1
|
Triphan SMF, Bauman G, Konietzke P, Konietzke M, Wielpütz MO. Magnetic Resonance Imaging of Lung Perfusion. J Magn Reson Imaging 2024; 59:784-796. [PMID: 37466278 DOI: 10.1002/jmri.28912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Simon M F Triphan
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Philip Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Mark O Wielpütz
- Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Glandorf J, Klimeš F, Behrendt L, Voskrebenzev A, Kaireit TF, Gutberlet M, Wacker F, Vogel-Claussen J. Perfusion quantification using voxel-wise proton density and median signal decay in PREFUL MRI. Magn Reson Med 2021; 86:1482-1493. [PMID: 33837557 DOI: 10.1002/mrm.28787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 03/07/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE Contrast-free lung MRI based on Fourier decomposition is an attractive method to monitor various lung diseases. However, the accuracy of the current perfusion quantification is limited. In this study, a new approach for perfusion quantification based on voxel-wise proton density and median signal decay toward the steady state for Fourier decomposition-based techniques is proposed called QQuantified (QQuant ). METHODS Twenty patients with chronic obstructive pulmonary disease and 18 patients with chronic thromboembolic pulmonary hypertension received phase-resolved functional lung-MRI (PREFUL) and dynamic contrast-enhanced (DCE)-MRI. Nine healthy participants received phase-resolved functional lung-MRI only. Median values of QQuant were compared to a Fourier decomposition perfusion quantification presented by Kjørstad et al (QKjørstad ) and validated toward pulmonary blood flow derived by DCE-MRI (PBFDCE ). Blood fraction maps determined by the new approach were calculated. Regional and global correlation coefficients were calculated, and Bland-Altman plots were created. Histogram analyses of all cohorts were created. RESULTS The introduced parameter QQuant showed only 2 mL/min/100 mL mean deviation to PBFDCE in the patient cohort and showed less bias than QKjørstad . Significant increases of regional correlation with PBFDCE were achieved (r = 0.3 vs. r = 0.2, P < .01*). The trend of global correlation toward PBFDCE is not uniform, showing higher values for QKjørstad in the chronic obstructive pulmonary disease cohort than for QQuant and vice versa in the chronic thromboembolic pulmonary hypertension cohort. In contrast to QKjørstad , QQuant perfusion maps indicate a physiologic dorsoventral gradient in supine position similar to PBFDCE with similar value distribution in the histograms. CONCLUSION We proposed a new approach for perfusion quantification of phase-resolved functional lung measurements. The developed parameter QQuant reveals a higher accuracy compared to QKjørstad .
Collapse
Affiliation(s)
- Julian Glandorf
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Filip Klimeš
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Lea Behrendt
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Andreas Voskrebenzev
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Till F Kaireit
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| | - Jens Vogel-Claussen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research (DZL), Hannover, Lower Saxony, Germany
| |
Collapse
|
3
|
Triphan SMF, Stahl M, Jobst BJ, Sommerburg O, Kauczor HU, Schenk JP, Alrajab A, Eichinger M, Mall MA, Wielpütz MO. Echo Time-Dependence of Observed Lung T 1 in Patients With Cystic Fibrosis and Correlation With Clinical Metrics. J Magn Reson Imaging 2020; 52:1645-1654. [PMID: 32613717 DOI: 10.1002/jmri.27271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Noninvasive monitoring of early abnormalities and therapeutic intervention in cystic fibrosis (CF) lung disease using MRI is important. Lung T1 mapping has shown potential for local functional imaging without contrast material. Recently, it was discovered that observed lung T1 depends on the measurement echo time (TE). PURPOSE To examine TE-dependence of observed T1 in patients with CF and its correlation with clinical metrics. STUDY TYPE Prospective. POPULATION In all, 75 pediatric patients with CF (8.6 ± 6.1 years, range 0.1-23 years), with 32 reexamined after 1 year. FIELD STRENGTH/SEQUENCE Patients were examined at 1.5T using an established MRI protocol and a multiecho inversion recovery 2D ultrashort echo time (UTE) sequence for T1 (TE) mapping at five TEs including TE1 = 70 μs. ASSESSMENT Morphological and perfusion MRI were assessed by a radiologist (M.W.) with 11 years of experience using an established CF-MRI scoring system. T1 (TE) was quantified automatically. Clinical data including spirometry (FEV1pred%) and lung clearance index (LCI) were collected. STATISTICAL TESTS T1 (TE) was correlated with the CF-MRI score, clinical data, and LCI. RESULTS T1 (TE) showed a different curvature in CF than in healthy adults: T1 at TE1 was shorter in CF (1157 ms ± 73 ms vs. 1047 ms ± 70 ms, P < 0.001), but longer at TE3 (1214 ms ± 72 ms vs. 1314 ms ± 68 ms, P < 0.001) and later TEs. The correlations of T1 (TE) with patient age (ρTE1-TE5 = -0.55, -0.44, -0.24, -0.30, -0.22), and LCI (ρTE1-TE5 = -0.43, -0.42, -0.33, 0.27, -0.22) were moderate at ultra-short to short TE (P < 0.001) but decreased for longer TE. Moderate but similar correlations at all TE were found with MRI perfusion score (ρTE1-TE5 = -0.43, -0.51, -0.47, -0.46, -0.44) and FEV1pred% (ρTE1-TE5 = +0.44, +0.44, +0.43, +0.40, +0.39) (P < 0.05). DATA CONCLUSION TE should be considered when measuring lung T1 , since observed differences between CF and healthy subjects strongly depend on TE. The different variation of correlation coefficients with TE for structural vs. functional metrics implies that TE-dependence holds additional information which may help to discern effects of tissue structural abnormalities and abnormal perfusion. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1645-1654.
Collapse
Affiliation(s)
- Simon M F Triphan
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Pediatrics III, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Olaf Sommerburg
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Pediatrics III, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jens-Peter Schenk
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Abdulsattar Alrajab
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Monika Eichinger
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Pediatrics III, Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, University of Heidelberg, Heidelberg, Germany.,Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Mark O Wielpütz
- Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Lung Research Center (DZL), Heidelberg, Germany.,Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Voskrebenzev A, Vogel-Claussen J. Proton MRI of the Lung: How to Tame Scarce Protons and Fast Signal Decay. J Magn Reson Imaging 2020; 53:1344-1357. [PMID: 32166832 DOI: 10.1002/jmri.27122] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary proton MRI techniques offer the unique possibility of assessing lung function and structure without the requirement for hyperpolarization or dedicated hardware, which is mandatory for multinuclear acquisition. Five popular approaches are presented and discussed in this review: 1) oxygen enhanced (OE)-MRI; 2) arterial spin labeling (ASL); 3) Fourier decomposition (FD) MRI and other related methods including self-gated noncontrast-enhanced functional lung (SENCEFUL) MR and phase-resolved functional lung (PREFUL) imaging; 4) dynamic contrast-enhanced (DCE) MRI; and 5) ultrashort TE (UTE) MRI. While DCE MRI is the most established and well-studied perfusion measurement, FD MRI offers a free-breathing test without any contrast agent and is predestined for application in patients with renal failure or with low compliance. Additionally, FD MRI and related methods like PREFUL and SENCEFUL can act as an ionizing radiation-free V/Q scan, since ventilation and perfusion information is acquired simultaneously during one scan. For OE-MRI, different concentrations of oxygen are applied via a facemask to assess the regional change in T1 , which is caused by the paramagnetic property of oxygen. Since this change is governed by a combination of ventilation, diffusion, and perfusion, a compound functional measurement can be achieved with OE-MRI. The known problem of fast T2 * decay of the lung parenchyma leading to a low signal-to-noise ratio is bypassed by the UTE acquisition strategy. Computed tomography (CT)-like images allow the assessment of lung structure with high spatial resolution without ionizing radiation. Despite these different branches of proton MRI, common trends are evident among pulmonary proton MRI: 1) free-breathing acquisition with self-gating; 2) application of UTE to preserve a stronger parenchymal signal; and 3) transition from 2D to 3D acquisition. On that note, there is a visible convergence of the different methods and it is not difficult to imagine that future methods will combine different aspects of the presented methods.
Collapse
Affiliation(s)
- Andreas Voskrebenzev
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Lung Research Center (DZL), Hannover, Germany
| |
Collapse
|
5
|
Klimeš F, Voskrebenzev A, Gutberlet M, Kern A, Behrendt L, Kaireit TF, Czerner C, Renne J, Wacker F, Vogel-Claussen J. Free-breathing quantification of regional ventilation derived by phase-resolved functional lung (PREFUL) MRI. NMR IN BIOMEDICINE 2019; 32:e4088. [PMID: 30908743 DOI: 10.1002/nbm.4088] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE To test the feasibility of regional fully quantitative ventilation measurement in free breathing derived by phase-resolved functional lung (PREFUL) MRI in the supine and prone positions. In addition, the influence of T2 * relaxation time on ventilation quantification is assessed. METHODS Twelve healthy volunteers underwent functional MRI at 1.5 T using a 2D triple-echo spoiled gradient echo sequence allowing for quantitative measurement of T2 * relaxation time. Minute ventilation (ΔV) was quantified by conventional fractional ventilation (FV) and the newly introduced regional ventilation (VR), which corrects volume errors due to image registration. ΔVFV versus ΔVVR and ΔVVR versus ΔVVR with T2 * correction were compared using Bland-Altman plots and correlation analysis. The repeatability and physiological plausibility of all measurements were tested in the supine and prone positions. RESULTS On global and regional scales a strong correlation was observed between ΔVFV versus ΔVVR and ΔVVR versus ΔVVRT2* (r > 0.93); however, regional Bland-Altman analysis showed systematic differences (p < 0.0001). Unlike ΔVVRT2* , ΔVVR and ΔVFV showed expected physiologic anterior-posterior gradients, which decreased in the supine but not in the prone position at second measurement during 3 min in the same position. For all quantification methods a moderate repeatability (coefficient of variation <20%) of ventilation was found. CONCLUSION A fully quantified regional ventilation measurement using ΔVVR in free breathing is feasible and shows physiologically plausible results. In contrast to conventional ΔVFV, volume errors due to image registration are eliminated with the ΔVVR approach. However, correction for the T2 * effect remains challenging.
Collapse
Affiliation(s)
- F Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - A Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - M Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - A Kern
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - L Behrendt
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - T F Kaireit
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - C Czerner
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - J Renne
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - F Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - J Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| |
Collapse
|
6
|
Baldi S, Hartley R, Brightling C, Gupta S. Asthma. IMAGING 2016. [DOI: 10.1183/2312508x.10002815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Pulmonary perfusion imaging: Qualitative comparison of TCIR MRI and SPECT/CT in porcine lung. Eur J Radiol 2015; 84:2646-53. [DOI: 10.1016/j.ejrad.2015.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/05/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
|
8
|
Hartley R, Baldi S, Brightling C, Gupta S. Novel imaging approaches in adult asthma and their clinical potential. Expert Rev Clin Immunol 2015; 11:1147-62. [PMID: 26289375 DOI: 10.1586/1744666x.2015.1072049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently, imaging in asthma is confined to chest radiography and CT. The emergence of new imaging techniques and tremendous improvement of existing imaging methods, primarily due to technological advancement, has completely changed its research and clinical prospects. In research, imaging in asthma is now being employed to provide quantitative assessment of morphology, function and pathogenic processes at the molecular level. The unique ability of imaging for non-invasive, repeated, quantitative, and in vivo assessment of structure and function in asthma could lead to identification of 'imaging biomarkers' with potential as outcome measures in future clinical trials. Emerging imaging techniques and their utility in the research and clinical setting is discussed in this review.
Collapse
Affiliation(s)
- Ruth Hartley
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Simonetta Baldi
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Chris Brightling
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK
| | - Sumit Gupta
- a 1 Department of Infection, Inflammation and Immunity, Institute for Lung Health, University of Leicester, Leicester, LE3 9QP, UK.,b 2 Radiology Department, Glenfield Hospital, University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| |
Collapse
|
9
|
Zaiss M, Zu Z, Xu J, Schuenke P, Gochberg DF, Gore JC, Ladd ME, Bachert P. A combined analytical solution for chemical exchange saturation transfer and semi-solid magnetization transfer. NMR IN BIOMEDICINE 2015; 28:217-30. [PMID: 25504828 PMCID: PMC4297271 DOI: 10.1002/nbm.3237] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 05/03/2023]
Abstract
Off-resonant RF irradiation in tissue indirectly lowers the water signal by saturation transfer processes: on the one hand, there are selective chemical exchange saturation transfer (CEST) effects originating from exchanging endogenous protons resonating a few parts per million from water; on the other hand, there is the broad semi-solid magnetization transfer (MT) originating from immobile protons associated with the tissue matrix with kilohertz linewidths. Recently it was shown that endogenous CEST contrasts can be strongly affected by the MT background, so corrections are needed to derive accurate estimates of CEST effects. Herein we show that a full analytical solution of the underlying Bloch-McConnell equations for both MT and CEST provides insights into their interaction and suggests a simple means to isolate their effects. The presented analytical solution, based on the eigenspace solution of the Bloch-McConnell equations, extends previous treatments by allowing arbitrary lineshapes for the semi-solid MT effects and simultaneously describing multiple CEST pools in the presence of a large MT pool for arbitrary irradiation. The structure of the model indicates that semi-solid MT and CEST effects basically add up inversely in determining the steady-state Z-spectrum, as previously shown for direct saturation and CEST effects. Implications for existing previous CEST analyses in the presence of a semi-solid MT are studied and discussed. It turns out that, to accurately quantify CEST contrast, a good reference Z-value, the observed longitudinal relaxation rate of water, and the semi-solid MT pool size fraction must all be known.
Collapse
Affiliation(s)
- Moritz Zaiss
- Deutsches Krebsforschungszentrum (DKFZ), Medical Physics in Radiology, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Corresponding author: Moritz Zaiss, Ph. D., German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Im Neuenheimer Feld 280, D–69120 Heidelberg, Germany, , Phone: +49 6221–42 2543, FAX: +49 6221–42 3058
| | - Zhongliang Zu
- Vanderbilt University Institute for Imaging Science (VUIIS), Medical Center North, Nashville, Tennessee, USA
| | - Junzhong Xu
- Vanderbilt University Institute for Imaging Science (VUIIS), Medical Center North, Nashville, Tennessee, USA
| | - Patrick Schuenke
- Deutsches Krebsforschungszentrum (DKFZ), Medical Physics in Radiology, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Daniel F. Gochberg
- Vanderbilt University Institute for Imaging Science (VUIIS), Medical Center North, Nashville, Tennessee, USA
| | - John C. Gore
- Vanderbilt University Institute for Imaging Science (VUIIS), Medical Center North, Nashville, Tennessee, USA
| | - Mark E. Ladd
- Deutsches Krebsforschungszentrum (DKFZ), Medical Physics in Radiology, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Peter Bachert
- Deutsches Krebsforschungszentrum (DKFZ), Medical Physics in Radiology, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Triphan SMF, Jobst BJ, Breuer FA, Wielpütz MO, Kauczor HU, Biederer J, Jakob PM. Echo time dependence of observed T1 in the human lung. J Magn Reson Imaging 2015; 42:610-6. [PMID: 25604043 DOI: 10.1002/jmri.24840] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This work is intended to demonstrate that T1 measured in the lungs depends on the echo time (TE) used. Measuring lung T1 can be used to gain quantitative morphological and functional information. It is also shown that this dependence is particularly visible when using an ultra-short TE (UTE) sequence with TE well below 1 ms for T1 quantification in lung tissue, rather than techniques with TE on the order of 1-2 ms. METHODS The lungs of 12 healthy volunteers (aged 22 to 33 years) were examined at 1.5 Tesla. A segmented inversion recovery Look-Locker multi-echo sequence based on two-dimensional UTE was used for independent T1 quantification at five TEs between TE1 = 70 μs and TE5 = 2.3 ms. RESULTS The measured T1 was found to increase gradually with TE from 1060 ± 40 ms at TE1 to 1389 ± 53 ms at TE5 (P < 0.001). CONCLUSION Measuring T1 at ultra-short echo times reveals a significant dependence of observed T1 on the echo time. Thus, any comparison of T1 values should also consider the TEs used. However, this dependence on TE could also be exploited to gain additional diagnostic information on the tissue compartments in the lung.
Collapse
Affiliation(s)
- Simon M F Triphan
- Research Centre Magnetic Resonance Bavaria e.V.(MRB), Würzburg, Germany.,Translational Lung Research Centre, member of the German Centre for Lung Research (DZL), Gieβen, Germany.,Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Bertram J Jobst
- Translational Lung Research Centre, member of the German Centre for Lung Research (DZL), Gieβen, Germany.,Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Felix A Breuer
- Research Centre Magnetic Resonance Bavaria e.V.(MRB), Würzburg, Germany
| | - Mark O Wielpütz
- Translational Lung Research Centre, member of the German Centre for Lung Research (DZL), Gieβen, Germany.,Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Centre, member of the German Centre for Lung Research (DZL), Gieβen, Germany.,Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Biederer
- Translational Lung Research Centre, member of the German Centre for Lung Research (DZL), Gieβen, Germany.,Department of Diagnostic and Interventional Radiology, University of Heidelberg, Heidelberg, Germany.,Radiologie Darmstadt, Darmstadt, Germany
| | - Peter M Jakob
- Research Centre Magnetic Resonance Bavaria e.V.(MRB), Würzburg, Germany.,Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Carinci F, Meyer C, Phys D, Breuer FA, Triphan S, Choli M, Phys D, Jakob PM. Blood volume fraction imaging of the human lung using intravoxel incoherent motion. J Magn Reson Imaging 2014; 41:1454-64. [PMID: 24943462 DOI: 10.1002/jmri.24669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/21/2014] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To present a technique for non-contrast-enhanced in vivo imaging of the blood volume fraction of the human lung. The technique is based on the intravoxel incoherent motion (IVIM) approach. However, a substantial novelty is introduced here: the need for external diffusion sensitizing gradients is eliminated by exploiting the internal magnetic field gradients typical of the lung tissue, due to magnetic susceptibility differences at air/tissue interfaces. MATERIALS AND METHODS A single shot turbo spin-echo sequence with stimulated-echo preparation and electrocardiograph synchronization was used for acquisition. Two images were acquired in a single breath-hold of 10 seconds duration: one reference image and one blood-suppressed image. The blood volume fraction was quantified using a two-compartment signal decay model, as given by the IVIM theory. Experiments were performed at 1.5T in eight healthy volunteers. RESULTS Values of the blood volume fraction obtained within the lung parenchyma (36 ± 16%) are in good agreement with previous reports, obtained using contrast-enhanced magnetic resonance angiography (33%), and show relatively good reproducibility. CONCLUSION The presented technique offers a robust way to quantify the blood volume fraction of the human lung parenchyma without using contrast agents. Image acquisition can be accomplished in a single breath-hold and could be suitable for clinical applications on patients with lung diseases. J. Magn. Reson. Imaging 2015;41:1454-1464. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Flavio Carinci
- Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Germany; Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lederlin M, Bauman G, Eichinger M, Dinkel J, Brault M, Biederer J, Puderbach M. Functional MRI using Fourier decomposition of lung signal: Reproducibility of ventilation- and perfusion-weighted imaging in healthy volunteers. Eur J Radiol 2013; 82:1015-22. [DOI: 10.1016/j.ejrad.2012.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/16/2012] [Accepted: 12/05/2012] [Indexed: 11/24/2022]
|