1
|
Phair A, Fotaki A, Felsner L, Fletcher TJ, Qi H, Botnar RM, Prieto C. A motion-corrected deep-learning reconstruction framework for accelerating whole-heart magnetic resonance imaging in patients with congenital heart disease. J Cardiovasc Magn Reson 2024; 26:101039. [PMID: 38521391 PMCID: PMC10993190 DOI: 10.1016/j.jocmr.2024.101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment and management of adult patients with congenital heart disease (CHD). However, conventional techniques for three-dimensional (3D) whole-heart acquisition involve long and unpredictable scan times and methods that accelerate scans via k-space undersampling often rely on long iterative reconstructions. Deep-learning-based reconstruction methods have recently attracted much interest due to their capacity to provide fast reconstructions while often outperforming existing state-of-the-art methods. In this study, we sought to adapt and validate a non-rigid motion-corrected model-based deep learning (MoCo-MoDL) reconstruction framework for 3D whole-heart MRI in a CHD patient cohort. METHODS The previously proposed deep-learning reconstruction framework MoCo-MoDL, which incorporates a non-rigid motion-estimation network and a denoising regularization network within an unrolled iterative reconstruction, was trained in an end-to-end manner using 39 CHD patient datasets. Once trained, the framework was evaluated in eight CHD patient datasets acquired with seven-fold prospective undersampling. Reconstruction quality was compared with the state-of-the-art non-rigid motion-corrected patch-based low-rank reconstruction method (NR-PROST) and against reference images (acquired with three-or-four-fold undersampling and reconstructed with NR-PROST). RESULTS Seven-fold undersampled scan times were 2.1 ± 0.3 minutes and reconstruction times were ∼30 seconds, approximately 240 times faster than an NR-PROST reconstruction. Image quality comparable to the reference images was achieved using the proposed MoCo-MoDL framework, with no statistically significant differences found in any of the assessed quantitative or qualitative image quality measures. Additionally, expert image quality scores indicated the MoCo-MoDL reconstructions were consistently of a higher quality than the NR-PROST reconstructions of the same data, with the differences in 12 of the 22 scores measured for individual vascular structures found to be statistically significant. CONCLUSION The MoCo-MoDL framework was applied to an adult CHD patient cohort, achieving good quality 3D whole-heart images from ∼2-minute scans with reconstruction times of ∼30 seconds.
Collapse
Affiliation(s)
- Andrew Phair
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Lina Felsner
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Thomas J Fletcher
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Haikun Qi
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile; Technical University of Munich, Institute of Advanced Study, Munich, Germany
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile; Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile.
| |
Collapse
|
2
|
Markus R, Tandon A, Fares M, Dillenbeck J, Greil GF, Batsis M, Greer J, Potersnak A, Zhang S, Hussain T, Avula S. Velocity encoded mitral valve inflow cine: A novel and more reproducible method to determine cardiac rest periods during coronary magnetic resonance angiography. JRSM Cardiovasc Dis 2022; 11:20480040221087556. [PMID: 35342625 PMCID: PMC8943306 DOI: 10.1177/20480040221087556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
A high temporal resolution, 4-chamber (4CH) cine is the standard method for determining cardiac rest periods during whole heart coronary magnetic resonance angiography (CMRA). We evaluated the image quality and reproducibility between the 4CH cine method and a novel approach using a velocity encoded mitral valve inflow cine (MVI). The goal of this study was to compare the quality of CMRAs utilizing MVI versus 4CH methods. Sharpness and vessel length for the LCA and RCA using each method were determined using Soap Bubble and two blinded observers independently assessed coronary image quality. Offline analysis on a separate, retrospective cohort (n = 25) was used to compare MVI and 4CH reproducibility. In the prospectively evaluated cohort there was no difference in overall vessel sharpness (4CH vs MVI mean ± SD) (31.0 ± 5.5% vs 30.5 ± 5.7%, p = .63), LCA vessel sharpness (30.0 ± 5.4% vs 31.1 ± 8.2%, p = .44), LCA length (4.7 ± 1.4 cm vs 4.6 ± 1.6 cm, p = .66), RCA vessel sharpness (32.1 ± 6.9% vs 31.1 ± 7.7%, p = .55), RCA length (5.51 ± 2.6 cm vs 5.95 ± 2.4 cm, p = .38), or image quality rating (2.66 vs 2.62, p = .80) between methods. In the retrospective cohort, the MVI method had 5.4% lower inter-observer variability (95% CI 3.7,7.2%, p < .0001) and 3.9% lower intra-observer variability (95% CI 2.4,5.4%, p < .0001) than the 4CH method. MVI is a technically feasible and more reproducible method to determine cardiac rest periods compared to 4CH while preserving vessel sharpness, vessel length & image quality.
Collapse
Affiliation(s)
- Richard Markus
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Cardiology, Children’s Medical Center Dallas, Dallas, Texas, USA
| | - Animesh Tandon
- Department of Pediatric Cardiology and Director of Cardiovascular Innovation, Cleveland Clinic Children’s Hospital, Cleveland, Ohio, USA
| | - Munes Fares
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Cardiology, Children’s Medical Center Dallas, Dallas, Texas, USA
| | - Jeanne Dillenbeck
- Departments of Radiology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gerald F. Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Cardiology, Children’s Medical Center Dallas, Dallas, Texas, USA
- Departments of Radiology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maria Batsis
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joshua Greer
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Cardiology, Children’s Medical Center Dallas, Dallas, Texas, USA
- Departments of Radiology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Song Zhang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Cardiology, Children’s Medical Center Dallas, Dallas, Texas, USA
- Departments of Radiology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sravani Avula
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Pediatric Cardiology, Children’s Medical Center Dallas, Dallas, Texas, USA
| |
Collapse
|
3
|
Scannell CM, Hasaneen H, Greil G, Hussain T, Razavi R, Lee J, Pushparajah K, Duong P, Chiribiri A. Automated Quantitative Stress Perfusion Cardiac Magnetic Resonance in Pediatric Patients. Front Pediatr 2021; 9:699497. [PMID: 34540764 PMCID: PMC8446614 DOI: 10.3389/fped.2021.699497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Myocardial ischemia occurs in pediatrics, as a result of both congenital and acquired heart diseases, and can lead to further adverse cardiac events if untreated. The aim of this work is to assess the feasibility of fully automated, high resolution, quantitative stress myocardial perfusion cardiac magnetic resonance (CMR) in a cohort of pediatric patients and to evaluate its agreement with the coronary anatomical status of the patients. Methods: Fourteen pediatric patients, with 16 scans, who underwent dual-bolus stress perfusion CMR were retrospectively analyzed. All patients also had anatomical coronary assessment with either CMR, CT, or X-ray angiography. The perfusion CMR images were automatically processed and quantified using an analysis pipeline previously developed in adults. Results: Automated perfusion quantification was successful in 15/16 cases. The coronary perfusion territories supplied by vessels affected by a medium/large aneurysm or stenosis (according to the AHA guidelines), induced by Kawasaki disease, an anomalous origin, or interarterial course had significantly reduced myocardial blood flow (MBF) (median (interquartile range), 1.26 (1.05, 1.67) ml/min/g) as compared to territories supplied by unaffected coronaries [2.57 (2.02, 2.69) ml/min/g, p < 0.001] and territories supplied by vessels with a small aneurysm [2.52 (2.45, 2.83) ml/min/g, p = 0.002]. Conclusion: Automatic CMR-derived MBF quantification is feasible in pediatric patients, and the technology could be potentially used for objective non-invasive assessment of ischemia in children with congenital and acquired heart diseases.
Collapse
Affiliation(s)
- Cian M. Scannell
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Hadeer Hasaneen
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Gerald Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Jack Lee
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Phuoc Duong
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Hajhosseiny R, Bustin A, Munoz C, Rashid I, Cruz G, Manning WJ, Prieto C, Botnar RM. Coronary Magnetic Resonance Angiography: Technical Innovations Leading Us to the Promised Land? JACC Cardiovasc Imaging 2020; 13:2653-2672. [PMID: 32199836 DOI: 10.1016/j.jcmg.2020.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Coronary artery disease remains the leading cause of cardiovascular morbidity and mortality. Invasive X-ray angiography and coronary computed tomography angiography are established gold standards for coronary luminography. However, they expose patients to invasive complications, ionizing radiation, and iodinated contrast agents. Among a number of imaging modalities, coronary cardiovascular magnetic resonance (CMR) angiography may be used in some cases as an alternative for the detection and monitoring of coronary arterial stenosis, with advantages including its versatility, excellent soft tissue characterization, and avoidance of ionizing radiation and iodinated contrast agents. In this review, we explore the recent advances in motion correction, image acceleration, and reconstruction technologies that are bringing coronary CMR angiography closer to widespread clinical implementation.
Collapse
Affiliation(s)
- Reza Hajhosseiny
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Aurelien Bustin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Imran Rashid
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gastao Cruz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Warren J Manning
- Department of Medicine (Cardiovascular Division) and Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Escuela de Ingeniería, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Bustin A, Rashid I, Cruz G, Hajhosseiny R, Correia T, Neji R, Rajani R, Ismail TF, Botnar RM, Prieto C. 3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST. J Cardiovasc Magn Reson 2020; 22:24. [PMID: 32299445 PMCID: PMC7161114 DOI: 10.1186/s12968-020-00611-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To enable free-breathing whole-heart sub-millimeter resolution coronary magnetic resonance angiography (CMRA) in a clinically feasible scan time by combining low-rank patch-based undersampled reconstruction (3D-PROST) with a highly accelerated non-rigid motion correction framework. METHODS Non-rigid motion corrected CMRA combined with 2D image-based navigators has been previously proposed to enable 100% respiratory scan efficiency in modestly undersampled acquisitions. Achieving sub-millimeter isotropic resolution with such techniques still requires prohibitively long acquisition times. We propose to combine 3D-PROST reconstruction with a highly accelerated non-rigid motion correction framework to achieve sub-millimeter resolution CMRA in less than 10 min. Ten healthy subjects and eight patients with suspected coronary artery disease underwent 4-5-fold accelerated free-breathing whole-heart CMRA with 0.9 mm3 isotropic resolution. Vessel sharpness, vessel length and image quality obtained with the proposed non-rigid (NR) PROST approach were compared against translational correction only (TC-PROST) and a previously proposed NR motion-compensated technique (non-rigid SENSE) in healthy subjects. For the patient study, image quality scoring and visual comparison with coronary computed tomography angiography (CCTA) were performed. RESULTS Average scan times [min:s] were 6:01 ± 0:59 (healthy subjects) and 8:29 ± 1:41 (patients). In healthy subjects, vessel sharpness of the left anterior descending (LAD) and right (RCA) coronary arteries were improved with the proposed non-rigid PROST (LAD: 51.2 ± 8.8%, RCA: 61.2 ± 9.1%) in comparison to TC-PROST (LAD: 43.8 ± 5.1%, P = 0.051, RCA: 54.3 ± 8.3%, P = 0.218) and non-rigid SENSE (LAD: 46.1 ± 5.8%, P = 0.223, RCA: 56.7 ± 9.6%, P = 0.50), although differences were not statistically significant. The average visual image quality score was significantly higher for NR-PROST (LAD: 3.2 ± 0.6, RCA: 3.3 ± 0.7) compared with TC-PROST (LAD: 2.1 ± 0.6, P = 0.018, RCA: 2.0 ± 0.7, P = 0.014) and non-rigid SENSE (LAD: 2.3 ± 0.5, P = 0.008, RCA: 2.5 ± 0.7, P = 0.016). In patients, the proposed approach showed good delineation of the coronaries, in agreement with CCTA, with image quality scores and vessel sharpness similar to that of healthy subjects. CONCLUSIONS We demonstrate the feasibility of combining high undersampling factors with non-rigid motion-compensated reconstruction to obtain high-quality sub-millimeter isotropic CMRA images in ~ 8 min. Validation in a larger cohort of patients with coronary artery disease is now warranted.
Collapse
Affiliation(s)
- Aurélien Bustin
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Imran Rashid
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Gastao Cruz
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Reza Hajhosseiny
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Teresa Correia
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - Radhouene Neji
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Ronak Rajani
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- Department of Cardiology, Guy's & St Thomas' Hospitals, London, UK
| | - Tevfik F Ismail
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
| | - René M Botnar
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK.
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Claudia Prieto
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, 3rd Floor, Lambeth Wing, London, SE1 7EH, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Heerfordt J, Stuber M, Maillot A, Bianchi V, Piccini D. A quantitative comparison between a navigated Cartesian and a self-navigated radial protocol from clinical studies for free-breathing 3D whole-heart bSSFP coronary MRA. Magn Reson Med 2019; 84:157-169. [PMID: 31815322 DOI: 10.1002/mrm.28101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Navigator-gated 3D bSSFP whole-heart coronary MRA has been evaluated in several large studies including a multi-center trial. Patient studies have also been performed with more recent self-navigated techniques. In this study, these two approaches are compared side-by-side using a Cartesian navigator-gated and corrected (CNG) and a 3D radial self-navigated (RSN) protocol from published patient studies. METHODS Sixteen healthy subjects were examined with both sequences on a 1.5T scanner. Assessment of the visibility of coronary ostia and quantitative comparisons of acquisition times, blood pool homogeneity, and visible length and sharpness of the right coronary artery (RCA) and the combined left main (LM)+left anterior descending (LAD) coronary arteries were performed. Paired sample t-tests with P < .05 considered statistically significant were used for all comparisons. RESULTS The acquisition time was 5:40 ± 0:28 min (mean ± SD) for RSN, being significantly shorter than the 16:59 ± 5:05 min of CNG (P < .001). RSN images showed higher blood pool homogeneity (P < .001). All coronary ostia were visible with both techniques. CNG provided significantly higher vessel sharpness in the RCA (CNG: 50.0 ± 8.6%, RSN: 34.2 ± 6.9%, P < .001) and the LM+LAD (CNG: 48.7 ± 6.7%, RSN: 32.3 ± 7.1%, P < .001). The visible vessel length was significantly longer in the LM+LAD using CNG (CNG: 9.8 ± 2.7 cm, RSN: 8.5 ± 2.6 cm, P < .05) but not in the RCA (CNG: 9.7 ± 2.3 cm, RSN: 9.3 ± 2.9 cm, P = .29). CONCLUSION CNG provided superior vessel sharpness and might hence be the better option for examining coronary lumina. However, its blood pool inhomogeneity and prolonged and unpredictable acquisition times compared to RSN may make clinical adoption more challenging.
Collapse
Affiliation(s)
- John Heerfordt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Aurélien Maillot
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Veronica Bianchi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| |
Collapse
|
7
|
Velasco Forte MN, Valverde I, Prabhu N, Correia T, Narayan SA, Bell A, Mathur S, Razavi R, Hussain T, Pushparajah K, Henningsson M. Visualization of coronary arteries in paediatric patients using whole-heart coronary magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory motion compensation. J Cardiovasc Magn Reson 2019; 21:13. [PMID: 30798789 PMCID: PMC6388473 DOI: 10.1186/s12968-019-0525-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/05/2019] [Indexed: 11/10/2022] Open
Abstract
AIMS To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.
Collapse
Affiliation(s)
- Mari Nieves Velasco Forte
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
- Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
| | - Israel Valverde
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
- Cardiovascular Pathology Unit, Institute of Biomedicine of Seville, IBIS, Virgen del Rocio University Hospital/CSIC/University of Seville, Seville, Spain
| | - Nanda Prabhu
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
| | - Teresa Correia
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Srinivas Ananth Narayan
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
| | - Aaron Bell
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
| | - Sujeev Mathur
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
| | - Reza Razavi
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
| | - Tarique Hussain
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Pediatrics, University of Texas Southwestern Medical Center, 1935 Medical District Drive, Dallas, USA
| | - Kuberan Pushparajah
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children’s Hospital, Guy’s and St Thomas NHS Foundation Trust, London, UK
| | - Markus Henningsson
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Ginami G, Lòpez K, Mukherjee RK, Neji R, Munoz C, Roujol S, Mountney P, Razavi R, Botnar RM, Prieto C. Non-contrast enhanced simultaneous 3D whole-heart bright-blood pulmonary veins visualization and black-blood quantification of atrial wall thickness. Magn Reson Med 2019; 81:1066-1079. [PMID: 30230609 PMCID: PMC6492092 DOI: 10.1002/mrm.27472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Pre-interventional assessment of atrial wall thickness (AWT) and of subject-specific variations in the anatomy of the pulmonary veins may affect the success rate of RF ablation procedures for the treatment of atrial fibrillation (AF). This study introduces a novel non-contrast enhanced 3D whole-heart sequence providing simultaneous information on the cardiac anatomy-including both the arterial and the venous system-(bright-blood volume) and AWT (black-blood volume). METHODS The proposed MT-prepared bright-blood and black-blood phase sensitive inversion recovery (PSIR) BOOST framework acquires 2 differently weighted bright-blood volumes in an interleaved fashion. The 2 data sets are then combined in a PSIR-like reconstruction to obtain a complementary black-blood volume for atrial wall visualization. Image-based navigation and non-rigid respiratory motion correction are exploited for 100% scan efficiency and predictable acquisition time. The proposed approach was evaluated in 11 healthy subjects and 4 patients with AF scheduled for RF ablation. RESULTS Improved depiction of the cardiac venous system was obtained in comparison to a T2 -prepared BOOST implementation, and quantified AWT was shown to be in good agreement with previously reported measurements obtained in healthy subjects (right atrium AWT: 2.54 ± 0.87 mm, left atrium AWT: 2.51 ± 0.61 mm). Feasibility for MT-prepared BOOST acquisitions in patients with AF was demonstrated. CONCLUSION The proposed motion-corrected MT-prepared BOOST sequence provides simultaneous non-contrast pulmonary vein depiction as well as black-blood visualization of atrial walls. The proposed sequence has a large spectrum of potential clinical applications and further validation in patients is warranted.
Collapse
Affiliation(s)
- Giulia Ginami
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Karina Lòpez
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Rahul K. Mukherjee
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- MR Research Collaborations, Siemens Healthcare LimitedFrimleyUnited Kingdom
| | - Camila Munoz
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - Peter Mountney
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Medical Imaging TechnologiesSiemens HealthineersPrincetonNew Jersey
| | - Reza Razavi
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
| | - René M. Botnar
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUnited Kingdom
- Escuela de IngenieríaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
9
|
Moyé DM, Hussain T, Botnar RM, Tandon A, Greil GF, Dyer AK, Henningsson M. Dual-phase whole-heart imaging using image navigation in congenital heart disease. BMC Med Imaging 2018; 18:36. [PMID: 30326847 PMCID: PMC6192322 DOI: 10.1186/s12880-018-0278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/01/2018] [Indexed: 02/04/2023] Open
Abstract
Background Dual-phase 3-dimensional whole-heart acquisition allows simultaneous imaging during systole and diastole. Respiratory navigator gating and tracking of the diaphragm is used with limited accuracy. Prolonged scan time is common, and navigation often fails in patients with erratic breathing. Image-navigation (iNAV) tracks movement of the heart itself and is feasible in single phase whole heart imaging. To evaluate its diagnostic ability in congenital heart disease, we sought to apply iNAV to dual-phase sequencing. Methods Healthy volunteers and patients with congenital heart disease underwent dual-phase imaging using the conventional diaphragmatic-navigation (dNAV) and iNAV. Acquisition time was recorded and image quality assessed. Sharpness and length of the right coronary (RCA), left anterior descending (LAD), and circumflex (LCx) arteries were measured in both cardiac phases for both approaches. Qualitative and quantitative analyses were performed in a blinded and randomized fashion. Results In volunteers, there was no significant difference in vessel sharpness between approaches (p > 0.05). In patients, analysis showed equal vessel sharpness for LAD and RCA (p > 0.05). LCx sharpness was greater with dNAV (p < 0.05). Visualized length with iNAV was 0.5 ± 0.4 cm greater than that with dNAV for LCx in diastole (p < 0.05), 1.0 ± 0.3 cm greater than dNAV for LAD in diastole (p < 0.05), and 0.8 ± 0.7 cm greater than dNAV for RCA in systole (p < 0.05). Qualitative scores were similar between modalities (p = 0.71). Mean iNAV scan time was 5:18 ± 2:12 min shorter than mean dNAV scan time in volunteers (p = 0.0001) and 3:16 ± 1:12 min shorter in patients (p = 0.0001). Conclusions Image quality of iNAV and dNAV was similar with better distal vessel visualization with iNAV. iNAV acquisition time was significantly shorter. Complete cardiac diagnosis was achieved. Shortened acquisition time will improve clinical applicability and patient comfort.
Collapse
Affiliation(s)
- Danielle M Moyé
- Department of Pediatrics, Division of Cardiology, UT Southwestern Medical Center Dallas, Dallas, TX, USA. .,Department of Pediatrics, Division of Cardiology, Children's Health, Children's Medical Center Dallas, Dallas, TX, USA. .,Pediatric Cardiology, Children's Health Children's Medical Center of Dallas, 1935 Medical District Drive, Dallas, TX, 75235, USA.
| | - Tarique Hussain
- Department of Pediatrics, Division of Cardiology, UT Southwestern Medical Center Dallas, Dallas, TX, USA.,Department of Pediatrics, Division of Cardiology, Children's Health, Children's Medical Center Dallas, Dallas, TX, USA.,Departments of Radiology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rene M Botnar
- Division of Imaging Sciences, King's College London, London, UK.,Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Animesh Tandon
- Department of Pediatrics, Division of Cardiology, UT Southwestern Medical Center Dallas, Dallas, TX, USA.,Department of Pediatrics, Division of Cardiology, Children's Health, Children's Medical Center Dallas, Dallas, TX, USA.,Departments of Radiology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gerald F Greil
- Department of Pediatrics, Division of Cardiology, UT Southwestern Medical Center Dallas, Dallas, TX, USA.,Department of Pediatrics, Division of Cardiology, Children's Health, Children's Medical Center Dallas, Dallas, TX, USA.,Departments of Radiology and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adrian K Dyer
- Department of Pediatrics, Division of Cardiology, UT Southwestern Medical Center Dallas, Dallas, TX, USA.,Department of Pediatrics, Division of Cardiology, Children's Health, Children's Medical Center Dallas, Dallas, TX, USA
| | | |
Collapse
|
10
|
Coristine AJ, Chaptinel J, Ginami G, Bonanno G, Coppo S, van Heeswijk RB, Piccini D, Stuber M. Improved respiratory self-navigation for 3D radial acquisitions through the use of a pencil-beam 2D-T 2 -prep for free-breathing, whole-heart coronary MRA. Magn Reson Med 2018; 79:1293-1303. [PMID: 28568961 PMCID: PMC5931377 DOI: 10.1002/mrm.26764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE In respiratory self-navigation (SN), signal from static structures, such as the chest wall, may complicate motion detection or introduce post-correction artefacts. Suppressing signal from superfluous tissues may therefore improve image quality. We thus test the hypothesis that SN whole-heart coronary magnetic resonance angiography (MRA) will benefit from an outer-volume suppressing 2D-T2 -Prep and present both phantom and in vivo results. METHODS A 2D-T2 -Prep and a conventional T2 -Prep were used prior to a free-breathing 3D-radial SN sequence. Both techniques were compared by imaging a home-built moving cardiac phantom and by performing coronary MRA in nine healthy volunteers. Reconstructions were performed using both a reference-based and a reference-independent approach to motion tracking, along with several coil combinations. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared, along with vessel sharpness (VS). RESULTS In phantoms, using the 2D-T2 -Prep increased SNR by 16% to 53% and mean VS by 8%; improved motion tracking precision was also achieved. In volunteers, SNR increased by an average of 29% to 33% in the blood pool and by 15% to 25% in the myocardium, depending on the choice of reconstruction coils and algorithm, and VS increased by 34%. CONCLUSION A 2D-T2 -Prep significantly improves image quality in both phantoms and volunteers when performing SN coronary MRA. Magn Reson Med 79:1293-1303, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- A. J. Coristine
- Department of BioMedical Engineering, Case Western Reserve University (CWRU), Cleveland, Ohio, USA
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - J. Chaptinel
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Ginami
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - G. Bonanno
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - S. Coppo
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - R. B. van Heeswijk
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
| | - D. Piccini
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland
| | - M. Stuber
- Department of Radiology, University Hospital (CHUV) / University of Lausanne (UNIL), Lausanne, VD, Switzerland
- CardioVascular Magnetic Resonance (CVMR) research centre, Centre for BioMedical Imaging (CIBM), Lausanne, VD, Switzerland
| |
Collapse
|
11
|
Lipsø KW, Hansen ESS, Tougaard RS, Laustsen C, Ardenkjaer-Larsen JH. Dynamic coronary MR angiography in a pig model with hyperpolarized water. Magn Reson Med 2018; 80:1165-1169. [PMID: 29327374 DOI: 10.1002/mrm.27088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 12/05/2017] [Accepted: 12/22/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Kasper Wigh Lipsø
- Department of Electrical Engineering, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Esben Søvsø Szocska Hansen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Rasmus Stilling Tougaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark.,Department of Cardiology Research, Aarhus University Hospital, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Jan Henrik Ardenkjaer-Larsen
- Department of Electrical Engineering, Technical University of Denmark, Kgs., Lyngby, Denmark.,GE Healthcare, Brøndby, Denmark
| |
Collapse
|
12
|
Bratis K, Henningsson M, Grigoratos C, Dell’Omodarme M, Chasapides K, Botnar R, Nagel E. 'Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical results'. J Cardiovasc Magn Reson 2017; 19:97. [PMID: 29202776 PMCID: PMC5713472 DOI: 10.1186/s12968-017-0418-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Image-navigated 3-dimensional late gadolinium enhancement (iNAV-3D LGE) is an advanced imaging technique that allows for direct respiratory motion correction of the heart. Its feasibility in a routine clinical setting has not been validated. METHODS Twenty-three consecutive patients referred for cardiovascular magnetic resonance (CMR) examination including late gadolinium enhancement (LGE) imaging were prospectively enrolled. Image-navigated free-breathing 3-dimensional (3D) T1-weighted gradient-echo LGE and two-dimensional (2D LGE) images were acquired in random order on a 1.5 T CMR system. Images were assessed for global, segmental LGE detection and transmural extent. Objective image quality including signal-to-noise (SNR), contrast-to-noise (CNR) and myocardial/blood sharpness were performed. RESULTS Interpretable images were obtained in all 2D-LGE and in 22/23 iNAV-3D LGE exams, resulting in a total of 22 datasets and 352 segments. LGE was detected in 5 patients with ischemic pattern, in 7 with non-ischemic pattern, while it was absent in 10 cases. There was an excellent agreement between 2D and 3D data sets with regard to global, segmental LGE detection and transmurality. Blood-myocardium sharpness measurements were also comparable between the two techniques. SNRblood and CNRblood-myo was significantly higher for 2D LGE (P < 0.001, respectively), while SNRmyo was not statistically significant between 2D LGE and iNAV-3D LGE. CONCLUSION Diagnostic performance of iNAV-3D LGE was comparable to 2D LGE in a prospective clinical setting. SNRblood and CNRblood-myo was significantly lower in the iNAV-3D LGE group.
Collapse
Affiliation(s)
- Konstantinos Bratis
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Markus Henningsson
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | | | | | | | - Rene Botnar
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, Frankfurt/Main, Germany
| |
Collapse
|
13
|
Henningsson M, Shome J, Bratis K, Vieira MS, Nagel E, Botnar RM. Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease. J Cardiovasc Magn Reson 2017; 19:68. [PMID: 28893296 PMCID: PMC5594598 DOI: 10.1186/s12968-017-0381-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/17/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The use of coronary MR angiography (CMRA) in patients with coronary artery disease (CAD) remains limited due to the long scan times, unpredictable and often non-diagnostic image quality secondary to respiratory motion artifacts. The purpose of this study was to evaluate CMRA with image-based respiratory navigation (iNAV CMRA) and compare it to gold standard invasive x-ray coronary angiography in patients with CAD. METHODS Consecutive patients referred for CMR assessment were included to undergo iNAV CMRA on a 1.5 T scanner. Coronary vessel sharpness and a visual score were assigned to the coronary arteries. A diagnostic reading was performed on the iNAV CMRA data, where a lumen narrowing >50% was considered diseased. This was compared to invasive x-ray findings. RESULTS Image-navigated CMRA was performed in 31 patients (77% male, 56 ± 14 years). The iNAV CMRA scan time was 7 min:21 s ± 0 min:28 s. Out of a possible 279 coronary segments, 26 segments were excluded from analysis due to stents or diameter less than 1.5 mm, resulting in a total of 253 coronary segments. Diagnostic image quality was obtained for 98% of proximal coronary segments, 94% of middle segments, and 91% of distal coronary segments. The sensitivity and specificity was 86% and 83% per patient, 80% and 92% per vessel and 73% and 95% per segment. CONCLUSION In this study, iNAV CMRA offered a very good diagnostic performance when compared against invasive x-ray angiography. Due to the short and predictable scan time it can add clinical value as a part of a comprehensive CAD assessment protocol.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Joy Shome
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Konstantinos Bratis
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Miguel Silva Vieira
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Eike Nagel
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Institute for Experimental and Translational Cardiovascular Imaging, Goethe University, Frankfurt/Main, Germany
- DZHK (German Centre for Cardiovascular Research, Standort RheinMain), Berlin, Germany
| | - Rene M. Botnar
- Division of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Coronary artery assessment using self-navigated free-breathing radial whole-heart magnetic resonance angiography in patients with congenital heart disease. Eur Radiol 2017; 28:1267-1275. [DOI: 10.1007/s00330-017-5035-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
|
15
|
Henningsson M, Smink J, van Ensbergen G, Botnar R. Coronary MR angiography using image-based respiratory motion compensation with inline correction and fixed gating efficiency. Magn Reson Med 2017; 79:416-422. [PMID: 28321900 PMCID: PMC5763408 DOI: 10.1002/mrm.26678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE The purpose of this study was to evaluate a new inline motion compensation approach called image-based navigation with Constant Respiratory efficiency UsIng Single End-expiratory threshold (iNAV-CRUISE) for coronary MR angiography (CMRA). METHODS The CRUISE gating technique was combined with iNAV motion correction and implemented inline for motion-compensated CMRA on a 1.5 Tesla scanner. The approach was compared to conventional diaphragmatic navigator gating (dNAVG) in 10 healthy subjects. The CMRA images were compared for vessel sharpness and visual score of the right coronary artery (RCA), left anterior descending artery (LAD), left circumflex, and scan time. RESULTS The scan time was similar between the methods (dNAVG : 6:32 ± 1:09 vs. iNAV-CRUISE: 6:58 ± 0:17, P = not significant). However, the vessel sharpness of the RCA (dNAVG : 60.2 ± 10.1 vs. iNAV-CRUISE: 71.8 ± 8.9, P = 0.001) and LAD (dNAVG : 58.0 ± 8.0 vs. iNAV-CRUISE: 67.4 ± 7.1, P = 0.008) were significantly improved using iNAV-CRUISE. The visual score of the RCA was higher using iNAV-CRUISE compared to dNAVG (dNAVG : 3,4,3 vs. iNAV-CRUISE: 4,4,3, P < 0.01). CONCLUSION The iNAV-CRUISE approach out-performs the conventional respiratory motion compensation technique in healthy subjects. Although scan time was comparable, the image quality was improved using iNAV-CRUISE. Magn Reson Med 79:416-422, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | | | - Rene Botnar
- Division of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Update on the Role of Cardiac Magnetic Resonance Imaging in Congenital Heart Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:2. [PMID: 28144782 DOI: 10.1007/s11936-017-0504-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OPINION STATEMENT Cardiac magnetic resonance imaging (CMR) is an important imaging modality in the evaluation of congenital heart diseases (CHD). CMR has several strengths including good spatial and temporal resolutions, wide field-of-view, and multi-planar imaging capabilities. CMR provides significant advantages for imaging in CHD through its ability to measure function, flow and vessel sizes, create three-dimensional reconstructions, and perform tissue characterization, all in a single imaging study. Thus, CMR is the most comprehensive imaging modality available today for the evaluation of CHD. Newer MRI sequences and post-processing tools will allow further development of quantitative methods of analysis, and opens the door for risk stratification in CHD. CMR also can interface with computer modeling, 3D printing, and other methods of understanding the complex anatomic and physiologic relationships in CHD.
Collapse
|
17
|
Greil G, Tandon AA, Silva Vieira M, Hussain T. 3D Whole Heart Imaging for Congenital Heart Disease. Front Pediatr 2017; 5:36. [PMID: 28289674 PMCID: PMC5327357 DOI: 10.3389/fped.2017.00036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) whole heart techniques form a cornerstone in cardiovascular magnetic resonance imaging of congenital heart disease (CHD). It offers significant advantages over other CHD imaging modalities and techniques: no ionizing radiation; ability to be run free-breathing; ECG-gated dual-phase imaging for accurate measurements and tissue properties estimation; and higher signal-to-noise ratio and isotropic voxel resolution for multiplanar reformatting assessment. However, there are limitations, such as potentially long acquisition times with image quality degradation. Recent advances in and current applications of 3D whole heart imaging in CHD are detailed, as well as future directions.
Collapse
Affiliation(s)
- Gerald Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Animesh Aashoo Tandon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA
| | - Miguel Silva Vieira
- Division of Imaging Sciences and Biomedical Engineering, King's College London , London , UK
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA; Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
18
|
Tandon A, James L, Henningsson M, Botnar RM, Potersnak A, Greil GF, Hussain T. A clinical combined gadobutrol bolus and slow infusion protocol enabling angiography, inversion recovery whole heart, and late gadolinium enhancement imaging in a single study. J Cardiovasc Magn Reson 2016; 18:66. [PMID: 27716273 PMCID: PMC5052797 DOI: 10.1186/s12968-016-0285-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/24/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The use of gadolinium contrast agents in cardiovascular magnetic resonance is well-established and serves to improve both vascular imaging as well as enable late gadolinium enhancement (LGE) imaging for tissue characterization. Currently, gadofosveset trisodium, an intravascular contrast agent, combined with a three-dimensional inversion recovery balanced steady state free precession (3D IR bSSFP) sequence, is commonly used in pediatric cardiac imaging and yields excellent vascular imaging, but cannot be used for late gadolinium enhancement. Gadofosveset use remains limited in clinical practice, and manufacture was recently halted, thus an alternative is needed to allow 3D IR bSSFP and LGE in the same study. METHODS Here we propose a protocol to give a bolus of 0.1 mL/kg = 0.1 mmol/kg gadobutrol (GADAVIST/GADOVIST) for time-resolved magnetic resonance angiography (MRA). Subsequently, 0.1 mmol/kg is diluted up to 5 or 7.5 mL with saline and then loaded into intravenous tubing connected to the patient. A 0.5 mL short bolus is infused, then a slow infusion is given at 0.02 or 0.03 mL/s. Image navigated (iNAV) 3D IR bSSFP imaging is initiated 45-60 s after the initiation of the infusion, with a total image acquisition time of ~5 min. If necessary, LGE imaging using phase sensitive inversion recovery reconstruction (PSIR) is performed at 10 min after the infusion is initiated. RESULTS We have successfully performed the above protocol with good image quality on 10 patients with both time-resolved MRA and 3D IR bSSFP iNAV imaging. Our initial attempts to use pencil beam respiratory navigation failed due to signal labeling in the liver by the navigator. We have also performed 2D PSIR LGE successfully, with both LGE positive and LGE negative results. CONCLUSION A bolus of gadobutrol, followed later by a slow infusion, allows time-resolved MRA, 3D IR bSSFP using the iNAV navigation technique, and LGE imaging, all in a single study with a single contrast agent.
Collapse
Affiliation(s)
- Animesh Tandon
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Lorraine James
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Markus Henningsson
- Department of Imaging and Biomedical Engineering, King’s College London, London, UK
| | - René M. Botnar
- Department of Imaging and Biomedical Engineering, King’s College London, London, UK
- Pontificia Universidad Católica de Chile, Escuela de Ingeniería, Santiago, Chile
| | - Amanda Potersnak
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Gerald F. Greil
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| | - Tarique Hussain
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, 75390 Texas USA
- Pediatric Cardiology, Children’s Medical Center Dallas, 1935 Medical District Dr, Dallas, 75235 Texas USA
| |
Collapse
|