a nonionizing noninvasive technology that allows accurate and reproducible delineation of blood flow at any anatomical location within the imaging volume of interest, and also permits derivation of physiological parameters such as kinetic energy and wall shear stress. Four-dimensional flow is the focus of a great deal of attention in adult medicine, however, the translation of this imaging technique into the pediatric population has been limited to date. A more broad-scaled application of 4-dimensional flow in pediatric congenital heart disease stands to increase our fundamental understanding of the cause and significance of abnormal blood flow patterns, may improve risk stratification, and inform the design and use of surgical and percutaneous correction techniques. This paper seeks to outline the application of 4-dimensional flow in the assessment and management of the pediatric population affected by congenital heart disease.
Collapse
Affiliation(s)
- Claire M Lawley
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia.,3 Clinical Population Perinatal Health Research, Kolling Institute, University of Sydney, Sydney, Australia
| | - Kathryn M Broadhouse
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Fraser M Callaghan
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - David S Winlaw
- 4 Heart Centre for Children & University of Sydney, The Children's Hospital at Westmead, Sydney, Australia
| | - Gemma A Figtree
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia
| | - Stuart M Grieve
- 1 Sydney Translational Imaging Laboratory, Sydney Heart Research Institute, Charles Perkins Centre, University of Sydney, Sydney, Australia.,2 North Shore Heart Research Group, Kolling Institute of Medical Research, Sydney Medical School Northern, University of Sydney, Sydney, Australia.,5 Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
22
|
Karuppasamy K. Utility of cone-beam computed tomography in the assessment of the porto-spleno-mesenteric venous system. Cardiovasc Diagn Ther 2017; 6:544-556. [PMID: 28123975 DOI: 10.21037/cdt.2016.11.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The common diagnostic tools available to evaluate the porto-spleno-mesenteric venous (PSMV) system provide either good hemodynamic information with limited morphological details [e.g., ultrasonography (US)] or excellent tomographic display of the anatomy with limited information about flow patterns [e.g., multidetector computed tomography (MDCT) and magnetic resonance imaging]. Although catheter-directed selective digital subtraction angiography (DSA) can provide excellent information about flow at a high temporal resolution and can generate images at a high spatial resolution, this technique is often limited by a lack of cross-sectional detail. In the assessment of the PSMV system, DSA is also limited by dilution of contrast and motion artefacts. Combining venous phase cone-beam computed tomography (CBCT) with DSA can generate high-quality tomographic data, which allows detailed evaluation of venous tributaries and flow patterns within the splenic, superior mesenteric, and inferior mesenteric venous systems individually. This enables clinicians to better understand the impact of nonobstructive resistance to flow (e.g., as in patients with cirrhosis) and obstructive resistance to flow (e.g., as in patients with thrombosis) within each system and plan treatment accordingly. In this review, we discuss the limitations of common diagnostic methods and the role venous CBCT in combination with DSA can play in assessing the PSMV system.
Collapse
|
23
|
Owen JM, Gaba RC. Transjugular Intrahepatic Portosystemic Shunt Dysfunction: Concordance of Clinical Findings, Doppler Ultrasound Examination, and Shunt Venography. J Clin Imaging Sci 2016; 6:29. [PMID: 27563495 PMCID: PMC4977976 DOI: 10.4103/2156-7514.186510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/15/2016] [Indexed: 12/23/2022] Open
Abstract
Objectives: The objective of this study was to evaluate the concordance between clinical symptoms, Doppler ultrasound (US), and shunt venography for the detection of stent-graft transjugular intrahepatic portosystemic shunt (TIPS) dysfunction. Materials and Methods: Forty-one patients (M:F 30:11, median age 55 years) who underwent contemporaneous clinical exam, Doppler US, and TIPS venography between 2003 and 2014 were retrospectively studied. Clinical symptoms (recurrent ascites or variceal bleeding) were dichotomously classified as present/absent, and US and TIPS venograms were categorized in a binary fashion as normal/abnormal. US abnormalities included high/low (>190 or <90 cm/s) TIPS velocity, significant velocity rise/fall (>50 cm/s), absent flow, and return of antegrade intra-hepatic portal flow. Venographic abnormalities included shunt stenosis/occlusion and/or pressure gradient elevation. Clinical and imaging concordance rates were calculated. Results: Fifty-two corresponding US examinations and venograms were assessed. The median time between studies was 3 days. Forty of 52 (77%) patients were symptomatic, 33/52 (64%) US examinations were abnormal, and 20/52 (38%) TIPS venograms were abnormal. Concordance between clinical symptoms and TIPS venography was 48% (25/52), while the agreement between US and shunt venography was 65% (34/52). Clinical symptoms and the US concurred in 60% (31/52) of the patients. The sensitivity of clinical symptoms and US for the detection of venographically abnormal shunts was 80% (16/20) and 85% (17/20), respectively. Both clinical symptoms and the US had low specificity (25%, 8/32 and 50%, 16/32) for venographically abnormal shunts. Conclusion: Clinical findings and the US had low concordance rates with TIPS venography, with acceptable sensitivity but poor specificity. These findings suggest the need for improved noninvasive imaging methods for stent-graft TIPS surveillance.
Collapse
Affiliation(s)
- Joshua M Owen
- University of Illinois College of Medicine, Chicago, IL, USA
| | - Ron Charles Gaba
- Department of Radiology, Division of Interventional Radiology, University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| |
Collapse
|
24
|
Parekh K, Markl M, Rose M, Schnell S, Popescu A, Rigsby CK. 4D flow MR imaging of the portal venous system: a feasibility study in children. Eur Radiol 2016; 27:832-840. [PMID: 27193778 DOI: 10.1007/s00330-016-4396-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 05/02/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To determine the feasibility of 4D flow MRI for visualization and quantification of the portal venous haemodynamics in children and young adults. METHODS 4D flow was performed in 28 paediatric patients (median age, 8.5 years; interquartile range, 5.2-16.5), 15 with non-operated native portal system and 13 with surgically created portal shunt. Image quality assessment for 3D flow visualization and flow pattern analyses was performed. Regional 4D flow peak velocity and net flow were compared with 2D-cine phase contrast MRI (2D-PC MR) in the post-surgical patients. RESULTS Mean 3D flow visualization quality score was excellent (mean ± SD, 4.2 ± 0.9) with good inter-rater agreement (κ,0.67). Image quality in children aged >10 years was better than children ≤10 years (p < 0.05). Flow pattern was defined for portal, superior mesenteric, splenic veins and splenic artery in all patients. 4D flow and 2D-PC MR peak velocity and net flow were similar with good correlation (peak velocity: 4D flow 22.2 ± 9.1 cm/s and 2D-PC MR 25.2 ± 11.2 cm/s, p = 0.46; r = 0.92, p < 0.0001; net flow: 4D flow 9.5 ± 7.4 ml/s and 2D-PC MR 10.1 ± 7.3 ml/s, p = 0.65; r = 0.81, p = 0.0007). CONCLUSIONS 4D flow MRI is feasible and holds promise for the comprehensive 3D visualization and quantification of portal venous flow dynamics in children and young adults. KEY POINTS • 4D flow MRI is feasible in children and young adults. • 4D flow MRI has the ability to non-invasively characterize portal haemodynamics. • Image quality of 4D flow MRI is better is older children. • 4D flow MRI can accurately quantify portal flow compared to 2D-cine PC MRI.
Collapse
Affiliation(s)
- Keyur Parekh
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA. .,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA
| | - Michael Rose
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrada Popescu
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cynthia K Rigsby
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
25
|
Abstract
OBJECTIVE Comprehensive assessment of abdominal hemodynamics is crucial for many clinical diagnoses but is challenged by a tremendous complexity of anatomy, normal physiology, and a wide variety of pathologic abnormalities. This article introduces 4D flow MRI as a powerful technique for noninvasive assessment of the hemodynamics of abdominal vascular territories. CONCLUSION Four-dimensional flow MRI provides clinicians with a more extensive and straightforward approach to evaluate disorders that affect blood flow in the abdomen. This review presents a series of clinical cases to illustrate the utility of 4D flow MRI in the comprehensive assessment of the abdominal circulation.
Collapse
|
26
|
Chouhan MD, Lythgoe MF, Mookerjee RP, Taylor SA. Vascular assessment of liver disease-towards a new frontier in MRI. Br J Radiol 2016; 89:20150675. [PMID: 27115318 PMCID: PMC5124867 DOI: 10.1259/bjr.20150675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Complex haemodynamic phenomena underpin the pathophysiology of chronic liver disease. Non-invasive MRI-based assessment of hepatic vascular parameters therefore has the potential to yield meaningful biomarkers for chronic liver disease. In this review, we provide an overview of vascular sequelae of chronic liver disease amenable to imaging evaluation and describe the current supportive evidence, strengths and the limitations of MRI methodologies, including dynamic contrast-enhanced, dynamic hepatocyte-specific contrast-enhanced, phase-contrast, arterial spin labelling and MR elastography in the assessment of hepatic vascular parameters. We review the broader challenges of quantitative hepatic vascular MRI, including the difficulties of motion artefact, complex post-processing, long acquisition times, validation and limitations of pharmacokinetic models, alongside the potential solutions that will shape the future of MRI and deliver this new frontier to the patient bedside.
Collapse
Affiliation(s)
- Manil D Chouhan
- 1 University College London (UCL) Centre for Medical Imaging, Division of Medicine, UCL, London, UK
| | - Mark F Lythgoe
- 2 University College London (UCL) Centre for Advanced Biomedical Imaging, Division of Medicine, UCL, London, UK
| | - Rajeshwar P Mookerjee
- 3 University College London (UCL) Institute for Liver and Digestive Health, Division of Medicine, UCL, London, UK
| | - Stuart A Taylor
- 1 University College London (UCL) Centre for Medical Imaging, Division of Medicine, UCL, London, UK
| |
Collapse
|
27
|
Chouhan MD, Mookerjee RP, Bainbridge A, Walker-Samuel S, Davies N, Halligan S, Lythgoe MF, Taylor SA. Use of Caval Subtraction 2D Phase-Contrast MR Imaging to Measure Total Liver and Hepatic Arterial Blood Flow: Preclinical Validation and Initial Clinical Translation. Radiology 2016; 280:916-23. [PMID: 27171018 PMCID: PMC5015842 DOI: 10.1148/radiol.2016151832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caval subtraction phase-contrast MR imaging is technically feasible and may offer a
reproducible and clinically viable method for measuring total liver blood flow and
hepatic arterial flow. Purpose To validate caval subtraction two-dimensional (2D) phase-contrast magnetic
resonance (MR) imaging measurements of total liver blood flow (TLBF) and hepatic
arterial fraction in an animal model and evaluate consistency and reproducibility
in humans. Materials and Methods Approval from the institutional ethical committee for animal care and research
ethics was obtained. Fifteen Sprague-Dawley rats underwent 2D phase-contrast MR
imaging of the portal vein (PV) and infrahepatic and suprahepatic inferior vena
cava (IVC). TLBF and hepatic arterial flow were estimated by subtracting
infrahepatic from suprahepatic IVC flow and PV flow from estimated TLBF,
respectively. Direct PV transit-time ultrasonography (US) and fluorescent
microsphere measurements of hepatic arterial fraction were the standards of
reference. Thereafter, consistency of caval subtraction phase-contrast MR
imaging–derived TLBF and hepatic arterial flow was assessed in 13
volunteers (mean age, 28.3 years ± 1.4) against directly measured
phase-contrast MR imaging PV and proper hepatic arterial inflow; reproducibility
was measured after 7 days. Bland-Altman analysis of agreement and coefficient of
variation comparisons were undertaken. Results There was good agreement between PV flow measured with phase-contrast MR imaging
and that measured with transit-time US (mean difference, −3.5 mL/min/100 g;
95% limits of agreement [LOA], ±61.3 mL/min/100 g). Hepatic arterial fraction
obtained with caval subtraction agreed well with those with fluorescent
microspheres (mean difference, 4.2%; 95% LOA, ±20.5%). Good consistency was
demonstrated between TLBF in humans measured with caval subtraction and direct
inflow phase-contrast MR imaging (mean difference, −1.3 mL/min/100 g; 95%
LOA, ±23.1 mL/min/100 g). TLBF reproducibility at 7 days was similar between
the two methods (95% LOA, ±31.6 mL/min/100 g vs ±29.6 mL/min/100 g). Conclusion Caval subtraction phase-contrast MR imaging is a simple and clinically viable
method for measuring TLBF and hepatic arterial flow. Online supplemental
material is available for this article.
Collapse
Affiliation(s)
- Manil D Chouhan
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Rajeshwar P Mookerjee
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Alan Bainbridge
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Simon Walker-Samuel
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Nathan Davies
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Steve Halligan
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Mark F Lythgoe
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| | - Stuart A Taylor
- From the University College London Centre for Medical Imaging (M.D.C., S.H., S.A.T.), Institute for Liver and Digestive Health (R.P.M., N.D.), and Centre for Advanced Biomedical Imaging (S.W.S., M.F.L.), Division of Medicine, University College London, 250 Euston Rd, 3rd Floor East, London NW1 2PG, England; and Department of Medical Physics, University College London Hospitals NHS Trust, London, England (A.B.)
| |
Collapse
|
28
|
Stankovic Z. Four-dimensional flow magnetic resonance imaging in cirrhosis. World J Gastroenterol 2016; 22:89-102. [PMID: 26755862 PMCID: PMC4698511 DOI: 10.3748/wjg.v22.i1.89] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Since its introduction in the 1970’s, magnetic resonance imaging (MRI) has become a standard imaging modality. With its broad and standardized application, it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging. In addition to sonography and computer tomography, MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases, for determining disease severity, and for assessing therapeutic success. MRI techniques have improved over the last few decades, revealing not just morphologic information, but functional information about perfusion, diffusion and hemodynamics as well. Four-dimensional (4D) flow MRI, a time-resolved phase contrast-MRI with three-dimensional (3D) anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body. The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest. Over the last few years, 4D flow MRI has been increasingly performed in the abdominal region. By applying different acceleration techniques, taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min. These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system. The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition, data analysis, visualization and quantification. Furthermore, in this article we highlight its development, focussing on the clinical application of the technique.
Collapse
|
29
|
van Ooij P, Semaan E, Schnell S, Giri S, Stankovic Z, Carr J, Barker AJ, Markl M. Improved respiratory navigator gating for thoracic 4D flow MRI. Magn Reson Imaging 2015; 33:992-9. [PMID: 25940391 DOI: 10.1016/j.mri.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Thoracic and abdominal 4D flow MRI is typically acquired in combination with navigator respiration control which can result in highly variable scan efficiency (Seff) and thus total scan time due to inter-individual variability in breathing patterns. The aim of this study was to test the feasibility of an improved respiratory control strategy based on diaphragm navigator gating with fixed Seff, respiratory driven phase encoding, and a navigator training phase. METHODS 4D flow MRI of the thoracic aorta was performed in 10 healthy subjects at 1.5T and 3T systems for the in-vivo assessment of aortic time-resolved 3D blood flow velocities. For each subject, four 4D flow scans (1: conventional navigator gating, 2-4: new implementation with fixed Seff =60%, 80% and 100%) were acquired. Data analysis included semi-quantitative evaluation of image quality of the 4D flow magnitude images (image quality grading on a four point scale), 3D segmentation of the thoracic aorta, and voxel-by-voxel comparisons of systolic 3D flow velocity vector fields between scans. RESULTS Conventional navigator gating resulted in variable Seff=74±13% (range=56%-100%) due to inter-individual variability of respiration patterns. For scans 2-4, the new navigator implementation was able to achieve predictable total scan times with stable Seff, only depending on heart rate. Semi- and fully quantitative analysis of image quality in 4D flow magnitude images was similar for the new navigator scheme compared to conventional navigator gating. For aortic systolic 3D velocities, good agreement was found between all new navigator settings (scan 2-4) with the conventional navigator gating (scan 1) with best performance for Seff=80% (mean difference=-0.01 m/s; limits of agreement=0.23 m/s, Pearson's ρ=0.89, p<0.001). No significant differences for image quality or 3D systolic velocities were found for 1.5T compared to 3T. CONCLUSIONS The findings of this study demonstrate the feasibility of the new navigator scheme to acquire 4D flow data with more predictable scan time while maintaining image quality and 3D velocity information, which may prove beneficial for clinical applications.
Collapse
Affiliation(s)
- Pim van Ooij
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edouard Semaan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Zoran Stankovic
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
30
|
Effect of TIPS placement on portal and splanchnic arterial blood flow in 4-dimensional flow MRI. Eur Radiol 2015; 25:2634-40. [PMID: 25850890 DOI: 10.1007/s00330-015-3663-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To assess changes in portal and splanchnic arterial haemodynamics in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) using four-dimensional (4D) flow MRI, a non-invasive, non-contrast imaging technique. METHODS Eleven patients undergoing TIPS implantation were enrolled. K-t GRAPPA accelerated non-contrast 4D flow MRI of the liver vasculature was applied with acceleration factor R = 5 at 3Tesla. Flow analysis included three-dimensional (3D) blood flow visualization using time-resolved 3D particle traces and semi-quantitative flow pattern grading. Quantitative evaluation entailed peak velocities and net flows throughout the arterial and portal venous (PV) systems. MRI measurements were taken within 24 h before and 4 weeks after TIPS placement. RESULTS Three-dimensional flow visualization with 4D flow MRI revealed good image quality with minor limitations in PV flow. Quantitative analysis revealed a significant increase in PV flow (562 ± 373 ml/min before vs. 1831 ± 965 ml/min after TIPS), in the hepatic artery (176 ± 132 ml/min vs. 354 ± 140 ml/min) and combined flow in splenic and superior mesenteric arteries (770 ml/min vs. 1064 ml/min). Shunt-flow assessment demonstrated stenoses in two patients confirmed and treated at TIPS revision. CONCLUSIONS Four-dimensional flow MRI might have the potential to give new information about the effect of TIPS placement on hepatic perfusion. It may explain some unexpected findings in clinical observation studies. KEY POINTS • 4D flow MRI, a non-invasive, non-contrast imaging technique, is feasible after TIPS. • Provides visualization and quantification of hepatic arterial, portal venous, collateral and TIPS haemodynamics. • Better understanding of liver blood flow changes after TIPS and patient management.
Collapse
|
31
|
Roldán-Alzate A, Frydrychowicz A, Said A, Johnson KM, Francois CJ, Wieben O, Reeder SB. Impaired regulation of portal venous flow in response to a meal challenge as quantified by 4D flow MRI. J Magn Reson Imaging 2015; 42:1009-17. [PMID: 25772828 DOI: 10.1002/jmri.24886] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Portal and mesenteric hemodynamics is greatly altered in portal hypertension patients. This study utilizes 4D flow magnetic resonance imaging (MRI) to visualize and quantify changes in abdominal hemodynamics in patients with portal hypertension undergoing meal challenge. MATERIALS AND METHODS Twelve portal hypertension patients and six healthy subjects participated in the study. Baseline MRI was acquired after 5 hours of fasting. Postmeal MRI was obtained 20 minutes after subjects ingested EnSure Plus (574 mL). Imaging was performed at 3T using 4D flow MRI with an undersampled radial acquisition. Flow measurements were performed blinded to subject status (fasting/meal). Flow values for each vessel were compared before and after the meal challenge using paired Student's t-tests (P < 0.05). RESULTS After meal challenge, significant increases in blood flow were observed in supraceliac aorta, portal vein, superior mesenteric vein, and artery in both groups (P < 0.05). In patients, hepatic artery (P = 0.001) and splenic vein (P = 0.045) flow decreased while azygos vein flow (P = 0.002) increased. CONCLUSION Portal venous flow regulation to adjust the increasing mesenteric venous flow after a meal challenge may be impaired in patients with cirrhosis. The ability to comprehensively quantify the hemodynamic response of the abdominal vasculature to a meal challenge using 4D flow MRI reveals the potential of this technique to noninvasively characterize portal hypertension hemodynamics.
Collapse
Affiliation(s)
| | - Alex Frydrychowicz
- Department of Radiology, Universitätsklinikum Schleswig-Holstein, Lubeck, Germany
| | - Adnan Said
- Department of Medicine, Gastroenterology and Hepatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Oliver Wieben
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medicine, Gastroenterology and Hepatology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Ghosn MG, Shah DJ. Important advances in technology and unique applications related to cardiac magnetic resonance imaging. Methodist Debakey Cardiovasc J 2015; 10:159-62. [PMID: 25574343 DOI: 10.14797/mdcj-10-3-159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.
Collapse
Affiliation(s)
- Mohamad G Ghosn
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| | - Dipan J Shah
- Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
33
|
George SM, Eckert LM, Martin DR, Giddens DP. Hemodynamics in Normal and Diseased Livers: Application of Image-Based Computational Models. Cardiovasc Eng Technol 2014; 6:80-91. [DOI: 10.1007/s13239-014-0195-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023]
|
34
|
Dyvorne H, Knight-Greenfield A, Jajamovich G, Besa C, Cui Y, Stalder A, Markl M, Taouli B. Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 2014; 275:245-54. [PMID: 25325326 DOI: 10.1148/radiol.14140973] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. MATERIALS AND METHODS This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30-70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. RESULTS There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: -8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95% limits of agreement: -10.6 and 14.6 mL/sec). CONCLUSION The combination of highly efficient spiral sampling with dynamic compressed sensing results in major acceleration for 4D flow MR imaging, which allows comprehensive assessment of abdominal vessel hemodynamics in a single breath hold.
Collapse
Affiliation(s)
- Hadrien Dyvorne
- From the Department of Radiology/Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029 (H.D., A.K., G.J., C.B., Y.C., B.T.); Healthcare Sector, Imaging & Therapy Division, Siemens, Erlangen, Germany (A.S.); and Department of Radiology and Biomedical Engineering, Feinberg School of Medicine, Northwestern University, Chicago, Ill (M.M.)
| | | | | | | | | | | | | | | |
Collapse
|
35
|
K-t GRAPPA-accelerated 4D flow MRI of liver hemodynamics: influence of different acceleration factors on qualitative and quantitative assessment of blood flow. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:149-59. [PMID: 25099493 DOI: 10.1007/s10334-014-0456-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/08/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We sought to evaluate the feasibility of k-t parallel imaging for accelerated 4D flow MRI in the hepatic vascular system by investigating the impact of different acceleration factors. MATERIALS AND METHODS k-t GRAPPA accelerated 4D flow MRI of the liver vasculature was evaluated in 16 healthy volunteers at 3T with acceleration factors R = 3, R = 5, and R = 8 (2.0 × 2.5 × 2.4 mm(3), TR = 82 ms), and R = 5 (TR = 41 ms); GRAPPA R = 2 was used as the reference standard. Qualitative flow analysis included grading of 3D streamlines and time-resolved particle traces. Quantitative evaluation assessed velocities, net flow, and wall shear stress (WSS). RESULTS Significant scan time savings were realized for all acceleration factors compared to standard GRAPPA R = 2 (21-71 %) (p < 0.001). Quantification of velocities and net flow offered similar results between k-t GRAPPA R = 3 and R = 5 compared to standard GRAPPA R = 2. Significantly increased leakage artifacts and noise were seen between standard GRAPPA R = 2 and k-t GRAPPA R = 8 (p < 0.001) with significant underestimation of peak velocities and WSS of up to 31 % in the hepatic arterial system (p <0.05). WSS was significantly underestimated up to 13 % in all vessels of the portal venous system for k-t GRAPPA R = 5, while significantly higher values were observed for the same acceleration with higher temporal resolution in two veins (p < 0.05). CONCLUSION k-t acceleration of 4D flow MRI is feasible for liver hemodynamic assessment with acceleration factors R = 3 and R = 5 resulting in a scan time reduction of at least 40 % with similar quantitation of liver hemodynamics compared with GRAPPA R = 2.
Collapse
|
36
|
Stankovic Z, Allen BD, Garcia J, Jarvis KB, Markl M. 4D flow imaging with MRI. Cardiovasc Diagn Ther 2014; 4:173-92. [PMID: 24834414 DOI: 10.3978/j.issn.2223-3652.2014.01.02] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/21/2013] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed '4D flow MRI') has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system.
Collapse
Affiliation(s)
- Zoran Stankovic
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Bradley D Allen
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Julio Garcia
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Kelly B Jarvis
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| | - Michael Markl
- 1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA ; 2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
| |
Collapse
|
37
|
Kadbi M, Negahdar M, Traughber M, Martin P, Amini AA. Assessment of flow and hemodynamics in the carotid artery using a reduced TE 4D flow spiral phase-contrast MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2013:1100-3. [PMID: 24109884 DOI: 10.1109/embc.2013.6609697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
4D flow MRI is a powerful technique for quantitative flow assessment and visualization of complex flow patterns and hemodynamics of cardiovascular flows. This technique results in more anatomical information and comprehensive assessment of blood flow. However, conventional 4D PC MRI suffers from a few obstacles for clinical applications. The total scan time is long, especially in large volumes with high spatial resolutions. Inaccuracy of conventional Cartesian PC MRI in the setting of atherosclerosis and in general, disturbed and turbulent blood flow is another important challenge. This inaccuracy is the consequence of signal loss, intravoxel dephasing and flow-related artifact in the presence of disturbed and turbulent flow. Spiral k-space trajectory has valuable attributes which can help overcome some of the problems with 4D flow Cartesian acquisitions. Spiral trajectory benefits from shorter TE and reduces the flow-related artifacts. In addition, short spiral readouts with spiral interleaves can significantly reduce the total scan time, reducing the chances of patient motion which may also corrupt the data in the form of motion artifacts. In this paper, the accuracy of flow assessment and flow visualization with reduced TE 4D Spiral PC was investigated and good agreement was observed between the spiral and conventional technique. The systolic mean velocity, peak flow and the average flow in CCA and ICA of normal volunteers using 4D spiral PC MRI showed errors less than 10% compared to conventional 4D PC MRI. In addition, the scan time using spiral sequence was 3∶31 min which is half of the time using conventional sequence.
Collapse
|
38
|
Quantification of thoracic blood flow using volumetric magnetic resonance imaging with radial velocity encoding: in vivo validation. Invest Radiol 2014; 48:819-25. [PMID: 23857136 DOI: 10.1097/rli.0b013e31829a4f2f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The objective of this study was to validate radially undersampled 5-point velocity-encoded time-resolved flow-sensitive magnetic resonance imaging (MRI) ("PC-VIPR", phase contrast vastly undersampled imaging with isotropic resolution projection reconstruction magnetic resonance) for the quantification of ascending aortic (AAO) and main pulmonary artery (MPA) flow in vivo. MATERIALS AND METHODS Data from 18 healthy volunteers (41.6 ± 16.2 years [range, 22-73 years]; body mass index, 26.0 ± 3.5 [19.1-31.4]) scanned at 3 T with a 32-channel coil were included. The left and right ventricular stroke volumes calculated from contiguous short-axis CINE-balanced steady state free precession (CINE-bSSFP) slices were used as the primary reference for cardiac output. Flow measured from 2-dimensional phase contrast MRI (2D-PC-MRI) in the AAO and the MPA served as the secondary reference. Time-resolved 4-dimensional flow-sensitive MRI (4D flow MRI) using PC-VIPR was performed with a velocity sensitivity of Venc = 150 cm/s reconstructed to 20 time frames at 1.4-mm isotropic spatial resolution. In 11 of 20 volunteers, phantom-corrected 4D flow MRI data were also assessed. Differences between methods of calculating the left ventricular and right ventricular cardiac output were assessed with the Bland-Altman analysis (BA, mean difference ±2SD). The QP/QS-ratio was calculated for each method. RESULTS Initially, PC-VIPR compared unfavorably with CINE-bSSFP (left ventricular stroke volume: 96.5 ± 14.4 mL; right ventricular stroke volume: 93.6 ± 14.0 mL vs 81.2 ± 24.3 mL [AAO] and 85.6 ± 25.4 mL [MPA]; P = 0.027 and 0.25) with BA differences of -14.6 ± 44.0 mL (AAO) and -9.0 ± 45.9 mL (MPA). Whereas phantom correction had minor effects on 2D-PC-MRI results and comparison with CINE-bSSFP, it improved PC-VIPR results: BA differences between CINE-bSSFP and PC-VIPR after correction were -1.4 ± 15.3 mL (AAO) and -4.1 ± 16.1 mL (MPA); BA comparison with 2D-PC-MRI improved to -12.0 ± 48.1 mL (AAO) and -2.2 ± 19.5 mL (MPA). QP/QS-ratio results for all techniques were within physiologic limits. CONCLUSIONS Accurate quantification of AAO and MPA flows with radially undersampled 4D flow MRI applying 5-point velocity encoding is achievable when phantom correction is used.
Collapse
|
39
|
Kadbi M, Negahdar M, Cha JW, Traughber M, Martin P, Stoddard MF, Amini AA. 4D UTE flow: a phase-contrast MRI technique for assessment and visualization of stenotic flows. Magn Reson Med 2014; 73:939-50. [PMID: 24604617 DOI: 10.1002/mrm.25188] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/22/2014] [Accepted: 02/02/2014] [Indexed: 11/10/2022]
Abstract
PURPOSE Inaccuracy of conventional four-dimensional (4D) flow MR imaging in the presence of random unsteady and turbulent blood flow distal to a narrowing has been an important challenge. Previous investigations have revealed that shorter echo times (TE) decrease the errors, leading to more accurate flow assessments. METHODS In this study, as part of a 4D flow acquisition, an Ultra-Short TE (UTE) method was adopted. UTE works based on a center-out radial k-space trajectory that inherently has a short TE. By employing free induction decay sampling starting from read-out gradient ramp-up, and by combining the refocusing lobe of the slice select gradient with the bipolar flow encoding gradient, TEs of ≈1 msec may be achieved. RESULTS Both steady and pulsatile flow regimes, and in each case a range of Reynolds numbers, were studied in an in-vitro model. Flow assessment at low and medium flow rates demonstrated a good agreement between 4D UTE and conventional 4D flow techniques. However, 4D UTE flow significantly outperformed conventional 4D flow, at high flow rates for both steady and pulsatile flow regimes. Feasibility of the method in one patient with Aortic Stenosis was also demonstrated. CONCLUSION For both steady and pulsatile high flow rates, the measured flow distal to the stenotic narrowing using conventional 4D flow revealed more than 20% error compared to the ground-truth flow. This error was reduced to less than 5% using the 4D UTE flow technique.
Collapse
Affiliation(s)
- Mo Kadbi
- Electrical and Computer Engineering Department, University of Louisville, Louisville, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Morisaka H, Motosugi U, Ichikawa S, Sano K, Ichikawa T, Enomoto N. Association of splenic MR elastographic findings with gastroesophageal varices in patients with chronic liver disease. J Magn Reson Imaging 2013; 41:117-24. [PMID: 24243628 DOI: 10.1002/jmri.24505] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/16/2013] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To identify magnetic resonance imaging (MRI)-based parameters associated with gastroesophageal varices (GEVs) in patients with chronic liver disease. MATERIALS AND METHODS Ninety-three patients were divided into three groups based on endoscopic findings: group 1 with no GEVs (n = 49), group 2 with mild GEVs (n = 30), and group 3 with severe GEVs (n = 14). We used a multivariate logistic regression analysis to assess liver stiffness, aspartate aminotransferase-to-platelet ratio index, spleen stiffness and volume, portal vein velocity, cross-sectional area, and flow volumes potential independent associators of any (mild and severe) GEVs or severe GEVs. RESULTS The analysis showed that spleen and liver stiffness and spleen volume were independently associated with any GEVs (spleen stiffness, odds ratio [95% confidence interval], 1.25 [1.04-1.68], P = 0.018; liver stiffness, 1.52 [1.13-2.17], P = 0.006; spleen volume, 1.01 [1.00-1.01], P = 0.016), whereas spleen stiffness was associated with severe GEVs (1.82 [1.25-2.95]; P = 0.005). CONCLUSION Liver and spleen stiffness and spleen volume are associated with GEVs in patients with chronic liver disease. Compared with liver stiffness and spleen volume, spleen stiffness is more strongly associated with severe GEVs.
Collapse
|
41
|
Landgraf BR, Johnson KM, Roldán-Alzate A, Francois CJ, Wieben O, Reeder SB. Effect of temporal resolution on 4D flow MRI in the portal circulation. J Magn Reson Imaging 2013; 39:819-26. [PMID: 24395121 DOI: 10.1002/jmri.24233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/30/2013] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To demonstrate the use of temporal averaging with radial 4D flow magnetic resonance imaging (MRI) to reduce scan time for quantification and visualization of flow in the portal circulation. This study compared phase-contrast MR angiography, 3D flow visualization, and flow quantification of portal venous hemodynamics of time-averaged vs. time-resolved reconstructions. MATERIALS AND METHODS Time-resolved 3D radial ("4D") phase contrast data were acquired from 44 subjects (15 volunteers, 29 cirrhosis patients) at 3T. Images were reconstructed as a fully sampled time-resolved reconstruction and multiple time-averaged reconstructions using a variable number of acquired projections to simulate different scan times. Images from each reconstruction were evaluated to compare the quality of anatomical and hemodynamic visualization. RESULTS Time-averaged reconstructions outperformed time-resolved reconstructions for flow quantification (3.9 ± 3.1% error vs. 5.2 ± 4.4% error), average streamline length (47 ± 7 mm vs. 34 ± 15 mm), and visualization quality (average grading = 3.7 ± 0.5 vs. 2.2 ± 0.9). In addition, excellent visualization quality was achieved using fewer acquired projections. CONCLUSION Reductions in scan time can be achieved through time-averaging while still providing excellent visualization and quantification in the portal circulation. Scan time reduction of up to 70%-80% was possible for high-quality assessment, translating into a reduction in scan time from 10-12 minutes to ∼3-4 minutes.
Collapse
|
42
|
Stankovic Z, Jung B, Collins J, Russe MF, Carr J, Euringer W, Stehlin L, Csatari Z, Strohm PC, Langer M, Markl M. Reproducibility study of four-dimensional flow MRI of arterial and portal venous liver hemodynamics: influence of spatio-temporal resolution. Magn Reson Med 2013; 72:477-84. [PMID: 24018798 DOI: 10.1002/mrm.24939] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 08/01/2013] [Accepted: 08/08/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE To evaluate influence of variation in spatio-temporal resolution and scan-rescan reproducibility on three-dimensional (3D) visualization and quantification of arterial and portal venous (PV) liver hemodynamics at four-dimensional (4D) flow MRI. METHODS Scan-rescan reproducibility of 3D hemodynamic analysis of the liver was evaluated in 10 healthy volunteers using 4D flow MRI at 3T with three different spatio-temporal resolutions (2.4 × 2.0 × 2.4 mm(3), 61.2 ms; 2.5 × 2.0 × 2.4 mm(3), 81.6 ms; 2.6 × 2.5 × 2.6 mm(3), 80 ms) and thus different total scan times. Qualitative flow analysis used 3D streamlines and time-resolved particle traces. Quantitative evaluation was based on maximum and mean velocities, flow volume, and vessel lumen area in the hepatic arterial and PV systems. RESULTS 4D flow MRI showed good interobserver variability for assessment of arterial and PV liver hemodynamics. 3D flow visualization revealed limitations for the left intrahepatic PV branch. Lower spatio-temporal resolution resulted in underestimation of arterial velocities (mean 15%, P < 0.05). For the PV system, hemodynamic analyses showed significant differences in the velocities for intrahepatic portal vein vessels (P < 0.05). Scan-rescan reproducibility was good except for flow volumes in the arterial system. CONCLUSION 4D flow MRI for assessment of liver hemodynamics can be performed with low interobserver variability and good reproducibility. Higher spatio-temporal resolution is necessary for complete assessment of the hepatic blood flow required for clinical applications.
Collapse
Affiliation(s)
- Zoran Stankovic
- Department of Radiology, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, Northwestern University, Chicago, Illinois, USA; Department of Diagnostic Radiology and Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Traditionally, magnetic resonance imaging (MRI) of flow using phase contrast (PC) methods is accomplished using methods that resolve single-directional flow in two spatial dimensions (2D) of an individual slice. More recently, three-dimensional (3D) spatial encoding combined with three-directional velocity-encoded phase contrast MRI (here termed 4D flow MRI) has drawn increased attention. 4D flow MRI offers the ability to measure and to visualize the temporal evolution of complex blood flow patterns within an acquired 3D volume. Various methodological improvements permit the acquisition of 4D flow MRI data encompassing individual vascular structures and entire vascular territories such as the heart, the adjacent aorta, the carotid arteries, abdominal, or peripheral vessels within reasonable scan times. To subsequently analyze the flow data by quantitative means and visualization of complex, three-directional blood flow patterns, various tools have been proposed. This review intends to introduce currently used 4D flow MRI methods, including Cartesian and radial data acquisition, approaches for accelerated data acquisition, cardiac gating, and respiration control. Based on these developments, an overview is provided over the potential this new imaging technique has in different parts of the body from the head to the peripheral arteries.
Collapse
Affiliation(s)
- Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | | | | | |
Collapse
|
44
|
Roldán-Alzate A, Frydrychowicz A, Niespodzany E, Landgraf BR, Johnson KM, Wieben O, Reeder SB. In vivo validation of 4D flow MRI for assessing the hemodynamics of portal hypertension. J Magn Reson Imaging 2012; 37:1100-8. [PMID: 23148034 DOI: 10.1002/jmri.23906] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To implement and validate in vivo radial 4D flow MRI for quantification of blood flow in the hepatic arterial, portal venous, and splanchnic vasculature of healthy volunteers and patients with portal hypertension. MATERIALS AND METHODS Seventeen patients with portal hypertension and seven subjects with no liver disease were included in this Health Insurance Portability and Accountability Act (HIPAA)-compliant and Institutional Review Board (IRB)-approved study. Exams were conducted at 3T using a 32-channel body coil with large volumetric coverage and 1.4 mm isotropic true spatial resolution. Using postprocessing software, cut-planes orthogonal to vessels were used to quantify flow (L/min) in the hepatic and splanchnic vasculature. RESULTS Flow quantification was successful in all cases. Portal vein and supraceliac aorta flow demonstrated high variability among patients. Measurements were validated indirectly using internal consistency at three different locations within the portal vein (error = 4.2 ± 3.9%) and conservation of mass at the portal confluence (error = 5.9 ± 2.5%) and portal bifurcation (error = 5.8 ± 3.1%). CONCLUSION This work demonstrates the feasibility of radial 4D flow MRI to quantify flow in the hepatic and splanchnic vasculature. Flow results agreed well with data reported in the literature, and conservation of mass provided indirect validation of flow quantification. Flow in patients with portal hypertensions demonstrated high variability, with patterns and magnitude consistent with the hyperdynamic state that commonly occurs in portal hypertension.
Collapse
|
45
|
Krajina A, Hulek P, Fejfar T, Valek V. Quality improvement guidelines for Transjugular Intrahepatic Portosystemic Shunt (TIPS). Cardiovasc Intervent Radiol 2012; 35:1295-300. [PMID: 23070105 PMCID: PMC3501161 DOI: 10.1007/s00270-012-0493-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/31/2012] [Indexed: 02/08/2023]
Affiliation(s)
- Antonin Krajina
- Department of Radiology, University Hospital Hradec Kralove and Medical Faculty of Charles University, 500 05, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
46
|
Krajina A, Hulek P, Fejfar T, Valek V. Quality improvement guidelines for Transjugular Intrahepatic Portosystemic Shunt (TIPS). Cardiovasc Intervent Radiol 2012. [PMID: 23070105 DOI: 10.1007/s00270-012-0493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonin Krajina
- Department of Radiology, University Hospital Hradec Kralove and Medical Faculty of Charles University, 500 05, Hradec Kralove, Czech Republic.
| | | | | | | |
Collapse
|
47
|
Stankovic Z, Csatari Z, Deibert P, Euringer W, Blanke P, Kreisel W, Abdullah Zadeh Z, Kallfass F, Langer M, Markl M. Normal and altered three-dimensional portal venous hemodynamics in patients with liver cirrhosis. Radiology 2012; 262:862-73. [PMID: 22357888 DOI: 10.1148/radiol.11110127] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To compare time-resolved three-dimensional (3D) phase-contrast magnetic resonance (MR) imaging with three-directional velocity encoding (flow-sensitive four-dimensional [4D] MR imaging), with Doppler ultrasonography (US) as standard of reference, for investigating alterations in 3D portal venous hemodynamics in patients with liver cirrhosis compared with healthy age-matched control subjects and healthy young volunteers. MATERIAL & METHODS This prospective study was approved by the local ethics committee, and written informed consent was obtained from all participants. Three-dimensional portal venous hemodynamics was assessed, employing flow-sensitive 4D MR imaging with a 3-T MR system (spatial resolution, approximately 2 mm(3); temporal resolution, approximately 45 msec) in 20 patients with hepatic cirrhosis, 20 healthy age-matched control subjects, and 21 healthy young volunteers. Flow characteristics were analyzed by using 3D streamlines and time-resolved particle traces. Quantitative analyses were performed by retrospectively evaluating regional peak and mean velocities, flow volume, and vessel area. Doppler US was used as standard of reference. Independent-sample t tests or Wilcoxon-Mann-Whitney tests were applied for comparing each subject group. Paired-sample t tests or Wilcoxon tests were applied when comparing MR imaging and US. RESULTS Three-dimensional visualization of portal venous hemodynamics was successful, with complete visualization of the vessels in 18 patients and 35 volunteers, with limitations in the left intrahepatic branches (87%, reader A; 89%, reader B). A moderate but significant correlation was observed between 4D MR imaging and Doppler US in nearly all maximum and mean velocities, flow volumes, and vessel areas (r = 0.24-0.64, P = .001-.044). With MR imaging, significant underestimation was observed of intrahepatic flow velocities and flow volumes, except vessel area, which Doppler US represented as even lower (P < .001 to P = .045). Six patients had collateralization with reopened umbilical vein, while one had flow reversal in the superior mesenteric vein visible at MR imaging only. CONCLUSION Flow-sensitive 4D MR imaging may constitute a promising, alternative technique to Doppler US for evaluating hemodynamics in the portal venous system of patients with liver cirrhosis and may be a means of assessing pathologic changes in flow characteristics.
Collapse
Affiliation(s)
- Zoran Stankovic
- Department of Diagnostic Radiology and Medical Physics, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Frydrychowicz A, Landgraf BR, Niespodzany E, Verma RW, Roldán-Alzate A, Johnson KM, Wieben O, Reeder SB. Four-dimensional velocity mapping of the hepatic and splanchnic vasculature with radial sampling at 3 tesla: a feasibility study in portal hypertension. J Magn Reson Imaging 2011; 34:577-84. [PMID: 21751287 DOI: 10.1002/jmri.22712] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/07/2011] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To demonstrate the feasibility of PC-VIPR (Phase Contrast Vastly undersampled Imaging with Projection Reconstruction) for the depiction and hemodynamic analysis of hepatic and splanchnic vessels in patients with portal hypertension. MATERIALS AND METHODS Twenty-four cirrhotic patients (55.9 ± 10.4 years) were scanned using 5-point PC-VIPR for high spatial resolution imaging with large volume coverage at 3 Tesla (T) using a 32-channel body coil. Vessel segmentation and hemodynamic visualization included color-coded three-dimensional (3D) streamlines and particle traces. Segmentation quality was compared with contrast-enhanced multi-phase liver imaging. Flow pattern analysis was performed in consensus of three readers. The MELD score was calculated to estimate disease severity and was correlated to image quality. RESULTS Good to excellent visualization quality was achieved in 23/24 cases. All arterial vessels and 144/168 vessels of the portal venous (PV) circulation were unambiguously identified. No correlation with the MELD score was found. Eight of 148 vessels of the PV circulation demonstrated reverse (hepatofugal) flow. Hepatofugal flow in small tributaries to PV flow were present in three cases despite hepatopetal flow in the PV. CONCLUSION This feasibility study demonstrates the feasibility of PC-VIPR for simultaneous morphological and hemodynamic assessment of the hepatic and splanchnic vasculature in cirrhosis and portal hypertension. Future studies with quantitative analyses are warranted.
Collapse
Affiliation(s)
- A Frydrychowicz
- Department of Radiology, University of Wisconsin-Madison, Wisconsin 53729, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Frydrychowicz A, François CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol 2011; 80:24-35. [PMID: 21333479 DOI: 10.1016/j.ejrad.2011.01.094] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
Unlike other magnetic resonance angiographic techniques, phase contrast imaging (PC-MRI) offers co-registered morphologic images and velocity data within a single acquisition. While the basic principle of PC-MRI dates back almost 3 decades, novel time-resolved three-dimensional PC-MRI (4D PC-MRI) approaches have become increasingly researched over the past years. So-called 4D PC-MRI includes three-directional velocity encoding in a three-dimensional imaging volume over time, thereby providing the opportunity to comprehensively analyze human hemodynamics in vivo. Moreover, its large volume coverage offers the option to study systemic hemodynamic effects. Additionally, this offers the possibility to re-visit flow in any location of interest without being limited to predetermined two-dimensional slices. The attention received for hemodynamic research is partially based on flow-based theories of atherogenesis and arterial remodeling. 4D PC-MRI can be used to calculate flow-related vessel wall parameters and may hence serve as a diagnostic tool in preemptive medicine. Furthermore, technical improvements including the availability of sufficient computing power, data storage capabilities, and optimized acceleration schemes for data acquisition as well as comprehensive image processing algorithms have largely facilitated recent research progresses. We will present an overview of the potential of this relatively young imaging paradigm. After acquisition and processing the data in morphological and phase difference images, various visualization strategies permit the qualitative analysis of hemodynamics. A multitude of quantitative parameters such as pulse wave velocities and estimates of wall shear stress which might serve as future biomarkers can be extracted. Thereby, exciting new opportunities for vascular imaging and diagnosis are available.
Collapse
Affiliation(s)
- Alex Frydrychowicz
- Department of Radiology, University of Wisconsin - Madison, United States.
| | | | | |
Collapse
|