1
|
Kohan A, Hanneman K, Mirshahvalad SA, Afaq A, Mallak N, Metser U, Veit-Haibach P. Current Applications of PET/MR: Part II: Clinical Applications II. Can Assoc Radiol J 2024; 75:826-837. [PMID: 38836428 DOI: 10.1177/08465371241255904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.
Collapse
Affiliation(s)
- Andres Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Shen F, Liu Q, Wang Y, Chen C, Ma H. Comparison of [ 18F] FDG PET/CT and [ 18F]FDG PET/MRI in the Detection of Distant Metastases in Breast Cancer: A Meta-Analysis. Clin Breast Cancer 2024:S1526-8209(24)00272-6. [PMID: 39438190 DOI: 10.1016/j.clbc.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This meta-analysis aims to assess and compare the diagnostic effectiveness of [18F] FDG PET/CT and [18F] FDG PET/MRI for distant metastases in breast cancer patients. METHODS A comprehensive search of the PubMed and Embase databases was performed to identify relevant articles until September 22, 2023. Studies were eligible to be included if they assessed the diagnostic performance of [18F] FDG PET/CT and/or [18F] FDG PET/MRI in detecting distant metastases of breast cancer patients. The DerSimonian and Laird method was used to assess sensitivity and specificity, and then transformed through the Freeman-Tukey double arcsine transformation. RESULTS 29 articles consisting of 3779 patients were finally included in this study. The overall sensitivity of [18F] FDG PET/CT in diagnosing distant metastases of breast cancer was 0.96 (95% CI: 0.93-0.98), and the overall specificity was 0.95 (95% CI: 0.92-0.97). The overall sensitivity of [18F] FDG PET/MRI was 1.00 (95% CI: 0.97-1.00), and the specificity was 0.97 (95% CI: 0.94-1.00). The results suggested that [18F] FDG PET/CT and [18F] FDG PET/MRI appears to have similar sensitivity (P = .16) and specificity (P = .30) in diagnosing distant metastases of breast cancer. CONCLUSIONS The results of our meta-analysis indicated that [18F] FDG PET/CT and [18F] FDG PET/MRI in diagnosing distant metastases of breast cancer appear to have similar sensitivity and specificity. Patients who have access to only one of these modalities will not have the accuracy of their staging compromised. In clinical practice, both of these imaging techniques have their respective strengths and limitations, and physicians should take these into account when making the most suitable choice for patients.
Collapse
Affiliation(s)
- Fangqian Shen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yishuang Wang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Can Chen
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
van de Weijer T, van der Meer WL, Moonen RPM, van Nijnatten TJA, Gietema HA, Mitea C, van der Pol JAJ, Wildberger JE, Mottaghy FM. Limited Additional Value of a Chest CT in Whole-Body Staging with PET-MRI: A Retrospective Cohort Study. Cancers (Basel) 2024; 16:2265. [PMID: 38927970 PMCID: PMC11201796 DOI: 10.3390/cancers16122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Hybrid PET-MRI systems are being used more frequently. One of the drawbacks of PET-MRI imaging is its inferiority in detecting lung nodules, so it is often combined with a computed tomography (CT) of the chest. However, chest CT often detects additional, indeterminate lung nodules. The objective of this study was to assess the sensitivity of detecting metastatic versus indeterminate nodules with PET-MRI compared to chest CT. A total of 328 patients were included. All patients had a PET/MRI whole-body scan for (re)staging of cancer combined with an unenhanced chest CT performed at our center between 2014 and 2020. Patients had at least a two-year follow-up. Six percent of the patients had lung metastases at initial staging. The sensitivity and specificity of PET-MRI for detecting lung metastases were 85% and 100%, respectively. The incidence of indeterminate lung nodules on chest CT was 30%. The sensitivity of PET-MRI to detect indeterminate lung nodules was poor (23.0%). The average size of the indeterminate lung nodules detected on PET-MRI was 7 ± 4 mm, and the missed indeterminate nodules on PET-MRI were 4 ± 1 mm (p < 0.001). The detection of metastatic lung nodules is fairly good with PET-MRI, whereas the sensitivity of PET-MRI for detecting indeterminate lung nodules is size-dependent. This may be an advantage, limiting unnecessary follow-up of small, indeterminate lung nodules while adequately detecting metastases.
Collapse
Affiliation(s)
- Tineke van de Weijer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), 6200 MD Maastricht, The Netherlands
| | - Wilhelmina L. van der Meer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Thiemo J. A. van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Hester A. Gietema
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Jochem A. J. van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Cardiovascular Diseases (CARIM), 6202 AZ Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Caldarella C, De Risi M, Massaccesi M, Miccichè F, Bussu F, Galli J, Rufini V, Leccisotti L. Role of 18F-FDG PET/CT in Head and Neck Squamous Cell Carcinoma: Current Evidence and Innovative Applications. Cancers (Basel) 2024; 16:1905. [PMID: 38791983 PMCID: PMC11119768 DOI: 10.3390/cancers16101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This article provides an overview of the use of 18F-FDG PET/CT in various clinical scenarios of head-neck squamous cell carcinoma, ranging from initial staging to treatment-response assessment, and post-therapy follow-up, with a focus on the current evidence, debated issues, and innovative applications. Methodological aspects and the most frequent pitfalls in head-neck imaging interpretation are described. In the initial work-up, 18F-FDG PET/CT is recommended in patients with metastatic cervical lymphadenectomy and occult primary tumor; moreover, it is a well-established imaging tool for detecting cervical nodal involvement, distant metastases, and synchronous primary tumors. Various 18F-FDG pre-treatment parameters show prognostic value in terms of disease progression and overall survival. In this scenario, an emerging role is played by radiomics and machine learning. For radiation-treatment planning, 18F-FDG PET/CT provides an accurate delineation of target volumes and treatment adaptation. Due to its high negative predictive value, 18F-FDG PET/CT, performed at least 12 weeks after the completion of chemoradiotherapy, can prevent unnecessary neck dissections. In addition to radiomics and machine learning, emerging applications include PET/MRI, which combines the high soft-tissue contrast of MRI with the metabolic information of PET, and the use of PET radiopharmaceuticals other than 18F-FDG, which can answer specific clinical needs.
Collapse
Affiliation(s)
- Carmelo Caldarella
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Marina De Risi
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Mariangela Massaccesi
- Radiation Oncology Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Miccichè
- Radiation Oncology Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Francesco Bussu
- Otorhinolaryngology Operative Unit, Azienda Ospedaliero Universitaria Sassari, 07100 Sassari, Italy;
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Jacopo Galli
- Otorhinolaryngology Unit, Department of Neurosciences, Sensory Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Otolaryngology, Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Leccisotti
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Tang X, Wu F, Chen X, Ye S, Ding Z. Current status and prospect of PET-related imaging radiomics in lung cancer. Front Oncol 2023; 13:1297674. [PMID: 38164195 PMCID: PMC10757959 DOI: 10.3389/fonc.2023.1297674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Lung cancer is highly aggressive, which has a high mortality rate. Major types encompass lung adenocarcinoma, lung squamous cell carcinoma, lung adenosquamous carcinoma, small cell carcinoma, and large cell carcinoma. Lung adenocarcinoma and lung squamous cell carcinoma together account for more than 80% of cases. Diverse subtypes demand distinct treatment approaches. The application of precision medicine necessitates prompt and accurate evaluation of treatment effectiveness, contributing to the improvement of treatment strategies and outcomes. Medical imaging is crucial in the diagnosis and management of lung cancer, with techniques such as fluoroscopy, computed radiography (CR), digital radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)/CT, and PET/MRI being essential tools. The surge of radiomics in recent times offers fresh promise for cancer diagnosis and treatment. In particular, PET/CT and PET/MRI radiomics, extensively studied in lung cancer research, have made advancements in diagnosing the disease, evaluating metastasis, predicting molecular subtypes, and forecasting patient prognosis. While conventional imaging methods continue to play a primary role in diagnosis and assessment, PET/CT and PET/MRI radiomics simultaneously provide detailed morphological and functional information. This has significant clinical potential value, offering advantages for lung cancer diagnosis and treatment. Hence, this manuscript provides a review of the latest developments in PET-related radiomics for lung cancer.
Collapse
Affiliation(s)
- Xin Tang
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Fan Wu
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiaofen Chen
- Department of Radiology, Hangzhou Wuyunshan Hospital (Hangzhou Health Promotion Research Institute), Hangzhou, China
| | - Shengli Ye
- Department of Nuclear Medicine and Radiology, Shulan Hangzhou Hospital affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Hangzhou First People’s Hospital, Hangzhou, China
| |
Collapse
|
6
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
7
|
Mirshahvalad SA, Metser U, Basso Dias A, Ortega C, Yeung J, Veit-Haibach P. 18F-FDG PET/MRI in Detection of Pulmonary Malignancies: A Systematic Review and Meta-Analysis. Radiology 2023; 307:e221598. [PMID: 36692397 DOI: 10.1148/radiol.221598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background There have been conflicting results regarding fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI diagnostic performance in lung malignant neoplasms. Purpose To evaluate the diagnostic performance of 18F-FDG PET/MRI for the detection of pulmonary malignant neoplasms. Materials and Methods A systematic search was conducted within the Scopus, Web of Science, and PubMed databases until December 31, 2021. Published original articles that met the following criteria were considered eligible for meta-analysis: (a) detecting malignant lesions in the lung, (b) comparing 18F-FDG PET/MRI with a valid reference standard, and (c) providing data for the meta-analytic calculations. A hierarchical method was used to pool the performances. The bivariate model was used to find the summary points and 95% CIs. The hierarchical summary receiver operating characteristic model was used to draw the summary receiver operating characteristic curve and calculate the area under the curve. The Higgins I2 statistic and Cochran Q test were used for heterogeneity assessment. Results A total of 43 studies involving 1278 patients met the inclusion criteria and were included in the meta-analysis. 18F-FDG PET/MRI had a pooled sensitivity and specificity of 96% (95% CI: 84, 99) and 100% (95% CI: 98, 100), respectively. 18F-FDG PET/CT had a pooled sensitivity and specificity of 99% (95% CI: 61, 100) and 99% (95% CI: 94, 100), respectively, which were comparable with those of 18F-FDG PET/MRI. At meta-regression, studies in which contrast media (P = .03) and diffusion-weighted imaging (P = .04) were used as a part of a pulmonary 18F-FDG PET/MRI protocol showed significantly higher sensitivities. Conclusion Fluorine 18-labeled fluorodeoxyglucose (18F-FDG) PET/MRI was found to be accurate and comparable with 18F-FDG PET/CT in the detection of malignant pulmonary lesions, with significantly improved sensitivity when advanced acquisition protocols were used. © RSNA, 2023 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Ur Metser
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Adriano Basso Dias
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Claudia Ortega
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Jonathan Yeung
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| | - Patrick Veit-Haibach
- From the Joint Department of Medical Imaging (S.A.M., U.R., A.B.D., C.O., P.V.H.) and Division of Thoracic Surgery, Department of Surgery (J.Y.), Toronto General Hospital, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| |
Collapse
|
8
|
Zhang C, Liang Z, Liu W, Zeng X, Mo Y. Comparison of whole-body 18F-FDG PET/CT and PET/MRI for distant metastases in patients with malignant tumors: a meta-analysis. BMC Cancer 2023; 23:37. [PMID: 36624425 PMCID: PMC9830828 DOI: 10.1186/s12885-022-10493-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As a first-line imaging modality, whole-body fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) and 18F-FDG PET/magnetic resonance imaging (MRI) had been widely applied in clinical practice. However, 18F-FDG PET/MRI may be superior to PET/CT for the diagnosis of distant metastases in patients with advanced-stage. Therefore, it is timely and important to systematically determine the diagnostic accuracy of 18F-FDG PET/MRI compared with that of 18F-FDG PET/CT for the diagnosis of distant metastases. METHODS This study aimed to compare the diagnostic accuracy of 18F-FDG PET/CT and PET/MRI for the diagnosis of distant metastases in patients with malignant tumors. Relevant studies using both 18F-FDG PET/CT and PET/MRI for assessment of distant metastases in patients with malignant tumors were searched in PubMed, Embase, The Cochrane Library, and Scopus from January 2010 to November 2023. Two reviewers independently selected studies according to the inclusion and exclusion criteria. A reviewer extracted relevant data and assessed the quality of the eligible studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and area under the summary receiver operating characteristic curve (AUC) for 18F-FDG PET/CT and PET/MRI were analyzed. Subgroup analysis was performed. RESULTS Across 14 studies (1042 patients), 18F-FDG PET/MRI had a higher sensitivity (0.87 versus 0.81), AUC value (0.98 versus 0.95), and similar specificity (0.97 versus 0.97), than PET/CT for detecting distant metastases. In 3 studies of breast cancer (182 patients), 18F-FDG PET/MRI had a higher sensitivity (0.95 versus 0.87) and specificity (0.96 versus 0.94) than PET/CT. In 5 studies of lung cancer (429 patients), 18F-FDG PET/CT had a higher sensitivity (0.87 versus 0.84) and a lower specificity (0.95 versus 0.96) to PET/MRI. CONCLUSIONS 18F-FDG PET/MRI and PET/CT both performed well as detectors of distant metastases in patients with malignant tumors, and the former has higher sensitivity. The subgroup analysis highlights that 18F-FDG PET/MRI and PET/CT hold different advantages for distant metastases staging in different tumors, PET/MRI has a higher accuracy in patients with breast cancer patients, while PET/CT has a higher accuracy in patients with lung cancer.
Collapse
Affiliation(s)
- Cici Zhang
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Zhishan Liang
- grid.410652.40000 0004 6003 7358Department of Cardiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wei Liu
- Department of Breast, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Xuwen Zeng
- Department of Radiology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Yuzhen Mo
- Department of Radiotherapy, Guangzhou Red Cross Hospital, No.396, TongFu Road, HaiZhu District, Guangzhou, 510220 Guangdong China
| |
Collapse
|
9
|
Jannusch K, Bruckmann NM, Geuting CJ, Morawitz J, Dietzel F, Rischpler C, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Quick HH, Umutlu L, Antoch G, Kirchner J. Lung Nodules Missed in Initial Staging of Breast Cancer Patients in PET/MRI-Clinically Relevant? Cancers (Basel) 2022; 14:cancers14143454. [PMID: 35884513 PMCID: PMC9321171 DOI: 10.3390/cancers14143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Image-based primary staging in women with newly-diagnosed breast cancer is important to exclude distant metastases, which affect up to 10% of women. The increasing implementation of [18F]FDG-PET/MRI as a radiation-saving primary staging tool bears the risk of missing lung nodules. Thus, chest CT serves as the diagnostic of choice for the detection and classification of pulmonary nodules. The aim of this study was the evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. We demonstrated in an homogeneous population of 152 patients that all patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity of MRI in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, a supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup. Abstract Purpose: The evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. Methods: A total of 152 patients underwent an initial whole-body [18F]FDG-PET/MRI and a thoracoabdominal CT for staging. Presence, size, shape and location for each lung nodule in [18F]FDG-PET/MRI was noted. The reference standard was established by taking initial CT and follow-up imaging into account (a two-step approach) to identify clinically-relevant lung nodules. Patient-based and lesion-based data analysis was performed. Results: No patient with clinically-relevant lung nodules was missed on a patient-based analysis with MRI VIBE, while 1/84 females was missed with MRI HASTE (1%). Lesion-based analysis revealed 4/96 (4%, VIBE) and 8/138 (6%, HASTE) missed clinically-relevant lung nodules. The average size of missed lung nodules was 3.2 mm ± 1.2 mm (VIBE) and 3.6 mm ± 1.4 mm (HASTE) and the predominant location was in the left lower quadrant and close to the hilum. Conclusion: All patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Charlotte Johanna Geuting
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
| | - Harald H. Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
- Correspondence: ; Tel.: +49-211-8-11-77-54
| |
Collapse
|
10
|
García Cañamaque L, Field CA, Furtado FS, Plaza DE Las Heras I, Husseini JS, Balza R, Jarraya M, Catalano OA, Mitjavila Casanovas M. Contribution of positron emission tomography/magnetic resonance imaging in musculoskeletal malignancies. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:3-14. [PMID: 34881853 DOI: 10.23736/s1824-4785.21.03432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Positron emission tomography/computed tomography (PET/CT) is a promising hybrid imaging technique for evaluating musculoskeletal malignancies. Both technologies, independently are useful for evaluating this type of tumors. PET/MR has great potential combining metabolic and functional imaging PET with soft tissue contrast and multiparametric sequences of MR. In this paper we review the existing literature and discuss the different protocols, new available radiotracers to conclude with the scarce evidence available the most useful/probable indications of the PET MR for the for musculoskeletal malignancies.
Collapse
Affiliation(s)
- Lina García Cañamaque
- Department of Nuclear Medicine, Madrid Sanchinarro University Hospital, Madrid, Spain -
| | - Caroline A Field
- Department of Nuclear Medicine, Madrid Sanchinarro University Hospital, Madrid, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jad S Husseini
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Rene Balza
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Mohamed Jarraya
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
11
|
Seifert R, Kersting D, Rischpler C, Opitz M, Kirchner J, Pabst KM, Mavroeidi IA, Laschinsky C, Grueneisen J, Schaarschmidt B, Catalano OA, Herrmann K, Umutlu L. Clinical Use of PET/MR in Oncology: An Update. Semin Nucl Med 2021; 52:356-364. [PMID: 34980479 DOI: 10.1053/j.semnuclmed.2021.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022]
Abstract
The combination of PET and MRI is one of the recent advances of hybrid imaging. Yet to date, the adoption rate of PET/MRI systems has been rather slow. This seems to be partially caused by the high costs of PET/MRI systems and the need to verify an incremental benefit over PET/CT or sequential PET/CT and MRI. In analogy to PET/CT, the MRI part of PET/MRI was primarily used for anatomical imaging. Though this can be advantageous, for example in diseases where the superior soft tissue contrast of MRI is highly appreciated, the sole use of MRI for anatomical orientation lessens the potential of PET/MRI. Consequently, more recent studies focused on its multiparametric potential and employed diffusion weighted sequences and other functional imaging sequences in PET/MRI. This integration puts the focus on a more wholesome approach to PET/MR imaging, in terms of releasing its full potential for local primary staging based on multiparametric imaging and an included one-stop shop approach for whole-body staging. This approach as well as the implementation of computational analysis, in terms of radiomics analysis, has been shown valuable in several oncological diseases, as will be discussed in this review article.
Collapse
Affiliation(s)
- Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Marcel Opitz
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Ilektra-Antonia Mavroeidi
- West German Cancer Center, University Hospital Essen, Essen, Germany.; Clinic for Internal Medicine (Tumor Research), University Hospital Essen, Essen, Germany
| | - Christina Laschinsky
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Benedikt Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Onofrio Antonio Catalano
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA; Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
12
|
Madore B, Belsley G, Cheng CC, Preiswerk F, Foley Kijewski M, Wu PH, Martell LB, Pluim JPW, Di Carli M, Moore SC. Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging. Phys Med Biol 2021; 67. [PMID: 34891142 DOI: 10.1088/1361-6560/ac4213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.
Collapse
Affiliation(s)
- Bruno Madore
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Gabriela Belsley
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxford, OX3 9DU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Cheng-Chieh Cheng
- Computer Science and Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Frank Preiswerk
- Amazon Robotics, Westborough, MA, USA, Amazon Robotics, 50 Otis St, Westborough, Massachusetts, 01581, UNITED STATES
| | - Marie Foley Kijewski
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Pei-Hsin Wu
- Electrical Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Laurel B Martell
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, PO Box 513, NETHERLANDS
| | - Marcelo Di Carli
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Stephen C Moore
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, Pennsylvania, 19104, UNITED STATES
| |
Collapse
|
13
|
Husseini JS, Balza R, Evangelista L, Cañamaque LG, Catalano OA. PET/MR for evaluation of musculoskeletal malignancies. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Vermersch M, Emsen B, Monnet A, Chalaye J, Galletto Pregliasco A, Baranes L, Rahmouni A, Luciani A, Itti E, Mulé S. Chest PET/MRI in Solid Cancers: Comparing the Diagnostic Performance of a Free-Breathing 3D-T1-GRE Stack-of-Stars Volume Interpolated Breath-Hold Examination (StarVIBE) Acquisition With That of a 3D-T1-GRE Volume Interpolated Breath-Hold Examination (VIBE) for Chest Staging During Whole-Body PET/MRI. J Magn Reson Imaging 2021; 55:1683-1693. [PMID: 34730867 DOI: 10.1002/jmri.27981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Whole-body positron emission tomography/magnetic resonance imaging (WB-PET/MRI) is increasingly used in oncology. However, chest staging remains challenging. PURPOSE To compare the diagnostic performance of a free-breathing 3D-T1-GRE stack-of-stars volume interpolated breath-hold examination (StarVIBE) with that of a 3D-T1-GRE volume interpolated breath-hold examination (VIBE) during WB-PET/MRI for chest staging. STUDY TYPE Retrospective, cohort study. POPULATION One hundred and twenty-three patients were referred for initial staging of solid cancer, 46 of whom had pulmonary nodules and 14 had pulmonary metastasis. FIELD STRENGTH/SEQUENCE Free-breathing 3D-T1-GRE stack-of-stars (StarVIBE) and Cartesian 3D-T1-GRE VIBE at 3.0 T. ASSESSMENT Image quality was assessed using a 4-point scale and using the signal-to-noise ratio (SNR) of lung parenchyma and contrast-to-noise ratio (CNR) of pulmonary nodules. Diagnostic performances of both sequences were determined by three independent radiologists for detection of pulmonary nodules, lymph node involvement, and bone metastases using chest CT, pathology, and follow-up as reference standards. STATISTICAL TESTS Paired Student's t-test; chi-squared; Fisher's exact test. A P value <0.05 was considered statistically significant. RESULTS StarVIBE quality was judged as better in 34% of cases and at least equivalent to VIBE in 89% of cases, with significantly higher quality scores (4 [4-4] vs. 3 [3-4], respectively). SNR and CNR values were significantly higher with StarVIBE (8 ± 1.3 and 9.7 ± 4.6, respectively) than with VIBE (1.8 ± 0.2 and 5.5 ± 3.3, respectively). Compared to VIBE, StarVIBE showed significantly higher sensitivity (73% [95% CI 62-82] vs. 44% [95% CI 33-55], respectively) and specificity (95% [95% CI 88-99] vs. 67% [95% CI 56-77]) for pulmonary nodules detection and significantly higher sensitivity (100% [95% CI 89-100] vs. 67% [95% CI 48-82], respectively) for detection of lymph node involvement. Sensitivities for bone metastases detection were not significantly different (100% [95% CI 88-100] vs. 82% [95% CI 63-94], P = 0.054). DATA CONCLUSION Owing to improved SNR and CNR and spatial resolution, a free-breathing 3D stack-of-stars T1-GRE sequence improves chest staging in comparison with standard 3D-T1-GRE VIBE and may be integrated in WB-PET/MRI acquisitions for initial staging of solid cancer. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mathilde Vermersch
- Medical Imaging Department, Henri Mondor University Hospital, Créteil, France.,INSERM Equipes 8 & 18, IMRB, University Paris Est Creteil, Créteil, France.,Department of Gastrointestinal Imaging, Lille University Hospital, Lille, France
| | - Berivan Emsen
- Nuclear Medicine Department, Henri Mondor University Hospital, Créteil, France
| | | | - Julia Chalaye
- Nuclear Medicine Department, Henri Mondor University Hospital, Créteil, France
| | | | - Laurence Baranes
- Medical Imaging Department, Henri Mondor University Hospital, Créteil, France
| | - Alain Rahmouni
- Medical Imaging Department, Henri Mondor University Hospital, Créteil, France
| | - Alain Luciani
- Medical Imaging Department, Henri Mondor University Hospital, Créteil, France.,INSERM Equipes 8 & 18, IMRB, University Paris Est Creteil, Créteil, France
| | - Emmanuel Itti
- INSERM Equipes 8 & 18, IMRB, University Paris Est Creteil, Créteil, France.,Nuclear Medicine Department, Henri Mondor University Hospital, Créteil, France
| | - Sébastien Mulé
- Medical Imaging Department, Henri Mondor University Hospital, Créteil, France.,INSERM Equipes 8 & 18, IMRB, University Paris Est Creteil, Créteil, France
| |
Collapse
|
15
|
PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI Trials. Cancers (Basel) 2021; 13:cancers13143571. [PMID: 34298781 PMCID: PMC8303241 DOI: 10.3390/cancers13143571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary PET/MRI is a relatively new, hybrid imaging tool that allows practitioners to obtain both a local and systemic staging in breast cancer patients in a single exam. To date, the available evidence is not sufficient to determine the role of PET/MRI in breast cancer management. The aims of this paper are to provide an overview of the current literature on PET/MRI in breast cancer, and to illustrate two ongoing trials aimed at defining the eventual role of PET/MRI in axillary staging in two different settings: patients with early breast cancer and patients with positive axillary nodes that are candidates for primary systemic therapy. In both cases, findings from PET/MRI will be compared with the final pathology and could be helpful to better tailor axillary surgery in the future. Abstract Axillary surgery in breast cancer (BC) is no longer a therapeutic procedure but has become a purely staging procedure. The progressive improvement in imaging techniques has paved the way to the hypothesis that prognostic information on nodal status deriving from surgery could be obtained with an accurate diagnostic exam. Positron emission tomography/magnetic resonance imaging (PET/MRI) is a relatively new imaging tool and its role in breast cancer patients is still under investigation. We reviewed the available literature on PET/MRI in BC patients. This overview showed that PET/MRI yields a high diagnostic performance for the primary tumor and distant lesions of liver, brain and bone. In particular, the results of PET/MRI in staging the axilla are promising. This provided the rationale for two prospective comparative trials between axillary surgery and PET/MRI that could lead to a further de-escalation of surgical treatment of BC. • SNB vs. PET/MRI 1 trial compares PET/MRI and axillary surgery in staging the axilla of BC patients undergoing primary systemic therapy (PST). • SNB vs. PET/MRI 2 trial compares PET/MRI and sentinel node biopsy (SNB) in staging the axilla of early BC patients who are candidates for upfront surgery. Finally, these ongoing studies will help clarify the role of PET/MRI in BC and establish whether it represents a useful diagnostic tool that could guide, or ideally replace, axillary surgery in the future.
Collapse
|
16
|
Biondetti P, Vangel MG, Lahoud RM, Furtado FS, Rosen BR, Groshar D, Canamaque LG, Umutlu L, Zhang EW, Mahmood U, Digumarthy SR, Shepard JAO, Catalano OA. PET/MRI assessment of lung nodules in primary abdominal malignancies: sensitivity and outcome analysis. Eur J Nucl Med Mol Imaging 2021; 48:1976-1986. [PMID: 33415433 DOI: 10.1007/s00259-020-05113-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate PET/MR lung nodule detection compared to PET/CT or CT, to determine growth of nodules missed by PET/MR, and to investigate the impact of missed nodules on clinical management in primary abdominal malignancies. METHODS This retrospective IRB-approved study included [18F]-FDG PET/MR in 126 patients. All had standard of care chest imaging (SCI) with diagnostic chest CT or PET/CT within 6 weeks of PET/MR that served as standard of reference. Two radiologists assessed lung nodules (size, location, consistency, position, and [18F]-FDG avidity) on SCI and PET/MR. A side-by-side analysis of nodules on SCI and PET/MR was performed. The nodules missed on PET/MR were assessed on follow-up SCI to ascertain their growth (≥ 2 mm); their impact on management was also investigated. RESULTS A total of 505 nodules (mean 4 mm, range 1-23 mm) were detected by SCI in 89/126 patients (66M:60F, mean age 60 years). PET/MR detected 61 nodules for a sensitivity of 28.1% for patient and 12.1% for nodule, with higher sensitivity for > 7 mm nodules (< 30% and > 70% respectively, p < 0.05). 75/337 (22.3%) of the nodules missed on PET/MR (follow-up mean 736 days) demonstrated growth. In patients positive for nodules at SCI and negative at PET/MR, missed nodules did not influence patients' management. CONCLUSIONS Sensitivity of lung nodule detection on PET/MR is affected by nodule size and is lower than SCI. 22.3% of missed nodules increased on follow-up likely representing metastases. Although this did not impact clinical management in study group with primary abdominal malignancy, largely composed of extra-thoracic advanced stage cancers, with possible different implications in patients without extra-thoracic spread.
Collapse
Affiliation(s)
- Pierpaolo Biondetti
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Mark G Vangel
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, 60 Staniford St, Boston, MA, USA
| | - Rita M Lahoud
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Bruce R Rosen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.,Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Centers, Tel Aviv, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lina G Canamaque
- Department of Nuclear Medicine. Grupo HM Hospitales, Madrid, Spain
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Eric W Zhang
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.,Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Jo-Anne O Shepard
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA. .,Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Moradi F, Brunsing RL, Sheth VR, Iagaru A. Positron Emission Tomography–Magnetic Resonance Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
de Mooij CM, Sunen I, Mitea C, Lalji UC, Vanwetswinkel S, Smidt ML, van Nijnatten TJ. Diagnostic performance of PET/computed tomography versus PET/MRI and diffusion-weighted imaging in the N- and M-staging of breast cancer patients. Nucl Med Commun 2020; 41:995-1004. [PMID: 32769814 PMCID: PMC7497599 DOI: 10.1097/mnm.0000000000001254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To provide a systematic review regarding the diagnostic performance of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) and diffusion-weighted imaging (DWI) compared to 18F-FDG PET/computed tomography (CT) focused on nodal and distant staging in breast cancer patients. METHODS The PubMed and Embase databases were searched for relevant publications until April 2020. Two independent reviewers searched for eligible articles based on predefined in- and exclusion criteria, assessed quality and extracted data. RESULTS Eleven eligible studies were selected from 561 publications identified by the search. In seven studies, PET/CT was compared with PET/MRI, and in five, PET/CT with DWI. Significantly higher sensitivity for PET/MRI compared to PET/CT in a lesion-based analysis was reported for all lesions together (77% versus 89%) in one study, osseous metastases (69-99% versus 92-98%) in two studies and hepatic metastases (70-75% versus 80-100%) in one study. Moreover, PET/MRI revealed a significantly higher amount of osseous metastases (90 versus 141) than PET/CT. PET/CT is associated with a statistically higher specificity than PET/MRI in the lesion detection of all lesions together (98% versus 96%) and of osseous metastases (100% versus 95%), both in one study. None of the reviewed studies reported significant differences between PET/CT and DWI for any of the evaluated sites. There is a trend toward higher specificity for PET/CT. CONCLUSION In general, there is a trend toward higher sensitivity and lower specificity of PET/MRI when compared to PET/CT. Results on the diagnostic performance of DWI are conflicting. Rather than evaluating it separate, it seems to have complementary value when combined with other MR sequences.
Collapse
Affiliation(s)
- Cornelis Maarten de Mooij
- Departments of Radiology and Nuclear Medicine
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inés Sunen
- Departments of Radiology and Nuclear Medicine
- Department of Radiology, Miguel Servet Hospital, Zaragoza, Spain
| | - Cristina Mitea
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Marjolein L. Smidt
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Thiemo J.A. van Nijnatten
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
19
|
Ming Y, Wu N, Qian T, Li X, Wan DQ, Li C, Li Y, Wu Z, Wang X, Liu J, Wu N. Progress and Future Trends in PET/CT and PET/MRI Molecular Imaging Approaches for Breast Cancer. Front Oncol 2020; 10:1301. [PMID: 32903496 PMCID: PMC7435066 DOI: 10.3389/fonc.2020.01301] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a major disease with high morbidity and mortality in women worldwide. Increased use of imaging biomarkers has been shown to add more information with clinical utility in the detection and evaluation of breast cancer. To date, numerous studies related to PET-based imaging in breast cancer have been published. Here, we review available studies on the clinical utility of different PET-based molecular imaging methods in breast cancer diagnosis, staging, distant-metastasis detection, therapeutic and prognostic prediction, and evaluation of therapeutic responses. For primary breast cancer, PET/MRI performed similarly to MRI but better than PET/CT. PET/CT and PET/MRI both have higher sensitivity than MRI in the detection of axillary and extra-axillary nodal metastases. For distant metastases, PET/CT has better performance in the detection of lung metastasis, while PET/MRI performs better in the liver and bone. Additionally, PET/CT is superior in terms of monitoring local recurrence. The progress in novel radiotracers and PET radiomics presents opportunities to reclassify tumors by combining their fine anatomical features with molecular characteristics and develop a beneficial pathway from bench to bedside to predict the treatment response and prognosis of breast cancer. However, further investigation is still needed before application of these modalities in clinical practice. In conclusion, PET-based imaging is not suitable for early-stage breast cancer, but it adds value in identifying regional nodal disease and distant metastases as an adjuvant to standard diagnostic imaging. Recent advances in imaging techniques would further widen the comprehensive and convergent applications of PET approaches in the clinical management of breast cancer.
Collapse
Affiliation(s)
- Yue Ming
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianyi Qian
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Li
- Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - David Q Wan
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, Health and Science Center at Houston, University of Texas, Houston, TX, United States
| | - Caiying Li
- Department of Medical Imaging, Second Hospital of Hebei Medical University, Hebei, China
| | - Yalun Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Wu
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Abstract
In academic centers, PET/MR has taken the road to clinical nuclear medicine in the past 6 years since the last review on its applications in head and neck cancer patients in this journal. Meanwhile, older sequential PET + MR machines have largely vanished from clinical sites, being replaced by integrated simultaneous PET/MR scanners. Evidence from several studies suggests that PET/MR overall performs equally well as PET/CT in the staging and restaging of head and neck cancer and in radiation therapy planning. PET/MR appears to offer advantages in the characterization and prognostication of head and neck malignancies through multiparametric imaging, which demands an exact preparation and validation of imaging modalities, however. The majority of available clinical PET/MR studies today covers FDG imaging of squamous cell carcinoma arising from a broad spectrum of locations in the upper aerodigestive tract. In the future, specific PET/MR studies are desired that address specific histopathological tumor entities, nonepithelial malignancies, such as major salivary gland tumors, squamous cell carcinomas arising in specific locations, and malignancies imaged with non-FDG radiotracers. With the advent of digital PET/CT scanners, PET/MR is expected to partake in future technical developments, such as novel iterative reconstruction techniques and deviceless motion correction for respiration and gross movement in the head and neck region. Owing to the still comparably high costs of PET/MR scanners and facility requirements on the one hand, and the concentration of multidisciplinary head and neck cancer treatment mainly at academic centers on the other hand, a more widespread use of this imaging modality outside major hospitals is currently limited.
Collapse
|
21
|
Hybrid PET/MRI in non-small cell lung cancer (NSCLC) and lung nodules-a literature review. Eur J Nucl Med Mol Imaging 2020; 48:584-591. [PMID: 32719914 DOI: 10.1007/s00259-020-04955-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The use of hybrid PET/MRI for clinical staging is growing in several cancer forms and, consequently, PET/MRI has also gained interest in the assessment of non-small cell lung cancer (NSCLC) and lung lesions. However, lung evaluation with PET/MRI is associated with challenges related to technical issues and diagnostic image quality. We, therefore, investigated the published literature on PET/MRI for clinical staging in NSCLC or lung nodule detection specifically addressing diagnostic accuracy and technical issues. METHODS The data originates from a systematic search performed in PubMed/MEDLINE, Embase, and Cochrane Library on hybrid PET/MRI in patients with cancer for a scoping review published earlier ( https://doi.org/10.1007/s00259-019-04402-8 ). Studies in English and German evaluating the diagnostic performance of hybrid PET/MRI for NSCLC or lung nodule detection in cancer patients were selected. Data reported in peer-reviewed journals without restrictions to year of publication were included. RESULTS A total of 3138 publications were identified from which 116 published 2012-2018 were included. Of these, nine studies addressed PET/MRI in NSCLC (4) or lung nodule detection (5). Overall, PET/MRI did not provide advantages in preoperative T- and N-staging in NSCLC compared to PET/CT. The data on M-staging were too few for conclusions to be drawn. The lung nodule detection rate of PET/MRI was comparable to that of PET/CT for FDG-avid nodules larger than 10 mm, but the sensitivity of PET/MRI for detection of non-FDG-avid nodules smaller than 5 mm was low. CONCLUSION PET/MRI did not provide advantages in T- and N-staging of NSCLC compared to PET/CT. PET/MRI had a comparable sensitivity for detection of FDG-avid lung nodules and nodules over 10 mm, but PET/CT yielded a higher detection rate in non FDG-avid lung nodules under 5 mm. With PET/MRI, the overall detection rate for lung nodules in various cancer types remains inferior to that of PET/CT due to the lower diagnostic performance of MRI than CT in the lungs.
Collapse
|
22
|
Abstract
Purpose of Review The main goal of the article is to familiarize the reader with commonly and uncommonly used nuclear medicine procedures that can significantly contribute to improved patient care. The article presents examples of specific modality utilization in the chest including assessment of lung ventilation and perfusion, imaging options for broad range of infectious and inflammatory processes, and selected aspects of oncologic imaging. In addition, rapidly developing new techniques utilizing molecular imaging are discussed. Recent Findings The article describes nuclear medicine imaging modalities including gamma camera, SPECT, PET, and hybrid imaging (SPECT/CT, PET/CT, and PET/MR) in the context of established and emerging clinical applications. Areas of potential future development in nuclear medicine are discussed with emphasis on molecular imaging and implementation of new targeted tracers used in diagnostics and therapeutics (theranostics). Summary Nuclear medicine and molecular imaging provide many unique and novel options for the diagnosis and treatment of pulmonary diseases. This article reviews current applications for nuclear medicine and molecular imaging and selected future applications for radiopharmaceuticals and targeted molecular imaging techniques.
Collapse
|
23
|
PET/MRI in breast cancer patients: Added value, barriers to implementation, and solutions. Clin Imaging 2020; 68:24-28. [PMID: 32562923 DOI: 10.1016/j.clinimag.2020.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022]
|
24
|
Pesapane F, Downey K, Rotili A, Cassano E, Koh DM. Imaging diagnosis of metastatic breast cancer. Insights Imaging 2020; 11:79. [PMID: 32548731 PMCID: PMC7297923 DOI: 10.1186/s13244-020-00885-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous imaging modalities may be used for the staging of women with advanced breast cancer. Although bone scintigraphy and multiplanar-CT are the most frequently used tests, others including PET, MRI and hybrid scans are also utilised, with no specific recommendations of which test should be preferentially used. We review the evidence behind the imaging modalities that characterise metastases in breast cancer and to update the evidence on comparative imaging accuracy.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy.
| | - Kate Downey
- Department of Breast Radiology, Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| | - Anna Rotili
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO - European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milano, MI, Italy
| | - Dow-Mu Koh
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK.,Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton, SM2 5PT, UK
| |
Collapse
|
25
|
Zheng D, Liu Y, Liu J, Li K, Lin M, Schmidt H, Xu B, Tian J. Improving MR sequence of 18F-FDG PET/MR for diagnosing and staging gastric Cancer: a comparison study to 18F-FDG PET/CT. Cancer Imaging 2020; 20:39. [PMID: 32546207 PMCID: PMC7298805 DOI: 10.1186/s40644-020-00317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Evaluate the feasibility of fluorine-18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging in patients with gastric cancer by optimizing the scan protocol and to compare the image quality to 18F FDG PET and computed tomography (CT). Methods The PET/CT and PET/MR imaging were sequentially performed in 30 patients with gastric cancer diagnosed by gastroscope using a single-injection-with-dual-imaging protocol. After intravenous injection of 18F-FDG (mean, 249 MBq), PET/CT imaging including low-dose CT was performed (mean uptake time, 47 ± 6 min), and PET/MR imaging including a T1-weighted Dixon sequence for attenuation correction and two different T2-weighted sequences was subsequently acquired (88 ± 15 min after 18F-FDG injection). Four series of images (CT from PET/CT, T1W, T2W Half-Fourier acquisition single-shot turbo spin-echo [T2W-HASTE] and T2W-BLADE from PET/MR) were visually evaluated using a 3–4 points scale for: (1) image artifacts, (2) lesion conspicuity and (3) image fusion quality. The characteristics of the primary lesions were assessed and compared between the PET/CT and PET/MR acquisitions. Results The image quality and lesion conspicuity of the T2W-HASTE images were significantly improved compared to that of the T2W-BLADE images. A significantly higher number of artifacts were seen in the T2W-HASTE images compared with the T1W and CT images (p < 0. 05). No differences in the accuracy of image fusion between PET/MR and PET/CT (p > 0. 05); however, significant difference was seen in the lesion conspicuity measurements (p < 0.05) with T2W-HASTE being superior. For information about the primary lesion characteristics, the T2W-HASTE images provided the most successful identifications compared with those of the T1W and PET/CT (13vs7vs5) images. Conclusions PET/MR with the T2W-HASTE was better at revealing the details of local stomach lesions compared with PET/CT imaging. Combining the PET/MR with the T2W-HASTE technique is a promising imaging method for diagnosing and staging gastric cancer.
Collapse
Affiliation(s)
- Dong Zheng
- Department of Nuclear Medicine, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Street, Beijing, 100853, China.,Department of Radiology, Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Yi Liu
- Department of General Surgery, The Seventh Medical Center of Chinese People's Liberation Army, General Hospital, Beijing, 100010, China
| | - Jiajin Liu
- Department of Nuclear Medicine, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Street, Beijing, 100853, China
| | - Ke Li
- Department of Radiology, Chinese People's Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, 100101, China
| | - Mu Lin
- MR Collaboration, Diagnostic Imaging, Siemens Healthineers Ltd, Shanghai, 201318, China
| | - Holger Schmidt
- MR Education, Customer Services, Siemens Healthcare GmbH, 91052, Erlangen, Germany
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Street, Beijing, 100853, China.
| | - Jiahe Tian
- Department of Nuclear Medicine, Chinese People's Liberation Army General Hospital, 28 Fuxing Road, Haidian Street, Beijing, 100853, China.
| |
Collapse
|
26
|
18F-FDG PET/MRI for Rectal Cancer TNM Restaging After Preoperative Chemoradiotherapy: Initial Experience. Dis Colon Rectum 2020; 63:310-318. [PMID: 31842163 DOI: 10.1097/dcr.0000000000001568] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE F-FDG-PET/MRI is a novel hybrid techinque that has been recently introduced in oncological imaging, showing promising results. The aim of this study is to assess the value of whole-body F-FDG-PET/MRI for predicting the pathological stage of locally advanced rectal cancer after preoperative chemoradiotherapy. DESIGN This was a prospective observational study. SETTINGS The study was conducted at a tertiary care hospital. PATIENTS Thirty-six patients with locally advanced rectal cancer (25 male, median age 68.5 years) were prospectively assessed with PET/MRI and thoracoabdominal CT before and after preoperative chemoradiotherapy. Twenty-seven patients underwent low anterior or abdominoperineal resection. Nine patients with a complete clinical response underwent organ-preserving treatment (8 local excision and 1 watch-and-wait approach) with >1-year follow-up. MAIN OUTCOME MEASURES One radiologist evaluated pelvic MRI and CT. A second radiologist and a nuclear medicine physician jointly assessed PET/MRI. The imaging was compared with histology or follow-up (ypT0 vs T ≥1 and ypN0 vs ypN+ categories). Metastases were confirmed with biopsy or a follow-up CT scan at least at 1 year after preoperative chemoradiotherapy. The sensitivity, specificity, and accuracy values of the imaging techniques were calculated using standard formulas. RESULTS The accuracy for ypT staging was 89% and 92%, and the accuracy for ypN was 86% and 92% for MRI and PET/MRI. Compared with CT, PET/MRI correctly diagnosed 4 of 5 metastases, but it did not detect a lung metastatic nodule. In 11% of the patients, the PET/MRI changed the treatment strategy. LIMITATIONS This study is limited by its small sample size. CONCLUSIONS Although the whole-body PET/MRI was more accurate than the pelvic MRI alone for the prediction of tumor and node response to preoperative chemoradiotherapy, the technique performed worse than CT in detecting small lung metastasis. See Video Abstract at http://links.lww.com/DCR/B108. TOMOGRAFÍA POR EMISIÓN DE POSITRONES DE 18F- FLUORODEOXIGLUCOSA (FDG) / RESONANCIA MAGNÉTICA (TEP/RM) PARA ESTADIFICACIÓN TUMORAL TNM DE CÁNCER DEL RECTO DESPUÉS DE LA QUIMIORRADIOTERAPIA PREOPERATORIA - EXPERIENCIA INICIAL: Evaluar el valor de la tomografía por emisión de positrones de 18F-fluorodeoxiglucosa / resonancia magnética (TEP/RM) para predecir el estadio patológico del cáncer de recto localmente avanzado después de la quimiorradioterapia preoperatoria.Este fue un estudio prospectivo observacional.El estudio se realizó en un hospital de atención terciaria.Treinta y seis pacientes con cáncer rectal localmente avanzado (25 hombres, edad media de 68.5 años) fueron evaluados prospectivamente con TEP/RM y tomografía computarizada (TC) toraco-abdominal antes y después de la quimiorradioterapia preoperatoria. Veintisiete pacientes se sometieron a resección anterior baja o abdominoperineal. Nueve pacientes con una respuesta clínica completa se sometieron a un tratamiento de preservación de órganos (8 escisión local y 1 un enfoque de observar y esperar) con un seguimiento de> 1 año.Un radiólogo evaluó la RM pélvica y la TC. Un segundo radiólogo y un médico de medicina nuclear evaluaron conjuntamente TEP / RM. La imagen se comparó con la histología o el seguimiento (ypT0 vs T ≥1 y ypN0 vs ypN + categorías). Las metástasis se confirmaron con biopsia o una TC de seguimiento al menos 1 año después de la quimiorradioterapia preoperatoria. Los valores de sensibilidad, especificidad y precisión de las técnicas de imagen se calcularon utilizando fórmulas estándar.La precisión para la estadificación ypT fue del 89% y 92%, y la precisión para ypN fue del 86% y 92% para RM y TEP/RM respectivamente. En comparación con la TC, la TEP / RM diagnosticó correctamente 4 de 5 metástasis, pero no detectó un nódulo metastásico pulmonar. En el 11% de los pacientes, la TEP / RM cambió la estrategia de tratamiento.Este estudio está limitado por su pequeño tamaño de muestra.Si bien la TEP / RM de todo el cuerpo fue más precisa que la RM pélvica sola para la predicción de la respuesta tumoral y ganglionar a la quimiorradioterapia preoperatoria, la técnica funcionó peor que la TC para detectar metástasis pulmonares pequeños. Consulte Video Resumen en http://links.lww.com/DCR/B108.
Collapse
|
27
|
Giraudo C, Evangelista L, Fraia AS, Lupi A, Quaia E, Cecchin D, Casali M. Molecular Imaging of Pulmonary Inflammation and Infection. Int J Mol Sci 2020; 21:ijms21030894. [PMID: 32019142 PMCID: PMC7037834 DOI: 10.3390/ijms21030894] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Infectious and inflammatory pulmonary diseases are a leading cause of morbidity and mortality worldwide. Although infrequently used in this setting, molecular imaging may significantly contribute to their diagnosis using techniques like single photon emission tomography (SPET), positron emission tomography (PET) with computed tomography (CT) or magnetic resonance imaging (MRI) with the support of specific or unspecific radiopharmaceutical agents. 18F-Fluorodeoxyglucose (18F-FDG), mostly applied in oncological imaging, can also detect cells actively involved in infectious and inflammatory conditions, even if with a low specificity. SPET with nonspecific (e.g., 67Gallium-citrate (67Ga citrate)) and specific tracers (e.g., white blood cells radiolabeled with 111Indium-oxine (111In) or 99mTechnetium (99mTc)) showed interesting results for many inflammatory lung diseases. However, 67Ga citrate is unfavorable by a radioprotection point of view while radiolabeled white blood cells scan implies complex laboratory settings and labeling procedures. Radiolabeled antibiotics (e.g., ciprofloxacin) have been recently tested, although they seem to be quite unspecific and cause antibiotic resistance. New radiolabeled agents like antimicrobic peptides, binding to bacterial cell membranes, seem very promising. Thus, the aim of this narrative review is to provide a comprehensive overview about techniques, including PET/MRI, and tracers that can guide the clinicians in the appropriate diagnostic pathway of infectious and inflammatory pulmonary diseases.
Collapse
Affiliation(s)
- Chiara Giraudo
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
- Correspondence: ; Tel.: +39-049-821-2357; Fax: +39-049-821-1878
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
| | - Anna Sara Fraia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Amalia Lupi
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Emilio Quaia
- Department of Medicine-DIMED,Institute of Radiology, University of Padova, 35100 Padova, Italy; (A.S.F.); (A.L.); (E.Q.)
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (L.E.); (D.C.)
- Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| | - Massimiliano Casali
- Azienda Unità Sanitaria Locale–IRCCS di Reggio Emilia, 42121 Reggio Emilia, Italy;
| |
Collapse
|
28
|
Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S, Grueneisen J, Demircioglu A, Heusch P, Quick HH, Forsting M, Antoch G, Herrmann K, Umutlu L. PET/MRI Versus PET/CT for Whole-Body Staging: Results from a Single-Center Observational Study on 1,003 Sequential Examinations. J Nucl Med 2019; 61:1131-1136. [DOI: 10.2967/jnumed.119.233940] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
|
29
|
Chen H, Huang S, Zeng Q, Zhang M, Ni Z, Li X, Xu X. A retrospective study analyzing missed diagnosis of lung metastases at their early stages on computed tomography. J Thorac Dis 2019; 11:3360-3368. [PMID: 31559039 DOI: 10.21037/jtd.2019.08.19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background Lungs are one of the target organs of metastases of primary lung, breast, liver, colorectal, and esophageal cancer. While computed tomography (CT) is the most widely used modality for detecting lung metastases, it is still very challenging to detect them at the earlier stages. If lung metastases could be found on CT scans at the earliest time points, patients would benefit by beginning treatment earlier. The objective of this study was to demonstrate that CT can reveal lung metastases in many cases at even earlier stages than current radiological practice may find. Methods One hundred patients with lung metastases were randomly selected and their surveillance CT scans were analyzed retrospectively. The patients had primary cancer in the breasts, lungs, esophagus, colorectum, and liver. All patients had multiple CT examinations of the lungs and their metastases, if any, were confirmed by subsequent CT scans. The earliest CT scans were examined to determine whether lung metastases at the same locations had been diagnosed or missed. Missed lung metastases, categorized by type of the primary cancer and adjacency to nearby blood vessels, were statistically analyzed. Results There were 36/100 (36%) cases of missed lung metastases, including 15 cases of single metastasis and 21 cases of multiple metastases. There were a total of 174 missed loci of lung metastases. Where metastases were missed, there was a statistically significant difference (P<0.001) in their distribution within the sub-regions of the lungs. Adjacency to blood vessels appeared to be a significant factor in metastases being missed during diagnosis (P<0.001). Conclusions There was a considerable percentage of early lung metastases that were missed by radiologists but actually appeared on CT scans. The capability of CT to reveal such early metastases opens up an opportunity to move up the time points of detecting lung metastases through clinical and training improvement and technology development such as computer-aided detection.
Collapse
Affiliation(s)
- Huai Chen
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Suidan Huang
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Qingsi Zeng
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Min Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhiwen Ni
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoling Li
- Department of Radiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xiaoyin Xu
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Pujara AC, Kim E, Axelrod D, Melsaether AN. PET/MRI in Breast Cancer. J Magn Reson Imaging 2018; 49:328-342. [DOI: 10.1002/jmri.26298] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Akshat C. Pujara
- Department of Radiology, Division of Breast Imaging; University of Michigan Health System; Ann Arbor Michigan USA
| | - Eric Kim
- Department of Radiology; NYU School of Medicine; New York New York USA
| | - Deborah Axelrod
- Department of Surgery; Perlmutter Cancer Center, NYU School of Medicine; New York New York USA
| | - Amy N. Melsaether
- Department of Radiology; NYU School of Medicine; New York New York USA
| |
Collapse
|
31
|
Abstract
OBJECTIVE The purpose of this article is to provide an update on clinical PET/MRI, including current and developing clinical indications and technical developments. CONCLUSION PET/MRI is evolving rapidly, transitioning from a predominant research focus to exciting clinical practice. Key technical obstacles have been overcome, and further technical advances promise to herald significant advancements in image quality. Further optimization of protocols to address challenges posed by this hybrid modality will ensure the long-term success of PET/MRI.
Collapse
|
32
|
SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer. RADIOLOGIA 2018; 60:332-346. [PMID: 29807678 DOI: 10.1016/j.rx.2018.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC.
Collapse
|
33
|
SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer. Clin Transl Oncol 2017; 20:837-852. [PMID: 29256154 PMCID: PMC5996017 DOI: 10.1007/s12094-017-1795-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision-making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC.
Collapse
|
34
|
Gatidis S, Gückel B, la Fougère C, Schmitt J, Schäfer JF. [Simultaneous whole-body PET-MRI in pediatric oncology : More than just reducing radiation?]. Radiologe 2017; 56:622-30. [PMID: 27306199 DOI: 10.1007/s00117-016-0122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diagnostic imaging plays an essential role in pediatric oncology with regard to diagnosis, therapy-planning, and the follow-up of solid tumors. The current imaging standard in pediatric oncology includes a variety of radiological and nuclear medicine imaging modalities depending on the specific tumor entity. The introduction of combined simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) has opened up new diagnostic options in pediatric oncology. This novel modality combines the excellent anatomical accuracy of MRI with the metabolic information of PET. In initial clinical studies, the technical feasibility and possible diagnostic advantages of combined PET-MRI have been in comparison with alternative imaging techniques. It was shown that a reduction in radiation exposure of up to 70 % is achievable compared with PET-CT. Furthermore, it has been shown that the number of imaging studies necessary can be markedly reduced using combined PET-MRI. Owing to its limited availability, combined PET-MRI is currently not used as a routine procedure. However, this new modality has the potential to become the imaging reference standard in pediatric oncology in the future. This review article summarizes the central aspects of pediatric oncological PET-MRI based on existing literature. Typical pediatric oncological PET-MRI cases are also presented.
Collapse
Affiliation(s)
- S Gatidis
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - B Gückel
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - C la Fougère
- Radiologische Klinik, Nuklearmedizin, Universität Tübingen, Tübingen, Deutschland
| | - J Schmitt
- Abteilung für Präklinische Bildgebung und Radiopharmazie, Werner Siemens Imaging Center, Universität Tübingen, Tübingen, Deutschland
| | - J F Schäfer
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| |
Collapse
|
35
|
Abstract
BACKGROUND To compare the diagnostic accuracy of PET/MR and PET/CT in patients with suspected occult primary tumors. METHODS This prospective study was approved by the institutional review board. Sequential PET/CT-MR was performed in 43 patients (22 male subjects; median age, 58 years; range, 20-86 years) referred for suspected occult primary tumors. Patients were assessed with PET/CT and PET/MR for the presence of a primary tumor, lymph node metastases, and distant metastases. Wilcoxon signed-rank test was performed to compare the diagnostic accuracy of PET/CT and PET/MR. RESULT According to the standard of reference, a primary lesion was found in 14 patients. In 16 patients, the primary lesion remained occult. In the remaining 13 patients, lesions proved to be benign. PET/MR was superior to PET/CT for primary tumor detection (sensitivity/specificity, 0.85/0.97 vs 0.69/0.73; P = 0.020) and comparable to PET/CT for the detection of lymph node metastases (sensitivity/specificity, 0.93/1.00 vs 0.93/0.93; P = 0.157) and distant metastases (sensitivity/specificity, 1.00/0.97 vs 0.82/1.00; P = 0.564). PET/CT tended to misclassify physiologic FDG uptake as malignancy compared with PET/MR (8 patients vs 1 patient). CONCLUSIONS PET/MR outperforms PET/CT in the workup of suspected occult malignancies. PET/MR may replace PET/CT to improve clinical workflow.
Collapse
|
36
|
Abstract
Hybrid imaging systems have dramatically improved thoracic oncology patient care over the past 2 decades. PET-MR imaging systems have the potential to further improve imaging of thoracic neoplasms, resulting in diagnostic and therapeutic advantages compared with current MR imaging and PET-computed tomography systems. Increasing soft tissue contrast and lesion sensitivity, improved image registration, reduced radiation exposure, and improved patient convenience are immediate clinical advantages. Multiparametric quantitative imaging capabilities of PET-MR imaging have the potential to improve understanding of the molecular mechanisms of cancer and treatment effects, potentially guiding improvements in diagnosis and therapy.
Collapse
Affiliation(s)
- Samuel L Rice
- Division of Nuclear Medicine, Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Kent P Friedman
- Division of Nuclear Medicine, Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
37
|
Abstract
Breast and whole-body PET/MR imaging is being used to detect local and metastatic disease and is being investigated for potential imaging biomarkers, which may eventually help personalize treatments and prognoses. This article provides an overview of breast and whole-body PET/MR exam techniques, summarizes PET and MR breast imaging for lesion detection, outlines investigations into multi-parametric breast PET/MR, looks at breast PET/MR in the setting of neo-adjuvant chemotherapy, and reviews the pros and cons of whole-body PET/MR in the setting of metastatic or suspected metastatic breast cancer.
Collapse
Affiliation(s)
- Amy Melsaether
- Department of Radiology, New York University School of Medicine, 160 East 34th Street, 3rd Floor, New York, NY 10016, USA.
| | - Linda Moy
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI(2)R), New York University School of Medicine, 160 East 34th Street, 3rd Floor, New York, NY 10016, USA
| |
Collapse
|
38
|
Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, Garcerant-Tafur M, Carreras-Delgado J. Simultaneous PET/MRI vs. PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016. [DOI: 10.1016/j.remnie.2016.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Schwenzer NF, Seith F, Gatidis S, Brendle C, Schmidt H, Pfannenberg CA, laFougère C, Nikolaou K, Schraml C. Diagnosing Lung Nodules on Oncologic MR/PET Imaging: Comparison of Fast T1-Weighted Sequences and Influence of Image Acquisition in Inspiration and Expiration Breath-Hold. Korean J Radiol 2016; 17:684-94. [PMID: 27587957 PMCID: PMC5007395 DOI: 10.3348/kjr.2016.17.5.684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Objective First, to investigate the diagnostic performance of fast T1-weighted sequences for lung nodule evaluation in oncologic magnetic resonance (MR)/positron emission tomography (PET). Second, to evaluate the influence of image acquisition in inspiration and expiration breath-hold on diagnostic performance. Materials and Methods The study was approved by the local Institutional Review Board. PET/CT and MR/PET of 44 cancer patients were evaluated by 2 readers. PET/CT included lung computed tomography (CT) scans in inspiration and expiration (CTin, CTex). MR/PET included Dixon sequence for attenuation correction and fast T1-weighted volumetric interpolated breath-hold examination (VIBE) sequences (volume interpolated breath-hold examination acquired in inspiration [VIBEin], volume interpolated breath-hold examination acquired in expiration [VIBEex]). Diagnostic performance was analyzed for lesion-, lobe-, and size-dependence. Diagnostic confidence was evaluated (4-point Likert-scale; 1 = high). Jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis was performed. Results Seventy-six pulmonary lesions were evaluated. Lesion-based detection rates were: CTex, 77.6%; VIBEin, 53.3%; VIBEex, 51.3%; and Dixon, 22.4%. Lobe-based detection rates were: CTex, 89.6%; VIBEin, 58.3%; VIBEex, 60.4%; and Dixon, 31.3%. In contrast to CT, inspiration versus expiration did not alter diagnostic performance in VIBE sequences. Diagnostic confidence was best for VIBEin and CTex and decreased in VIBEex and Dixon (1.2 ± 0.6; 1.2 ± 0.7; 1.5 ± 0.9; 1.7 ± 1.1, respectively). The JAFROC figure-of-merit of Dixon was significantly lower. All patients with malignant lesions were identified by CTex, VIBEin, and VIBEex, while 3 patients were false-negative in Dixon. Conclusion Fast T1-weighted VIBE sequences allow for identification of patients with malignant pulmonary lesions. The Dixon sequence is not recommended for lung nodule evaluation in oncologic MR/PET patients. In contrast to CT, inspiration versus expiratory breath-hold in VIBE sequences was less crucial for lung nodule evaluation but was important for diagnostic confidence.
Collapse
Affiliation(s)
- Nina F Schwenzer
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Ferdinand Seith
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Cornelia Brendle
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany.; Department of Diagnostic and Interventional Neuroradiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Holger Schmidt
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Christina A Pfannenberg
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Christian laFougère
- Department of Nuclear Medicine, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| | - Christina Schraml
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen 72076, Germany
| |
Collapse
|
40
|
Simultaneous PET/MRI vs PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016; 35:306-12. [PMID: 27424217 DOI: 10.1016/j.remn.2016.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this review was to evaluate the diagnostic performance of simultaneous PET/MRI in oncology compared with that of PET/CT, based upon the available evidence. MATERIAL AND METHODS A systematic search was performed in the Medline and Embase databases to identify original clinical articles published up to 21 January 2016, in order to compare simultaneous PET/MRI and PET/CT in oncology patients. RESULTS A total of 57 articles were obtained that included various diseases: head and neck cancer (5), lung cancer and lung nodules (13), colorectal cancer (1), liver lesions (2), abdominal incidentalomas (1), neuroendocrine tumours (2), thyroid carcinoma (2), breast cancer (3), gynaecological cancer (2), prostate cancer (4), lymphoma (2), multiple myeloma (1), bone metastases (3), intracranial tumours (2), paediatric oncology (1) and various tumours (13). Diagnostic performance of simultaneous PET/MRI was similar or even better to that of PET/CT in most oncological diseases. However, PET/CT was superior for small lung nodule detection. CONCLUSION Simultaneous PET/MRI in oncology is feasible, performing at least equally as well as PET/CT, with lower radiation exposure. However, available evidence is still limited. Studies including more patients and tumours are needed to establish PET/MRI indications and to identify appropriate protocols for each disease.
Collapse
|
41
|
Lee DH, Lee JM. Whole-body PET/MRI for colorectal cancer staging: Is it the way forward? J Magn Reson Imaging 2016; 45:21-35. [DOI: 10.1002/jmri.25337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Dong Ho Lee
- Department of Radiology; Seoul National University Hospital; Seoul Korea
- Seoul National University College of Medicine; Seoul Korea
| | - Jeong Min Lee
- Department of Radiology; Seoul National University Hospital; Seoul Korea
- Seoul National University College of Medicine; Seoul Korea
- Institute of Radiation Medicine; Seoul National University Medical Research Center; Seoul Korea
| |
Collapse
|
42
|
Schaarschmidt BM, Grueneisen J, Metzenmacher M, Gomez B, Gauler T, Roesel C, Heusch P, Ruhlmann V, Umutlu L, Antoch G, Buchbender C. Thoracic staging with 18F-FDG PET/MR in non-small cell lung cancer – does it change therapeutic decisions in comparison to 18F-FDG PET/CT? Eur Radiol 2016; 27:681-688. [DOI: 10.1007/s00330-016-4397-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/30/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022]
|
43
|
Kwon HW, Becker AK, Goo JM, Cheon GJ. FDG Whole-Body PET/MRI in Oncology: a Systematic Review. Nucl Med Mol Imaging 2016; 51:22-31. [PMID: 28250855 DOI: 10.1007/s13139-016-0411-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/01/2016] [Accepted: 03/16/2016] [Indexed: 01/14/2023] Open
Abstract
The recent advance in hybrid imaging techniques enables offering simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) in various clinical fields. 18F-fluorodeoxyglucose (FDG) PET has been widely used for diagnosis and evaluation of oncologic patients. The growing evidence from research and clinical experiences demonstrated that PET/MRI with FDG can provide comparable or superior diagnostic performance more than conventional radiological imaging such as computed tomography (CT), MRI or PET/CT in various cancers. Combined analysis using structural information and functional/molecular information of tumors can draw additional diagnostic information based on PET/MRI. Further studies including determination of the diagnostic efficacy, optimizing the examination protocol, and analysis of the hybrid imaging results is necessary for extending the FDG PET/MRI application in clinical oncology.
Collapse
Affiliation(s)
- Hyun Woo Kwon
- Department of Nuclear Medicine, Soonchunhyang University Hospital, Cheonan, South Korea
| | | | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehang-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
44
|
Melsaether AN, Raad RA, Pujara AC, Ponzo FD, Pysarenko KM, Jhaveri K, Babb JS, Sigmund EE, Kim SG, Moy LA. Comparison of Whole-Body (18)F FDG PET/MR Imaging and Whole-Body (18)F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer. Radiology 2016; 281:193-202. [PMID: 27023002 DOI: 10.1148/radiol.2016151155] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose To compare fluorine 18 ((18)F) fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and magnetic resonance (MR) imaging with (18)F FDG combined PET and computed tomography (CT) in terms of organ-specific metastatic lesion detection and radiation dose in patients with breast cancer. Materials and Methods From July 2012 to October 2013, this institutional review board-approved HIPAA-compliant prospective study included 51 patients with breast cancer (50 women; mean age, 56 years; range, 32-76 years; one man; aged 70 years) who completed PET/MR imaging with diffusion-weighted and contrast material-enhanced sequences after unenhanced PET/CT. Written informed consent for study participation was obtained. Two independent readers for each modality recorded site and number of lesions. Imaging and clinical follow-up, with consensus in two cases, served as the reference standard. Results There were 242 distant metastatic lesions in 30 patients, 18 breast cancers in 17 patients, and 19 positive axillary nodes in eight patients. On a per-patient basis, PET/MR imaging with diffusion-weighted and contrast-enhanced sequences depicted distant (30 of 30 [100%] for readers 1 and 2) and axillary (eight of eight [100%] for reader 1, seven of eight [88%] for reader 2) metastatic disease at rates similar to those of unenhanced PET/CT (distant metastatic disease: 28 of 29 [96%] for readers 3 and 4, P = .50; axillary metastatic disease: seven of eight [88%] for readers 3 and 4, P > .99) and outperformed PET/CT in the detection of breast cancer (17 of 17 [100%] for readers 1 and 2 vs 11 of 17 [65%] for reader 3 and 10 of 17 [59%] for reader 4; P < .001). PET/MR imaging showed increased sensitivity for liver (40 of 40 [100%] for reader 1 and 32 of 40 [80%] for reader 2 vs 30 of 40 [75%] for reader 3 and 28 of 40 [70%] for reader 4; P < .001) and bone (105 of 107 [98%] for reader 1 and 102 of 107 [95%] for reader 2 vs 106 of 107 [99%] for reader 3 and 93 of 107 [87%] for reader 4; P = .012) metastases and revealed brain metastases in five of 51 (10%) patients. PET/CT trended toward increased sensitivity for lung metastases (20 of 23 [87%] for reader 1 and 17 of 23 [74%] for reader 2 vs 23 of 23 [100%] for reader 3 and 22 of 23 [96%] for reader 4; P = .065). Dose reduction averaged 50% (P < .001). Conclusion In patients with breast cancer, PET/MR imaging may yield better sensitivity for liver and possibly bone metastases but not for pulmonary metastases, as compared with that attained with PET/CT, at about half the radiation dose. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Amy N Melsaether
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Roy A Raad
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Akshat C Pujara
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Fabio D Ponzo
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Kristine M Pysarenko
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Komal Jhaveri
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - James S Babb
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Eric E Sigmund
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Sungheon G Kim
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| | - Linda A Moy
- From the Department of Radiology, NYU Perlmutter Cancer Center, New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10014
| |
Collapse
|