1
|
Hu Z, Xiao J, Mao X, Xie Y, Kwan AC, Song SS, Fong MW, Wilcox AG, Li D, Christodoulou AG, Fan Z. MR Multitasking-based multi-dimensional assessment of cardiovascular system (MT-MACS) with extended spatial coverage and water-fat separation. Magn Reson Med 2023; 89:1496-1505. [PMID: 36336794 PMCID: PMC9892247 DOI: 10.1002/mrm.29522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To extend the MR MultiTasking-based Multidimensional Assessment of Cardiovascular System (MT-MACS) technique with larger spatial coverage and water-fat separation for comprehensive aortocardiac assessment. METHODS MT-MACS adopts a low-rank tensor image model for 7D imaging, with three spatial dimensions for volumetric imaging, one cardiac motion dimension for cine imaging, one respiratory motion dimension for free-breathing imaging, one T2-prepared inversion recovery time dimension for multi-contrast assessment, and one T2*-decay time dimension for water-fat separation. Nine healthy subjects were recruited for the 3T study. Overall image quality was scored on bright-blood (BB), dark-blood (DB), and gray-blood (GB) contrasts using a 4-point scale (0-poor to 3-excellent) by two independent readers, and their interreader agreement was evaluated. Myocardial wall thickness and left ventricular ejection fraction (LVEF) were quantified on DB and BB contrasts, respectively. The agreement in these metrics between MT-MACS and conventional breath-held, electrocardiography-triggered 2D sequences were evaluated. RESULTS MT-MACS provides both water-only and fat-only images with excellent image quality (average score = 3.725/3.780/3.835/3.890 for BB/DB/GB/fat-only images) and moderate to high interreader agreement (weighted Cohen's kappa value = 0.727/0.668/1.000/1.000 for BB/DB/GB/fat-only images). There were good to excellent agreements in myocardial wall thickness measurements (intraclass correlation coefficients [ICC] = 0.781/0.929/0.680/0.878 for left atria/left ventricle/right atria/right ventricle) and LVEF quantification (ICC = 0.716) between MT-MACS and 2D references. All measurements were within the literature range of healthy subjects. CONCLUSION The refined MT-MACS technique provides multi-contrast, phase-resolved, and water-fat imaging of the aortocardiac systems and allows evaluation of anatomy and function. Clinical validation is warranted.
Collapse
Affiliation(s)
- Zhehao Hu
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Jiayu Xiao
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xianglun Mao
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Yibin Xie
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Alan C. Kwan
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shlee S. Song
- Department of NeurologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Michael W. Fong
- Division of Cardiovascular MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Cardiovascular Thoracic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alison G. Wilcox
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Debiao Li
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony G. Christodoulou
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Zhaoyang Fan
- Department of RadiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Biomedical Imaging Research InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Radiation OncologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Tang L, Diao K, Deng Q, Wu X, Peng P, Yue X, Wu T, Cheng W, Li Y, Zhou X, Wetzl J, Chen Y, Yue W, Sun J. Comparison between pre- and post-contrast cardiac MRI cine images: the impact on ventricular volume and strain measurement. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023; 39:1055-1064. [PMID: 36840896 DOI: 10.1007/s10554-023-02809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
To explore whether contrast agent administration will affect ventricular volume and strain parameters measured on cardiac magnetic resonance cine images. This prospective study enrolled 88 patients, including 32 patients with cardiac amyloidosis (CA), 32 patients with hypertrophic cardiomyopathy (HCM), and 24 control participants, to perform steady-state free precession (SSFP)-cine imaging twice, respectively before and after contrast agent injection. Indexed left and right ventricular (LV and RV) volume and LV strain parameters (peak radial strain [PRS], peak circumferential strain [PCS], peak longitudinal strain [PLS]) were analyzed and compared between the pre- and post-contrast cine groups. Compared to the group of pre-contrast cine, the end-diastolic volume index (EDVi) and end-systolic volume index (ESVi) significantly increased in the group using post-contrast cine images (all p < 0.05), especially in the right ventricle. After contrast injection, the right ventricular ejection fraction (RVEF) decreased significantly (p < 0.05), while the left ventricular ejection fraction (LVEF) only reduced for patients with HCM (p < 0.05). The PRS (37.1 ± 15.2 vs. 32.0 ± 15.4, p < 0.001) and PCS (- 14.9 ± 4.3 vs. - 14.0 ± 4.1, p < 0.001) derived from post-contrast cine images reduced significantly in all patients and this tendency remained in subgroup analysis except for PCS in the control group. The administration of a contrast agent may influence the measurements of ventricular volume and strain. Acquiring pre-contrast cine images were suggested for patients who required more accurate right ventricle evaluation or precise strain assessment.
Collapse
Affiliation(s)
- Lu Tang
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Kaiyue Diao
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qiao Deng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Xi Wu
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Pengfei Peng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Xun Yue
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Tao Wu
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wei Cheng
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yangjie Li
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Jens Wetzl
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjun Yue
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Free-breathing cardiovascular cine magnetic resonance imaging using compressed-sensing and retrospective motion correction: accurate assessment of biventricular volume at 3T. Jpn J Radiol 2023; 41:142-152. [PMID: 36227459 PMCID: PMC9889435 DOI: 10.1007/s11604-022-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE We applied a combination of compressed-sensing (CS) and retrospective motion correction to free-breathing cine magnetic resonance (MR) (FBCS cine MoCo). We validated FBCS cine MoCo by comparing it with breath-hold (BH) conventional cine MR. MATERIALS AND METHODS Thirty-five volunteers underwent both FBCS cine MoCo and BH conventional cine MR imaging. Twelve consecutive short-axis cine images were obtained. We compared the examination time, image quality and biventricular volumetric assessments between the two cine MR. RESULTS FBCS cine MoCo required a significantly shorter examination time than BH conventional cine (135 s [110-143 s] vs. 198 s [186-349 s], p < 0.001). The image quality scores were not significantly different between the two techniques (End-diastole: FBCS cine MoCo; 4.7 ± 0.5 vs. BH conventional cine; 4.6 ± 0.6; p = 0.77, End-systole: FBCS cine MoCo; 4.5 ± 0.5 vs. BH conventional cine; 4.5 ± 0.6; p = 0.52). No significant differences were observed in all biventricular volumetric assessments between the two techniques. The mean differences with 95% confidence interval (CI), based on Bland-Altman analysis, were - 0.3 mL (- 8.2 - 7.5 mL) for LVEDV, 0.2 mL (- 5.6 - 5.9 mL) for LVESV, - 0.5 mL (- 6.3 - 5.2 mL) for LVSV, - 0.3% (- 3.5 - 3.0%) for LVEF, - 0.1 g (- 8.5 - 8.3 g) for LVED mass, 1.4 mL (- 15.5 - 18.3 mL) for RVEDV, 2.1 mL (- 11.2 - 15.3 mL) for RVESV, - 0.6 mL (- 9.7 - 8.4 mL) for RVSV, - 1.0% (- 6.5 - 4.6%) for RVEF. CONCLUSION FBCS cine MoCo can potentially replace multiple BH conventional cine MR and improve the clinical utility of cine MR.
Collapse
|
4
|
Puricelli F, Voges I, Gatehouse P, Rigby M, Izgi C, Pennell DJ, Krupickova S. Performance of Cardiac MRI in Pediatric and Adult Patients with Fontan Circulation. Radiol Cardiothorac Imaging 2022; 4:e210235. [PMID: 35833165 PMCID: PMC9274315 DOI: 10.1148/ryct.210235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Cardiac MRI has become a widely accepted standard for anatomic and functional assessment of complex Fontan physiology, because it is noninvasive and suitable for comprehensive follow-up evaluation after Fontan completion. The use of cardiac MRI in pediatric and adult patients after completion of the Fontan procedure are described, and a practical and experience-based cardiac MRI protocol for evaluating these patients is provided. The current approach and study protocol in use at the authors' institution are presented, which address technical considerations concerning sequences, planning, and optimal image acquisition in patients with Fontan circulation. Additionally, for each sequence, the information that can be obtained and guidance on how to integrate it into clinical decision-making is discussed. Keywords: Pediatrics, MRI, MRI Functional Imaging, Heart, Congenital © RSNA, 2022.
Collapse
|
5
|
Treutlein C, Wiesmüller M, May MS, Heiss R, Hepp T, Uder M, Wuest W. Complete Free-breathing Adenosine Stress Cardiac MRI Using Compressed Sensing and Motion Correction: Comparison of Functional Parameters, Perfusion, and Late Enhancement with the Standard Breath-holding Examination. Radiol Cardiothorac Imaging 2019; 1:e180017. [PMID: 33778508 PMCID: PMC7977924 DOI: 10.1148/ryct.2019180017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/30/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To compare free-breathing (FB) stress cardiac MRI examinations with the reference standard breath-holding (BH) examination. MATERIALS AND METHODS A total of 40 consecutive patients were enrolled prospectively and were examined with 3-T MRI. Functional imaging, perfusion, and late gadolinium enhancement (LGE) sequences were performed in BH and FB by using compressed sensing and in-line motion correction. Left ventricle (LV) and right ventricle (RV) functional parameters in BH and FB examinations were compared by using Bland-Altman plots and linear mixed models. Subjective image quality was assessed with a five-point scale (1 = nondiagnostic, 5 = very good). For perfusion and LGE imaging, diagnostic confidence was rated with a three-point scale (1 = low, 3 = high), and image quality was rated with a five-point scale (1 = nondiagnostic, 5 = very good). The Wilcoxon test was used to compare image quality and diagnostic confidence. RESULTS Bland-Altman plots showed good agreement for LV and RV functional parameters in BH and FB sequences. Subjective image quality was significantly better with the BH sequences in the LV (P < .01) but was comparable in the RV (P > .99). Scanning time was 218 seconds (range, 130-385 seconds) for cine BH and 16 seconds (range, 11-27 seconds) for cine FB. Extent of perfusion defects, LGE, and diagnostic confidence was comparable between groups. Scanning time was 371 seconds (range, 239-502 seconds) for the LGE BH sequence and 189 seconds (range, 122-286 seconds) for the LGE FB sequence. CONCLUSION FB adenosine stress cardiac MRI delivers diagnostic image quality and could represent an alternative for use in patients who are unable to meet the demands of multiple BHs and long examination times.© RSNA, 2019.
Collapse
Affiliation(s)
- Christoph Treutlein
- From the University of Erlangen, Radiological Institute, Maximiliansplatz 3, 91054 Erlangen, Germany (C.T., M.W., M.S.M., R.H., M.U., W.W.); Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany (T.H.); and Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany (T.H.)
| | - Marco Wiesmüller
- From the University of Erlangen, Radiological Institute, Maximiliansplatz 3, 91054 Erlangen, Germany (C.T., M.W., M.S.M., R.H., M.U., W.W.); Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany (T.H.); and Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany (T.H.)
| | - Matthias S. May
- From the University of Erlangen, Radiological Institute, Maximiliansplatz 3, 91054 Erlangen, Germany (C.T., M.W., M.S.M., R.H., M.U., W.W.); Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany (T.H.); and Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany (T.H.)
| | - Rafael Heiss
- From the University of Erlangen, Radiological Institute, Maximiliansplatz 3, 91054 Erlangen, Germany (C.T., M.W., M.S.M., R.H., M.U., W.W.); Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany (T.H.); and Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany (T.H.)
| | - Tobias Hepp
- From the University of Erlangen, Radiological Institute, Maximiliansplatz 3, 91054 Erlangen, Germany (C.T., M.W., M.S.M., R.H., M.U., W.W.); Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany (T.H.); and Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany (T.H.)
| | - Michael Uder
- From the University of Erlangen, Radiological Institute, Maximiliansplatz 3, 91054 Erlangen, Germany (C.T., M.W., M.S.M., R.H., M.U., W.W.); Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany (T.H.); and Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany (T.H.)
| | - Wolfgang Wuest
- From the University of Erlangen, Radiological Institute, Maximiliansplatz 3, 91054 Erlangen, Germany (C.T., M.W., M.S.M., R.H., M.U., W.W.); Department of Medical Biometry, Informatics and Epidemiology, Faculty of Medicine, University of Bonn, Bonn, Germany (T.H.); and Institute of Medical Informatics, Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany (T.H.)
| |
Collapse
|
6
|
Hoad C, Clarke C, Marciani L, Graves MJ, Corsetti M. Will MRI of gastrointestinal function parallel the clinical success of cine cardiac MRI? Br J Radiol 2019; 92:20180433. [PMID: 30299989 PMCID: PMC6435057 DOI: 10.1259/bjr.20180433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Cine cardiac MRI is generally accepted as the "gold-standard" for functional myocardial assessment. It only took a few years after the development of commercial MRI systems for functional cardiac imaging to be developed, with electrocardiogram (ECG)-gated cine imaging first reported in 1988. The function of the gastrointestinal (GI) tract is more complex to study compared to the heart. However, the idea of having a non-invasive tool to study the GI function that also allows the concurrent assessment of different aspects of this function has become more and more attractive in the gastroenterological field. This review summarises key literature of the last 5 years to describe the current status of MRI in respect to the evaluation of GI function, highlighting the gaps and challenges and the future prospects. As the clinical application of a new technique requires that its clinical utility is confirmed by demonstration of its ability to enable clinicians to make a diagnosis and/or predict the treatment response, this review also considers whether or not this has been achieved, and how MRI has been validated against techniques currently recognised as the gold standard in clinical practice.
Collapse
Affiliation(s)
| | - Christopher Clarke
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Martin John Graves
- Department of Radiology, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | |
Collapse
|
7
|
Feng L, Coppo S, Piccini D, Yerly J, Lim RP, Masci PG, Stuber M, Sodickson DK, Otazo R. 5D whole-heart sparse MRI. Magn Reson Med 2017; 79:826-838. [PMID: 28497486 DOI: 10.1002/mrm.26745] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 01/18/2023]
Abstract
PURPOSE A 5D whole-heart sparse imaging framework is proposed for simultaneous assessment of myocardial function and high-resolution cardiac and respiratory motion-resolved whole-heart anatomy in a single continuous noncontrast MR scan. METHODS A non-electrocardiograph (ECG)-triggered 3D golden-angle radial balanced steady-state free precession sequence was used for data acquisition. The acquired 3D k-space data were sorted into a 5D dataset containing separated cardiac and respiratory dimensions using a self-extracted respiratory motion signal and a recorded ECG signal. Images were then reconstructed using XD-GRASP, a multidimensional compressed sensing technique exploiting correlations/sparsity along cardiac and respiratory dimensions. 5D whole-heart imaging was compared with respiratory motion-corrected 3D and 4D whole-heart imaging in nine volunteers for evaluation of the myocardium, great vessels, and coronary arteries. It was also compared with breath-held, ECG-gated 2D cardiac cine imaging for validation of cardiac function quantification. RESULTS 5D whole-heart images received systematic higher quality scores in the myocardium, great vessels and coronary arteries. Quantitative coronary sharpness and length were always better for the 5D images. Good agreement was obtained for quantification of cardiac function compared with 2D cine imaging. CONCLUSION 5D whole-heart sparse imaging represents a robust and promising framework for simplified comprehensive cardiac MRI without the need for breath-hold and motion correction. Magn Reson Med 79:826-838, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Simone Coppo
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Davide Piccini
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - Jerome Yerly
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Ruth P Lim
- Department of Radiology, Austin Health and The University of Melbourne, Melbourne, Victoria, Australia
| | - Pier Giorgio Masci
- Division of Cardiology and Cardiac MR Center, University Hospital (CHUV), Lausanne, Switzerland
| | - Matthias Stuber
- Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Ricardo Otazo
- Center for Advanced Imaging Innovation and Research (CAI2R), and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Caspar T, Schultz A, Schaeffer M, Labani A, Jeung MY, Jurgens PT, El Ghannudi S, Roy C, Ohana M. Left Ventricular Function Evaluation on a 3T MR Scanner with Parallel RF Transmission Technique: Prospective Comparison of Cine Sequences Acquired before and after Gadolinium Injection. PLoS One 2016; 11:e0163503. [PMID: 27669571 PMCID: PMC5036819 DOI: 10.1371/journal.pone.0163503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/09/2016] [Indexed: 12/02/2022] Open
Abstract
Objectives To compare cine MR b-TFE sequences acquired before and after gadolinium injection, on a 3T scanner with a parallel RF transmission technique in order to potentially improve scanning time efficiency when evaluating LV function. Methods 25 consecutive patients scheduled for a cardiac MRI were prospectively included and had their b-TFE cine sequences acquired before and right after gadobutrol injection. Images were assessed qualitatively (overall image quality, LV edge sharpness, artifacts and LV wall motion) and quantitatively with measurement of LVEF, LV mass, and telediastolic volume and contrast-to-noise ratio (CNR) between the myocardium and the cardiac chamber. Statistical analysis was conducted using a Bayesian paradigm. Results No difference was found before or after injection for the LVEF, LV mass and telediastolic volume evaluations. Overall image quality and CNR were significantly lower after injection (estimated coefficient cine after > cine before gadolinium: -1.75 CI = [-3.78;-0.0305], prob(coef>0) = 0% and -0.23 CI = [-0.49;0.04], prob(coef>0) = 4%) respectively), but this decrease did not affect the visual assessment of LV wall motion (cine after > cine before gadolinium: -1.46 CI = [-4.72;1.13], prob(coef>0) = 15%). Conclusions In 3T cardiac MRI acquired with parallel RF transmission technique, qualitative and quantitative assessment of LV function can reliably be performed with cine sequences acquired after gadolinium injection, despite a significant decrease in the CNR and the overall image quality.
Collapse
Affiliation(s)
- Thibault Caspar
- Cardiology Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
- * E-mail:
| | - Anthony Schultz
- Radiology Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Mickaël Schaeffer
- Public Health and Biostatistics Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Aïssam Labani
- Radiology Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Mi-Young Jeung
- Radiology Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | | | - Soraya El Ghannudi
- Radiology Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
- iCube Laboratory, Université de Strasbourg / CNRS, UMR 7357, 67400, Illkirch, France
| | - Catherine Roy
- Radiology Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
| | - Mickaël Ohana
- Radiology Department, Nouvel Hôpital Civil, Strasbourg University Hospital, Strasbourg, France
- iCube Laboratory, Université de Strasbourg / CNRS, UMR 7357, 67400, Illkirch, France
| |
Collapse
|
9
|
Yang ACY, Kretzler M, Sudarski S, Gulani V, Seiberlich N. Sparse Reconstruction Techniques in Magnetic Resonance Imaging: Methods, Applications, and Challenges to Clinical Adoption. Invest Radiol 2016; 51:349-64. [PMID: 27003227 PMCID: PMC4948115 DOI: 10.1097/rli.0000000000000274] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The family of sparse reconstruction techniques, including the recently introduced compressed sensing framework, has been extensively explored to reduce scan times in magnetic resonance imaging (MRI). While there are many different methods that fall under the general umbrella of sparse reconstructions, they all rely on the idea that a priori information about the sparsity of MR images can be used to reconstruct full images from undersampled data. This review describes the basic ideas behind sparse reconstruction techniques, how they could be applied to improve MRI, and the open challenges to their general adoption in a clinical setting. The fundamental principles underlying different classes of sparse reconstructions techniques are examined, and the requirements that each make on the undersampled data outlined. Applications that could potentially benefit from the accelerations that sparse reconstructions could provide are described, and clinical studies using sparse reconstructions reviewed. Lastly, technical and clinical challenges to widespread implementation of sparse reconstruction techniques, including optimization, reconstruction times, artifact appearance, and comparison with current gold standards, are discussed.
Collapse
Affiliation(s)
- Alice Chieh-Yu Yang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Madison Kretzler
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, USA
| | - Sonja Sudarski
- Institute for Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim - Heidelberg University, Heidelberg, Germany
| | - Vikas Gulani
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Department of Radiology, University Hospitals of Cleveland, Cleveland, USA
| | - Nicole Seiberlich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Department of Radiology, University Hospitals of Cleveland, Cleveland, USA
| |
Collapse
|
10
|
Abstract
Heart disease is a worldwide public health problem; assessment of cardiac function is an important part of the diagnosis and management of heart disease. MRI of the heart can provide clinically useful information on cardiac function, although it is still not routinely used in clinical practice, in part because of limited imaging speed. New accelerated methods for performing cardiovascular MRI (CMR) have the potential to provide both increased imaging speed and robustness to CMR, as well as access to increased functional information. In this review, we will briefly discuss the main methods currently employed to accelerate CMR methods, such as parallel imaging, k-t undersampling and compressed sensing, as well as new approaches that extend the idea of compressed sensing and exploit sparsity to provide richer information of potential use in clinical practice.
Collapse
Affiliation(s)
- Leon Axel
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Ricardo Otazo
- Department of Radiology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Computed Tomography Imaging in Patients with Congenital Heart Disease Part I: Rationale and Utility. An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT). J Cardiovasc Comput Tomogr 2015; 9:475-92. [DOI: 10.1016/j.jcct.2015.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/17/2015] [Indexed: 12/16/2022]
|
12
|
Late gadolinium enhancement cardiac imaging on a 3T scanner with parallel RF transmission technique: prospective comparison of 3D-PSIR and 3D-IR. Eur Radiol 2015; 26:1547-55. [PMID: 26373760 DOI: 10.1007/s00330-015-4002-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/10/2015] [Accepted: 09/02/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To qualitatively and quantitatively compare different late gadolinium enhancement (LGE) sequences acquired at 3T with a parallel RF transmission technique. METHODS One hundred and sixty participants prospectively enrolled underwent a 3T cardiac MRI with 3 different LGE sequences: 3D Phase-Sensitive Inversion-Recovery (3D-PSIR) acquired 5 minutes after injection, 3D Inversion-Recovery (3D-IR) at 9 minutes and 3D-PSIR at 13 minutes. All LGE-positive patients were qualitatively evaluated both independently and blindly by two radiologists using a 4-level scale, and quantitatively assessed with measurement of contrast-to-noise ratio and LGE maximal surface. Statistical analyses were calculated under a Bayesian paradigm using MCMC methods. RESULTS Fifty patients (70 % men, 56yo ± 19) exhibited LGE (62 % were post-ischemic, 30 % related to cardiomyopathy and 8 % post-myocarditis). Early and late 3D-PSIR were superior to 3D-IR sequences (global quality, estimated coefficient IR > early-PSIR : -2.37 CI = [-3.46 ; -1.38], prob(coef > 0) = 0 % and late-PSIR > IR : 3.12 CI = [0.62 ; 4.41], prob(coef > 0) = 100 %), LGE surface estimated coefficient IR > early-PSIR: -0.09 CI = [-1.11; -0.74], prob(coef > 0) = 0 % and late-PSIR > IR : 0.96 CI = [0.77; 1.15], prob(coef > 0) = 100 %). Probabilities for late PSIR being superior to early PSIR concerning global quality and CNR were over 90 %, regardless of the aetiological subgroup. CONCLUSIONS In 3T cardiac MRI acquired with parallel RF transmission technique, 3D-PSIR is qualitatively and quantitatively superior to 3D-IR. KEY POINTS • Late gadolinium enhancement is an essential part of a cardiac MRI examination • PSIR and IR sequences are the two possible options for LGE imaging • At 3T with parallel RF transmission, PSIR sequences are significantly better • One LGE sequence is sufficient, allowing an optimization of the acquisition time.
Collapse
|
13
|
Three-dimensional cardiac cine imaging using the kat ARC acceleration: Initial experience in clinical adult patients at 3T. Magn Reson Imaging 2015; 33:911-7. [PMID: 25936683 DOI: 10.1016/j.mri.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/02/2015] [Accepted: 04/18/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Three-dimensional cardiac cine imaging has demonstrated promising clinical 1.5-Tesla results; however, its application to 3T scanners has been limited because of the higher sensitivity to off-resonance artifacts. The aim of this study was to apply 3D cardiac cine imaging during a single breath hold in clinical patients on a 3T scanner using the kat ARC (k- and adaptive-t auto-calibrating reconstruction for Cartesian sampling) technique and to evaluate the interchangeability between 2D and 3D cine imaging for cardiac functional analysis and detection of abnormalities in regional wall motion. METHODS Following institutional review board approval, we obtained 2D cine images with an acceleration factor of two during multiple breath holds and 3D cine images with a net scan acceleration factor of 7.7 during a single breath hold in 20 patients using a 3T unit. Two readers independently evaluated the wall motion of the left ventricle (LV) using a 5-point scale, and the consistency in the detection of regional wall motion abnormality between 2D and 3D cine was analyzed by Cohen's kappa test. The LV volume was calculated at end-diastole and end-systole (LVEDV, LVESV); the ejection fraction (LVEF) and myocardial weight (LVmass) were also calculated. The relationship between functional parameters calculated for 2D and 3D cine images was analyzed using Pearson's correlation analysis. The bias and 95% limit of agreement (LA) were calculated using Bland-Altman plots. In addition, a qualitative evaluation of image quality was performed with regard to the myocardium-blood contrast, noise level and boundary definition. RESULTS Despite slight degradation in image quality for 3D cine, excellent agreement was obtained for the detection of wall motion abnormalities between 2D and 3D cine images (κ=0.84 and 0.94 for each reader). Excellent correlations between the two imaging methods were shown for the evaluation of functional parameters (r>0.97). Slight differences in LVEDV, LVESV, LVEF and LVmass were observed, with average values of 1.6±8.9mL, -0.6±5.9mL, 1.4±3.6%, and 1.3±8.7g, respectively. CONCLUSIONS Images obtained using the kat ARC 3D and conventional 2D cine techniques were equivalent in the detection of regional wall motion abnormalities and the evaluation of cardiac functional parameters.
Collapse
|
14
|
Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N. Non-Cartesian parallel imaging reconstruction. J Magn Reson Imaging 2014; 40:1022-40. [PMID: 24408499 DOI: 10.1002/jmri.24521] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/05/2013] [Indexed: 11/07/2022] Open
Abstract
Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be used to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the nonhomogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA), and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered.
Collapse
Affiliation(s)
- Katherine L Wright
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
15
|
Langhans B, Hausleiter J, Bamberg F. Independent prognostic value of MRI beyond existing methods of determining cardiovascular risk – is there a role? Expert Rev Cardiovasc Ther 2014; 12:13-6. [DOI: 10.1586/14779072.2014.865518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Graessl A, Renz W, Hezel F, Dieringer MA, Winter L, Oezerdem C, Rieger J, Kellman P, Santoro D, Lindel TD, Frauenrath T, Pfeiffer H, Niendorf T. Modular 32-channel transceiver coil array for cardiac MRI at 7.0T. Magn Reson Med 2013; 72:276-90. [PMID: 23904404 DOI: 10.1002/mrm.24903] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/18/2023]
Abstract
PURPOSE To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. METHODS The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1 (+) field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. RESULTS Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm(3) for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. CONCLUSION The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T.
Collapse
Affiliation(s)
- Andreas Graessl
- Berlin Ultrahigh Field Facility, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Winter L, Özerdem C, Hoffmann W, Santoro D, Müller A, Waiczies H, Seemann R, Graessl A, Wust P, Niendorf T. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla. PLoS One 2013; 8:e61661. [PMID: 23613896 PMCID: PMC3632575 DOI: 10.1371/journal.pone.0061661] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/12/2013] [Indexed: 11/30/2022] Open
Abstract
This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.
Collapse
Affiliation(s)
- Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Özerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Werner Hoffmann
- Metrology in Medicine, Physikalisch Technische Bundesanstalt, Berlin, Germany
| | - Davide Santoro
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Alexander Müller
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Helmar Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Reiner Seemann
- Metrology in Medicine, Physikalisch Technische Bundesanstalt, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Peter Wust
- Clinic for Radiation Oncology, CVK, Charité Universitätsmedizin Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|