1
|
Warmerdam EG, Westenberg JJM, Voskuil M, Rijnberg FM, Roest AAW, Lamb HJ, van Wijk B, Sieswerda GT, Doevendans PA, Ter Heide H, Krings GJ, Leiner T, Grotenhuis HB. Comparison of Four-Dimensional Flow MRI, Two-Dimensional Phase-Contrast MRI and Echocardiography in Transposition of the Great Arteries. Pediatr Cardiol 2024; 45:1627-1635. [PMID: 37488239 PMCID: PMC11442473 DOI: 10.1007/s00246-023-03238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Pulmonary artery (PA) stenosis is a common complication after the arterial switch operation (ASO) for transposition of the great arteries (TGA). Four-dimensional flow (4D flow) CMR provides the ability to quantify flow within an entire volume instead of a single plane. The aim of this study was to compare PA maximum velocities and stroke volumes between 4D flow CMR, two-dimensional phase-contrast (2D PCMR) and echocardiography. A prospective study including TGA patients after ASO was performed between December 2018 and October 2020. All patients underwent echocardiography and CMR, including 2D PCMR and 4D flow CMR. Maximum velocities and stroke volumes were measured in the main, right, and left PA (MPA, LPA, and RPA, respectively). A total of 39 patients aged 20 ± 8 years were included. Maximum velocities in the MPA, LPA, and RPA measured by 4D flow CMR were significantly higher compared to 2D PCMR (p < 0.001 for all). PA assessment by echocardiography was not possible in the majority of patients. 4D flow CMR maximum velocity measurements were consistently higher than those by 2D PCMR with a mean difference of 65 cm/s for the MPA, and 77 cm/s for both the RPA and LPA. Stroke volumes showed good agreement between 4D flow CMR and 2D PCMR. Maximum velocities in the PAs after ASO for TGA are consistently lower by 2D PCMR, while echocardiography only allows for PA assessment in a minority of cases. Stroke volumes showed good agreement between 4D flow CMR and 2D PCMR.
Collapse
Affiliation(s)
- Evangeline G Warmerdam
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Friso M Rijnberg
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Arno A W Roest
- Department of Paedidatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram van Wijk
- Department of Congenital Cardiothoracic Surgery, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Gertjan T Sieswerda
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Henriette Ter Heide
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Gregor J Krings
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Heynric B Grotenhuis
- Department of Paediatric Cardiology, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
2
|
Maroun A, Scott MB, Catania R, Berhane H, Jarvis K, Allen BD, Barker AJ, Markl M. Multiyear Interval Changes in Aortic Wall Shear Stress in Patients with Bicuspid Aortic Valve Assessed by 4D Flow MRI. J Magn Reson Imaging 2024. [PMID: 38426608 DOI: 10.1002/jmri.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND In patients with bicuspid aortic valve (BAV), 4D flow MRI can quantify regions exposed to abnormal aortic hemodynamics, including high wall shear stress (WSS), a known stimulus for arterial wall dysfunction. However, the long-term multiscan reproducibility of 4D flow MRI-derived hemodynamic parameters is unknown. PURPOSE To investigate the long-term stability of 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps in patients with BAV undergoing multiyear surveillance imaging. STUDY TYPE Retrospective. POPULATION 20 BAV patients (mean age 48.4 ± 13.9 years; 14 males) with five 4D flow MRI scans, with intervals of at least 6 months between scans, and 125 controls (mean age: 50.7 ± 15.8 years; 67 males). FIELD STRENGTH/SEQUENCE 1.5 and 3.0T, prospectively ECG and respiratory navigator-gated aortic 4D flow MRI. ASSESSMENT Automated AI-based 4D flow analysis pipelines were used for data preprocessing, aorta 3D segmentation, and quantification of ascending aorta (AAo) peak velocity, peak systolic WSS, and heatmap-derived relative area of elevated WSS compared to WSS ranges in age and sex-matched normative control populations. Growth rate was derived from the maximum AAo diameters measured on the first and fifth MRI scans. STATISTICAL TESTS One-way repeated measures analysis of variance. P < 0.05 indicated significance. RESULTS One hundred 4D flow MRI exams (five per patient) were analyzed. The mean total follow-up duration was 5.5 ± 1.1 years, and the average growth rate was 0.3 ± 0.2 mm/year. Peak velocity, peak systolic WSS, and relative area of elevated WSS did not change significantly over the follow-up period (P = 0.64, P = 0.69, and P = 0.35, respectively). The patterns and areas of elevated WSS demonstrated good reproducibility on semiquantitative assessment. CONCLUSION 4D flow MRI-derived peak velocity, WSS, and WSS-derived heatmaps showed good multiyear and multiscan stability in BAV patients with low aortic growth rates. These findings underscore the reliability of these metrics in monitoring BAV patients for potential risk of dilation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael B Scott
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Roberta Catania
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Haben Berhane
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly Jarvis
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Anastasiou V, Daios S, Karamitsos T, Peteinidou E, Didagelos M, Giannakoulas G, Aggeli C, Tsioufis K, Ziakas A, Kamperidis V. Multimodality imaging for the global evaluation of aortic stenosis: The valve, the ventricle, the afterload. Trends Cardiovasc Med 2024:S1050-1738(24)00015-X. [PMID: 38387745 DOI: 10.1016/j.tcm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Aortic stenosis (AS) is the most common valvular heart disease growing in parallel to the increment of life expectancy. Besides the valve, the degenerative process affects the aorta, impairing its elastic properties and leading to increased systemic resistance. The composite of valvular and systemic afterload mediates ventricular damage. The first step of a thorough evaluation of AS should include a detailed assessment of valvular anatomy and hemodynamics. Subsequently, the ventricle, and the global afterload should be assessed to define disease stage and prognosis. Multimodality imaging is of paramount importance for the comprehensive evaluation of these three elements. Echocardiography is the cornerstone modality whereas Multi-Detector Computed Tomography and Cardiac Magnetic Resonance provide useful complementary information. This review comprehensively examines the merits of these imaging modalities in AS for the evaluation of the valve, the ventricle, and the afterload and ultimately endeavors to integrate them in a holistic assessment of AS.
Collapse
Affiliation(s)
- Vasileios Anastasiou
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Daios
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Karamitsos
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emmanouela Peteinidou
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matthaios Didagelos
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Giannakoulas
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantina Aggeli
- 1st Department of Cardiology, Hippokration Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Ziakas
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Kamperidis
- 1st Department of Cardiology, AHEPA Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
4
|
Ebrahimkhani M, Johnson EMI, Sodhi A, Robinson JD, Rigsby CK, Allen BD, Markl M. A Deep Learning Approach to Using Wearable Seismocardiography (SCG) for Diagnosing Aortic Valve Stenosis and Predicting Aortic Hemodynamics Obtained by 4D Flow MRI. Ann Biomed Eng 2023; 51:2802-2811. [PMID: 37573264 DOI: 10.1007/s10439-023-03342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
In this paper, we explored the use of deep learning for the prediction of aortic flow metrics obtained using 4-dimensional (4D) flow magnetic resonance imaging (MRI) using wearable seismocardiography (SCG) devices. 4D flow MRI provides a comprehensive assessment of cardiovascular hemodynamics, but it is costly and time-consuming. We hypothesized that deep learning could be used to identify pathological changes in blood flow, such as elevated peak systolic velocity ([Formula: see text]) in patients with heart valve diseases, from SCG signals. We also investigated the ability of this deep learning technique to differentiate between patients diagnosed with aortic valve stenosis (AS), non-AS patients with a bicuspid aortic valve (BAV), non-AS patients with a mechanical aortic valve (MAV), and healthy subjects with a normal tricuspid aortic valve (TAV). In a study of 77 subjects who underwent same-day 4D flow MRI and SCG, we found that the [Formula: see text] values obtained using deep learning and SCGs were in good agreement with those obtained by 4D flow MRI. Additionally, subjects with non-AS TAV, non-AS BAV, non-AS MAV, and AS could be classified with ROC-AUC (area under the receiver operating characteristic curves) values of 92%, 95%, 81%, and 83%, respectively. This suggests that SCG obtained using low-cost wearable electronics may be used as a supplement to 4D flow MRI exams or as a screening tool for aortic valve disease.
Collapse
Affiliation(s)
- Mahmoud Ebrahimkhani
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ethan M I Johnson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Aparna Sodhi
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
| | - Joshua D Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Cynthia K Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Ann & Robert H. Lurie Children's Hospital, Chicago, IL, 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Bradly D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
5
|
Maroun A, Quinn S, Dushfunian D, Weiss EK, Allen BD, Carr JC, Markl M. Clinical Applications of Four-Dimensional Flow MRI. Magn Reson Imaging Clin N Am 2023; 31:451-460. [PMID: 37414471 DOI: 10.1016/j.mric.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Four-dimensional flow MRI is a powerful phase contrast technique used for assessing three-dimensional (3D) blood flow dynamics. By acquiring a time-resolved velocity field, it enables flexible retrospective analysis of blood flow that can include qualitative 3D visualization of complex flow patterns, comprehensive assessment of multiple vessels, reliable placement of analysis planes, and calculation of advanced hemodynamic parameters. This technique provides several advantages over routine two-dimensional flow imaging techniques, allowing it to become part of clinical practice at major academic medical centers. In this review, we present the current state-of-the-art cardiovascular, neurovascular, and abdominal applications.
Collapse
Affiliation(s)
- Anthony Maroun
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA.
| | - Sandra Quinn
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - David Dushfunian
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Elizabeth K Weiss
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - James C Carr
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 North Michigan Avenue Suite 1600, Chicago, IL 60611, USA
| |
Collapse
|
6
|
Masutani EM, Chandrupatla RS, Wang S, Zocchi C, Hahn LD, Horowitz M, Jacobs K, Kligerman S, Raimondi F, Patel A, Hsiao A. Deep Learning Synthetic Strain: Quantitative Assessment of Regional Myocardial Wall Motion at MRI. Radiol Cardiothorac Imaging 2023; 5:e220202. [PMID: 37404797 PMCID: PMC10316298 DOI: 10.1148/ryct.220202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 07/06/2023]
Abstract
Purpose To assess the feasibility of a newly developed algorithm, called deep learning synthetic strain (DLSS), to infer myocardial velocity from cine steady-state free precession (SSFP) images and detect wall motion abnormalities in patients with ischemic heart disease. Materials and Methods In this retrospective study, DLSS was developed by using a data set of 223 cardiac MRI examinations including cine SSFP images and four-dimensional flow velocity data (November 2017 to May 2021). To establish normal ranges, segmental strain was measured in 40 individuals (mean age, 41 years ± 17 [SD]; 30 men) without cardiac disease. Then, DLSS performance in the detection of wall motion abnormalities was assessed in a separate group of patients with coronary artery disease, and these findings were compared with consensus results of four independent cardiothoracic radiologists (ground truth). Algorithm performance was evaluated by using receiver operating characteristic curve analysis. Results Median peak segmental radial strain in individuals with normal cardiac MRI findings was 38% (IQR: 30%-48%). Among patients with ischemic heart disease (846 segments in 53 patients; mean age, 61 years ± 12; 41 men), the Cohen κ among four cardiothoracic readers for detecting wall motion abnormalities was 0.60-0.78. DLSS achieved an area under the receiver operating characteristic curve of 0.90. Using a fixed 30% threshold for abnormal peak radial strain, the algorithm achieved a sensitivity, specificity, and accuracy of 86%, 85%, and 86%, respectively. Conclusion The deep learning algorithm had comparable performance with subspecialty radiologists in inferring myocardial velocity from cine SSFP images and identifying myocardial wall motion abnormalities at rest in patients with ischemic heart disease.Keywords: Neural Networks, Cardiac, MR Imaging, Ischemia/Infarction Supplemental material is available for this article. © RSNA, 2023.
Collapse
|
7
|
Sophocleous F, Delchev K, De Garate E, Hamilton MCK, Caputo M, Bucciarelli-Ducci C, Biglino G. Feasibility of Wave Intensity Analysis from 4D Cardiovascular Magnetic Resonance Imaging Data. Bioengineering (Basel) 2023; 10:662. [PMID: 37370593 DOI: 10.3390/bioengineering10060662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 06/29/2023] Open
Abstract
Congenital heart defects (CHD) introduce haemodynamic changes; e.g., bicuspid aortic valve (BAV) presents a turbulent helical flow, which activates aortic pathological processes. Flow quantification is crucial for diagnostics and to plan corrective strategies. Multiple imaging modalities exist, with phase contrast magnetic resonance imaging (PC-MRI) being the current gold standard; however, multiple predetermined site measurements may be required, while 4D MRI allows for measurements of area (A) and velocity (U) in all spatial dimensions, acquiring a single volume and enabling a retrospective analysis at multiple locations. We assessed the feasibility of gathering hemodynamic insight into aortic hemodynamics by means of wave intensity analysis (WIA) derived from 4D MRI. Data were collected in n = 12 BAV patients and n = 7 healthy controls. Following data acquisition, WIA was successfully derived at three planes (ascending, thoracic and descending aorta) in all cases. The values of wave speed were physiological and, while the small sample limited any clinical interpretation of the results, the study shows the possibility of studying wave travel and wave reflection based on 4D MRI. Below, we demonstrate for the first time the feasibility of deriving wave intensity analysis from 4D flow data and open the door to research applications in different cardiovascular scenarios.
Collapse
Affiliation(s)
- Froso Sophocleous
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Kiril Delchev
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Estefania De Garate
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Mark C K Hamilton
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Massimo Caputo
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
- University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Chiara Bucciarelli-Ducci
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
- Royal Brompton and Harefield Hospitals, Guys and St Thomas NHS Trust, London UB9 6JH, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, Kings College London, London WC2R 2LS, UK
| | - Giovanni Biglino
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| |
Collapse
|
8
|
Wiesemann S, Trauzeddel RF, Musa A, Hickstein R, Mayr T, von Knobelsdorff-Brenkenhoff F, Bollache E, Markl M, Schulz-Menger J. Changes of aortic hemodynamics after aortic valve replacement-A four dimensional flow cardiovascular magnetic resonance follow up study. Front Cardiovasc Med 2023; 10:1071643. [PMID: 36865891 PMCID: PMC9971963 DOI: 10.3389/fcvm.2023.1071643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Objectives Non-invasive assessment of aortic hemodynamics using four dimensional (4D) flow magnetic resonance imaging (MRI) provides new information on blood flow patterns and wall shear stress (WSS). Aortic valve stenosis (AS) and/or bicuspid aortic valves (BAV) are associated with altered aortic flow patterns and elevated WSS. Aim of this study was to investigate changes in aortic hemodynamics over time in patients with AS and/or BAV with or without aortic valve replacement. Methods We rescheduled 20 patients for a second 4D flow MRI examination, whose first examination was at least 3 years prior. A total of 7 patients received an aortic valve replacement between baseline and follow up examination (=operated group = OP group). Aortic flow patterns (helicity/vorticity) were assessed using a semi-quantitative grading approach from 0 to 3, flow volumes were evaluated in 9 planes, WSS in 18 and peak velocity in 3 areas. Results While most patients had vortical and/or helical flow formations within the aorta, there was no significant change over time. Ascending aortic forward flow volumes were significantly lower in the OP group than in the NOP group at baseline (NOP 69.3 mL ± 14.2 mL vs. OP 55.3 mL ± 1.9 mL p = 0.029). WSS in the outer ascending aorta was significantly higher in the OP group than in the NOP group at baseline (NOP 0.6 ± 0.2 N/m2 vs. OP 0.8 ± 0.2 N/m2, p = 0.008). Peak velocity decreased from baseline to follow up in the aortic arch only in the OP group (1.6 ± 0.6 m/s vs. 1.2 ± 0.3 m/s, p = 0.018). Conclusion Aortic valve replacement influences aortic hemodynamics. The parameters improve after surgery.
Collapse
Affiliation(s)
- Stephanie Wiesemann
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ralf Felix Trauzeddel
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Ahmed Musa
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Richard Hickstein
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Thomas Mayr
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany
| | - Florian von Knobelsdorff-Brenkenhoff
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Clinic Agatharied, Department of Cardiology, Ludwig Maximilian University of Munich, Hausham, Germany
| | - Emilie Bollache
- CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), Sorbonne Université, Paris, France
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeanette Schulz-Menger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Working Group Cardiovascular Magnetic Resonance, Berlin, Germany,Department of Cardiology and Nephrology, HELIOS Klinikum Berlin Buch, Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,*Correspondence: Jeanette Schulz-Menger, ✉
| |
Collapse
|
9
|
Gill H, Fernandes J, Chehab O, Prendergast B, Redwood S, Chiribiri A, Nordsletten D, Rajani R, Lamata P. Evaluation of aortic stenosis: From Bernoulli and Doppler to Navier-Stokes. Trends Cardiovasc Med 2023; 33:32-43. [PMID: 34920129 DOI: 10.1016/j.tcm.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/01/2023]
Abstract
Uni-dimensional Doppler echocardiography data provide the mainstay of quantative assessment of aortic stenosis, with the transvalvular pressure drop a key indicator of haemodynamic burden. Sophisticated methods of obtaining velocity data, combined with improved computational analysis, are facilitating increasingly robust and reproducible measurement. Imaging modalities which permit acquisition of three-dimensional blood velocity vector fields enable angle-independent valve interrogation and calculation of enhanced measures of the transvalvular pressure drop. This manuscript clarifies the fundamental principles of physics that underpin the evaluation of aortic stenosis and explores modern techniques that may provide more accurate means to grade aortic stenosis and inform appropriate management.
Collapse
Affiliation(s)
- Harminder Gill
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Joao Fernandes
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Omar Chehab
- Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Bernard Prendergast
- Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Simon Redwood
- Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - David Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Surgery and Biomedical Engineering, University of Michigan, 2800 Plymouth Rd, 48109, Ann Arbor, MI, USA
| | - Ronak Rajani
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Cardiology Department, Guy's and St. Thomas's Hospital NHS Foundation Trust, London, UK
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
10
|
Soulat G, Scott MB, Pathrose A, Jarvis K, Berhane H, Allen B, Avery R, Alsate AR, Rigsby CK, Markl M. 4D flow MRI derived aortic hemodynamics multi-year follow-up in repaired coarctation with bicuspid aortic valve. Diagn Interv Imaging 2022; 103:418-426. [PMID: 35523699 PMCID: PMC11041270 DOI: 10.1016/j.diii.2022.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/02/2023]
Abstract
PURPOSE The purpose of this study was to investigate the relationships between hemodynamic parameters and longitudinal changes in aortic dimensions on four-dimensional (4D) flow magnetic resonance imaging (MRI) in patients with bicuspid aortic valve (BAV) and repaired coarctation. MATERIALS AND METHODS The study retrospectively included patients with BAV and childhood coarctation repair who had at least two cardiothoracic MRI examinations including 4D flow MRI at baseline and follow-up. Analysis included the calculation of aortic peak velocities, wall shear stress (WSS), pulse wave velocity (PWV), aortic dimensions and annual growth rates. Differences between examinations were assessed using paired t-test or Wilcoxon signed rank test. Relationships between growth rate and 4D flow metrics were assessed using Pearson or Spearman correlation tests. RESULTS The cohort included 15 patients (mean age 35 ± 8 [SD] years, 9 men) with a median follow-up time of 3.98 years (Q1: 2.10; Q3: 4.96). There were no significant differences in aortic mean WSS, peak velocities, and PWV between baseline and follow-up values. Greater baseline peak velocities at the site of the coarctation were strongly associated with aortic narrowing (follow-up vs. baseline diameter) at coarctation zone (r = -0.64; P = 0.010) and moderately in descending aorta (r = -0.53; P = 0.042). In addition, increased baseline WSS in the aortic arch was strongly related with narrowing of the coarctation zone at follow-up (r = -0.64, P = 0.011). CONCLUSION Measures of aortic hemodynamics and aortic WSS are stable over time in patients with BAV with coarctation repair. Increased peak velocity was associated with a progressive narrowing at the site of the coarctation repair.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Université Paris Centre, PARCC INSERM, 75015 Paris, France.
| | - Michael B Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208, IL, USA
| | - Ashitha Pathrose
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Kelly Jarvis
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Haben Berhane
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208, IL, USA
| | - Bradley Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Ryan Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA
| | - Alejandro Roldan Alsate
- Department of Mechanical Engineering, University of Wisconsin Madison, Madison 53706, WI, USA
| | - Cynthia K Rigsby
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago 60611, IL, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208, IL, USA
| |
Collapse
|
11
|
Pulmonary Artery Remodeling and Advanced Hemodynamics: Magnetic Resonance Imaging Biomarkers of Pulmonary Hypertension. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Poorly characterized by non-invasive diagnostic imaging techniques, pulmonary hypertension (PHT) is commonly associated with changes in vascular hemodynamics and remodeling of pulmonary artery architecture. These disease phenotypes represent potential biomarkers of interest in clinical environment. In this retrospective clinical study, 33 patients with pulmonary hypertension and seventeen controls were recruited. Architectural remodeling was characterized using 3D-contrast enhanced angiogram via the measurement of pulmonary artery diameters, bifurcation distances, and angles. Hemodynamics were characterized using 4D-flow magnetic resonance imaging (MRI) via wall shear stress, kinetic energy, vorticity, and directional flow dynamics. Parameters were compared using independent samples student’s t-tests. Correlational analysis was performed using Pearson’s correlation. PHT patients demonstrated dilation in the main and right branch of the pulmonary artery (p < 0.05). Furthermore, these patients also exhibited increases in bifurcation distances in the left and right pulmonary arteries (p < 0.05). Wall shear stress, maximum kinetic energy, and energy loss were decreased in the pulmonary artery (p < 0.001). Correlations were observed between peak velocities and right ventricle ejection fraction (r = 0.527, p < 0.05). These findings suggest that pulmonary artery remodeling and hemodynamic changes may possess clinical utility as MRI biomarkers for PHT.
Collapse
|
12
|
Geeraert P, Jamalidinan F, Burns F, Jarvis K, Bristow MS, Lydell C, Hidalgo Tobon SS, de Celis Alonso B, Fedak PWM, White JA, Garcia J. Hemodynamic Assessment in Bicuspid Aortic Valve Disease and Aortic Dilation: New Insights From Voxel-By-Voxel Analysis of Reverse Flow, Stasis, and Energetics. Front Bioeng Biotechnol 2022; 9:725113. [PMID: 35096784 PMCID: PMC8793887 DOI: 10.3389/fbioe.2021.725113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023] Open
Abstract
Objectives: Clinical management decisions surrounding ascending aorta (AAo) dilation in bicuspid aortic valve (BAV) disease benefit from personalized predictive tools. 4D-flow MRI may provide patient-specific markers reflective of BAV-associated aortopathy. This study aims to explore novel 4D-flow MRI parametric voxel-by-voxel forward flow, reverse flow, kinetic energy and stasis in BAV disease. We hypothesize that novel parametric voxel-by-voxel markers will be associated with aortic dilation and referral for surgery and can enhance our understanding of BAV hemodynamics beyond standard metrics. Methods: A total of 96 subjects (73 BAV patients, 23 healthy controls) underwent MRI scan. Healthy controls had no known cardiovascular disease. Patients were clinically referred for AAo dilation assessment. Indexed diameters were obtained by dividing the aortic diameter by the patient’s body surface area. Patients were followed for the occurrence of aortic surgery. 4D-flow analysis was performed by a single observer in five regions: left ventricular outflow tract (LVOT), AAo, arch, proximal descending aorta (PDAo), and distal descending aorta (DDAo). In each region peak velocity, kinetic energy (KE), forward flow (FF), reverse flow (RF), and stasis were measured on a voxel-by-voxel basis. T-tests (or non-parametric equivalent) compared flow parameters between cohorts. Univariate and multivariate analyses explored associations between diameter and parametric voxel-by-voxel parameters. Results: Compared to controls, BAV patients showed reduced stasis (p < 0.01) and increased RF and FF (p < 0.01) throughout the aorta, and KE remained similar. In the AAo, indexed diameter correlated with age (R = 0.326, p = 0.01), FF (R = −0.648, p < 0.001), RF (R = −0.441, p < 0.001), and stasis (R = −0.288, p < 0.05). In multivariate analysis, FF showed a significant inverse association with AAo indexed diameter, independent of age. During a median 179 ± 180 days of follow-up, 23 patients (32%) required aortic surgery. Compared to patients not requiring surgery, they showed increased KE and peak velocity in the proximal aorta (p < 0.01), accompanied by increased RF and reduced stasis throughout the entire aorta (p < 0.01). Conclusion: Novel voxel-by-voxel reverse flow and stasis were altered in BAV patients and are associated with aortic dilation and surgical treatment.
Collapse
Affiliation(s)
- Patrick Geeraert
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Fatemehsadat Jamalidinan
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Fiona Burns
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Kelly Jarvis
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Michael S. Bristow
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Carmen Lydell
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | | | - Benito de Celis Alonso
- Faculty of Mathematical and Physical Sciences, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
| | - Paul W. M. Fedak
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - James A. White
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Julio Garcia
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Julio Garcia,
| |
Collapse
|
13
|
Soulat G, Scott M, Allen BD, Avery R, Bonow RO, Malaisrie C, McCarthy P, Fedak P, Barker AJ, Markl M. Association of Regional Wall Shear Stress and Progressive Ascending Aorta Dilation in Bicuspid Aortic Valve. JACC. CARDIOVASCULAR IMAGING 2022; 15:33-42. [PMID: 34419402 PMCID: PMC8741630 DOI: 10.1016/j.jcmg.2021.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the role of wall shear stress (WSS) as a predictor of ascending aorta (AAo) growth at 5 years or greater follow-up. BACKGROUND Aortic 4-dimensional flow cardiac magnetic resonance (CMR) can quantify regions exposed to high WSS, a known stimulus for arterial wall dysfunction. However, its association with longitudinal changes in aortic dilation in patients with bicuspid aortic valve (BAV) is unknown. METHODS This retrospective study identified 72 patients with BAV (age 45 ± 12 years) who underwent CMR for surveillance of aortic dilation at baseline and ≥5 years of follow-up. Four-dimensional flow CMR analysis included the calculation of WSS heat maps to compare regional WSS in individual patients with population averages of healthy age- and sex-matched subjects (database of 136 controls). The relative areas of the AAo and aorta (in %) exposed to elevated WSS (outside the 95% CI of healthy population averages) were quantified. RESULTS At a median follow-up duration of 6.0 years, the mean AAo growth rate was 0.24 ± 0.20 mm/y. The fraction of the AAo exposed to elevated WSS at baseline was increased for patients with higher growth rates (>0.24 mm/y, n = 32) compared with those with growth rates <0.24 mm/y (19.9% [IQR: 10.2%-25.5%] vs 5.7% [IQR: 1.5%-21.3%]; P = 0.008). Larger areas of elevated WSS in the AAo and entire aorta were associated with higher rates of AAo dilation >0.24 mm/y (odds ratio: 1.51; 95% CI: 1.05-2.17; P = 0.026 and odds ratio: 1.70; 95% CI: 1.01-3.15; P = 0.046, respectively). CONCLUSIONS The area of elevated AAo WSS as assessed by 4-dimensional flow CMR identified BAV patients with higher rates of aortic dilation and thus might determine which patients require closer follow-up.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Biomedical Engineering, McCormick, School of Engineering, Northwestern University, Evanston, IL, USA
| | - Bradley D Allen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert O. Bonow
- Division of Cardiology, Department of Medicine, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois
| | - Chris Malaisrie
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA
| | - Paul Fedak
- Division of Cardiac Surgery, Department of Surgery, Bluhm Cardiovascular Institute, Northwestern University, Chicago, Illinois, USA,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Alex J Barker
- Department of Radiology and Bioengineering, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Biomedical Engineering, McCormick, School of Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
14
|
Desai L, Stefek H, Berhane H, Robinson J, Rigsby C, Markl M. Four-Dimensional flow Magnetic Resonance Imaging for Assessment of Pediatric Coarctation of the Aorta. J Magn Reson Imaging 2022; 55:200-208. [PMID: 34173693 PMCID: PMC9084555 DOI: 10.1002/jmri.27802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Coarctation of the aorta (CoA) typically requires repair, but re-interventions and vascular complications occur, particularly with associated defects like bicuspid aortic valve (BAV). Magnetic resonance imaging (MRI) may identify anatomic and hemodynamic factors contributing to clinical complications. PURPOSE To investigate 4D flow MRI characteristics in pediatric CoA to determine parameters for long-term clinical surveillance. STUDY TYPE Retrospective. POPULATION CoA (n = 21), CoA with BAV (n = 24), BAV alone (n = 29), and healthy control (n = 25). FIELD STRENGTH/SEQUENCE A 1.5 T, 3D CE IR FLASH MRA, 4D flow MRI using 3D time resolved PC-MRI with velocity encoding. ASSESSMENT Thoracic aorta diameters were measured from 3D CE-MRA. Peak systolic velocities and wall shear stress were calculated and flow patterns were visualized throughout the thoracic aorta using 4D flow. Repair characteristics, re-interventions, and need for anti-hypertensive medications were recorded. STATISTICS Descriptive statistics, ANOVA with post hoc t-testing and Bonferroni correction, Kruskal-Wallis H, intraclass correlation coefficient, Fleiss' kappa. RESULTS Patients with CoA with or without repair had smaller transverse arch diameters compared to BAV alone and control cohorts (P < 0.05), higher peak systolic flow velocities and wall shear stress compared to controls in the transverse arch and descending aorta (P < 0.05), and flow derangements in the descending aorta. The most common CoA repairs were extended end-to-end anastomosis (n = 22/45, 48.9%, age at repair 1 ± 2 years, seven re-interventions) and stent/interposition graft placement (n = 10/45, 22.2%, age at repair 12 ± 3 years, one re-intervention). Anti-hypertensive medications were prescribed to 33.3% (n = 15/45) of CoA and 34.4% of BAV alone patients (n = 10/29). DATA CONCLUSIONS Despite repair, CoA alters hemodynamics and flow patterns in the transverse arch and descending aorta. These findings may contribute to vascular remodeling and secondary complications. 4D flow MRI may be valuable in risk stratification, treatment selection and postintervention assessment. Long-term, prospective studies are warranted to correlate patient and MRI factors with clinical outcomes. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Lajja Desai
- Ann and Robert H. Lurie Children’s Hospital of
Chicago, Chicago, Illinois, USA,Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| | | | - Haben Berhane
- Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| | - Joshua Robinson
- Ann and Robert H. Lurie Children’s Hospital of
Chicago, Chicago, Illinois, USA,Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| | - Cynthia Rigsby
- Ann and Robert H. Lurie Children’s Hospital of
Chicago, Chicago, Illinois, USA
| | - Michael Markl
- Northwestern University Feinberg School of Medicine,
Chicago, Illinois, USA
| |
Collapse
|
15
|
Helmy S, Karim S. Multimodality imaging in aortic stenosis. Heart Views 2022; 23:22-32. [PMID: 35757450 PMCID: PMC9231538 DOI: 10.4103/heartviews.heartviews_32_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/03/2022] [Indexed: 12/02/2022] Open
Abstract
Aortic stenosis (AS) is the most common cardiac valve lesion in the adult population, with an incidence increasing as the population ages. Accurate assessment of AS severity is necessary for clinical decision-making. Echocardiography is currently the diagnostic method of choice for assessing and managing AS. Transthoracic echocardiography is usually sufficient in most situations. Transesophageal echocardiography and stress echocardiography may also be utilized when there is inadequate image quality and/or discordance in the results and the clinical presentation. There is a role for other imaging modalities such as cardiac computed tomography, magnetic resonance imaging, and catheterization in selected cases. The following describes in some detail the role of these modalities in the diagnosis and assessment of AS.
Collapse
|
16
|
Multiparametric MRI identifies subtle adaptations for demarcation of disease transition in murine aortic valve stenosis. Basic Res Cardiol 2022; 117:29. [PMID: 35643805 PMCID: PMC9148878 DOI: 10.1007/s00395-022-00936-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023]
Abstract
Aortic valve stenosis (AS) is the most frequent valve disease with relevant prognostic impact. Experimental model systems for AS are scarce and comprehensive imaging techniques to simultaneously quantify function and morphology in disease progression are lacking. Therefore, we refined an acute murine AS model to closely mimic human disease characteristics and developed a high-resolution magnetic resonance imaging (MRI) approach for simultaneous in-depth analysis of valvular, myocardial as well as aortic morphology/pathophysiology to identify early changes in tissue texture and critical transition points in the adaptive process to AS. AS was induced by wire injury of the aortic valve. Four weeks after surgery, cine loops, velocity, and relaxometry maps were acquired at 9.4 T to monitor structural/functional alterations in valve, aorta, and left ventricle (LV). In vivo MRI data were subsequently validated by histology and compared to echocardiography. AS mice exhibited impaired valve opening accompanied by significant valve thickening due to fibrotic remodelling. While control mice showed bell-shaped flow profiles, AS resulted not only in higher peak flow velocities, but also in fragmented turbulent flow patterns associated with enhanced circumferential strain and an increase in wall thickness of the aortic root. AS mice presented with a mild hypertrophy but unaffected global LV function. Cardiac MR relaxometry revealed reduced values for both T1 and T2 in AS reflecting subtle myocardial tissue remodelling with early alterations in mitochondrial function in response to the enhanced afterload. Concomitantly, incipient impairments of coronary flow reserve and myocardial tissue integrity get apparent accompanied by early troponin release. With this, we identified a premature transition point with still compensated cardiac function but beginning textural changes. This will allow interventional studies to explore early disease pathophysiology and novel therapeutic targets.
Collapse
|
17
|
Lee J, Gupta AN, Ma LE, Scott MB, Mason OR, Wu E, Thomas JD, Markl M. Valvular regurgitation flow jet assessment using in vitro 4D flow MRI: Implication for mitral regurgitation. Magn Reson Med 2021; 87:1923-1937. [PMID: 34783383 DOI: 10.1002/mrm.29082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the accuracy of four-dimensional (4D) flow MRI for direct assessment of peak velocity, flow volume, and momentum of a mitral regurgitation (MR) flow jets using an in vitro pulsatile jet flow phantom. We systematically investigated the impact of spatial resolution and quantification location along the jet on flow quantities with Doppler ultrasound as a reference for peak velocity. METHODS Four-dimensional flow MRI data of a pulsatile jet through a circular, elliptical, and 3D-printed patient-specific MR orifice model was acquired with varying spatial resolution (1.5-5 mm isotropic voxel). Flow rate and momentum of the jet were quantified at various axial distances (x = 0-50 mm) and integrated over time to calculate Voljet and MTIjet . In vivo assessment of Voljet and MTIjet was performed on 3 MR patients. RESULTS Peak velocities were comparable to Doppler ultrasound (3% error, 1.5 mm voxel), but underestimated with decreasing spatial resolution (-40% error, 5 mm voxel). Voljet was similar to regurgitant volume (RVol) within 5 mm, and then increased linearly with the axial distance (19%/cm) because of flow entrainment. MTIjet remained steady throughout the jet (2%/cm) as theoretically predicted. Four and 9 voxels across the jet were required to measure flow volume and momentum-time-integral within 10% error, respectively. CONCLUSION Four-dimensional flow MRI detected accurate peak velocity, flow rate, and momentum for in vitro MR-mimicking flow jets. Spatial resolution significantly impacted flow quantitation, which otherwise followed predictions of flow entrainment and momentum conservation. This study provides important preliminary information for accurate in vivo MR assessment using 4D flow MRI.
Collapse
Affiliation(s)
- Jeesoo Lee
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Aakash N Gupta
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Liliana E Ma
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michel B Scott
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - O'Neil R Mason
- Division of Cardiology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Erik Wu
- Division of Cardiology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - James D Thomas
- Division of Cardiology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Illinois, USA
| |
Collapse
|
18
|
Hälvä R, Vaara SM, Peltonen JI, Kaasalainen TT, Holmström M, Lommi J, Suihko S, Rajala H, Kylmälä M, Kivistö S, Syväranta S. Peak flow measurements in patients with severe aortic stenosis: a prospective comparative study between cardiovascular magnetic resonance 2D and 4D flow and transthoracic echocardiography. J Cardiovasc Magn Reson 2021; 23:132. [PMID: 34775954 PMCID: PMC8591846 DOI: 10.1186/s12968-021-00825-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aortic valve stenosis (AS) is the most prevalent valvular disease in the developed countries. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is an emerging imaging technique, which has been suggested to improve the evaluation of AS severity compared to two-dimensional (2D) flow and transthoracic echocardiography (TTE). We investigated the reliability of CMR 2D flow and 4D flow techniques in measuring aortic transvalvular peak systolic flow in patients with severe AS. METHODS We prospectively recruited 90 patients referred for aortic valve replacement due to severe AS (73.3 ± 11.3 years, aortic valve area 0.7 ± 0.1 cm2, and 54/36 tricuspid/bicuspid), and 10 non-valvular disease controls. All the patients underwent echocardiography and 2D flow and 4D flow CMR. Peak flow velocity measurements were compared using Wilcoxon signed rank sum test and Bland-Altman analysis. RESULTS 4D flow underestimated peak flow velocity in the AS group when compared with TTE (bias - 1.1 m/s, limits of agreement ± 1.4 m/s) and 2D flow (bias - 1.2 m/s, limits of agreement ± 1.6 m/s). The differences between values obtained by TTE (median 4.3 m/s, range 2.7-6.1 m/s) and 2D flow (median 4.5 m/s, range 2.9-6.5 m/s) compared to 4D flow (median 3.1 m/s, range 1.7-5.1 m/s) were significant (p < 0.001). The difference between 2D flow and TTE were insignificant (bias 0.07 m/s, limits of agreement ± 1.5 m/s). In non-valvular disease controls, peak flow velocity was measured higher by 4D flow than 2D flow (1.4 m/s, 1.1-1.7 m/s and 1.3 m/s, 1.1-1.5 m/s, respectively; bias 0.2 m/s, limits of agreement ± 0.16 m/s). CONCLUSIONS CMR 4D flow significantly underestimates systolic peak flow velocity in patients with severe AS. 2D flow, in turn, estimated the AS velocity accurately, with measured peak flow velocities comparable to TTE.
Collapse
Affiliation(s)
- Reetta Hälvä
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu M. Vaara
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha I. Peltonen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Touko T. Kaasalainen
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Miia Holmström
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jyri Lommi
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu Suihko
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Helena Rajala
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Kylmälä
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sari Kivistö
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Suvi Syväranta
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Cerne JW, Pathrose A, Gordon DZ, Sarnari R, Veer M, Blaisdell J, Allen BD, Avery R, Markl M, Ragin A, Carr JC. Evaluation of Pulmonary Hypertension Using 4D Flow MRI. J Magn Reson Imaging 2021; 56:234-245. [PMID: 34694050 DOI: 10.1002/jmri.27967] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cardiac magnetic resonance imaging (MRI) is becoming an alternative to right heart catheterization (RHC) for evaluating pulmonary hypertension (PH). A need exists to further evaluate cardiac MRI's ability to characterize PH. PURPOSE To evaluate the potential for four-dimensional (4D) flow MRI-derived pulmonary artery velocities to characterize PH. STUDY TYPE Prospective case-control. POPULATION Fifty-four PH patients (56% female); 25 controls (36% female). FIELD STRENGTH/SEQUENCE 1.5 T; gradient recalled echo 4D flow and balanced steady-state free precession cardiac cine. ASSESSMENT RHC was used to derive patients' pulmonary vascular resistance (PVR). 4D flow measured blood velocities at the main, left, and right pulmonary arteries (MPA, LPA, and RPA); cine measured ejection fraction, end diastolic, and end systolic volumes (EF, EDV, and ESV). EDV and ESV were normalized (indexed) to body surface area (ESVI and EDVI). Parameters were evaluated between, and within, PH subgroups: pulmonary arterial hypertension (PAH); PH due to left heart disease (PH-LHD)/chronic lung disease (PH-CLD)/or chronic thrombo-emboli (CTE-PH). STATISTICAL TESTS Analysis of variance and Kruskal-Wallis tests compared parameters between subgroups. Pearson's r assessed velocity, PVR, and volume correlations. Significance definition: P < 0.05. RESULTS PAH peak and mean velocities were significantly lower than in controls at the LPA (36 ± 12 cm/second and 20 ± 4 cm/second vs. 59 ± 15 cm/second and 32 ± 9 cm/second). At the RPA, mean velocities were significantly lower in PAH vs. controls (27 ± 6 cm/second vs. 40 ± 9 cm/second). Peak velocities significantly correlated with right ventricular EF at the MPA (r = 0.286), RPA (r = 0.400), and LPA (r = 0.401). Peak velocity significantly correlated with right ventricular ESVI at the RPA (r = -0.355) and LPA (r = -0.316). Significant correlations between peak velocities and PVR were moderate at the LPA in PAH (r = -0.641) and in PH-LHD (r = -0.606) patients, and at the MPA in PH-CLD (r = -0.728). CTE-PH showed non-significant correlations between peak velocity and PVR at all locations. DATA CONCLUSION Preliminary findings suggest 4D flow can identify PAH and track PVR changes. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- John W Cerne
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Ashitha Pathrose
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Daniel Z Gordon
- Department of Infectious Diseases, Northwestern University, Chicago, Illinois, USA
| | - Roberto Sarnari
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Manik Veer
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Julie Blaisdell
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Bradley D Allen
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Ryan Avery
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - Michael Markl
- Department of Radiology, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Ann Ragin
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| | - James C Carr
- Department of Radiology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
20
|
Stokes C, Bonfanti M, Li Z, Xiong J, Chen D, Balabani S, Díaz-Zuccarini V. A novel MRI-based data fusion methodology for efficient, personalised, compliant simulations of aortic haemodynamics. J Biomech 2021; 129:110793. [PMID: 34715606 PMCID: PMC8907869 DOI: 10.1016/j.jbiomech.2021.110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/24/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023]
Abstract
We present a novel, cost-efficient methodology to simulate aortic haemodynamics in a patient-specific, compliant aorta using an MRI data fusion process. Based on a previously-developed Moving Boundary Method, this technique circumvents the high computational cost and numerous structural modelling assumptions required by traditional Fluid-Structure Interaction techniques. Without the need for Computed Tomography (CT) data, the MRI images required to construct the simulation can be obtained during a single imaging session. Black Blood MR Angiography and 2D Cine-MRI data were used to reconstruct the luminal geometry and calibrate wall movement specifically to each region of the aorta. 4D-Flow MRI and non-invasive pressure measurements informed patient-specific inlet and outlet boundary conditions. Luminal area closely matched 2D Cine-MRI measurements with a mean error of less than 4.6% across the cardiac cycle, while physiological pressure and flow distributions were simulated to within 3.3% of patient-specific targets. Moderate agreement with 4D-Flow MRI velocity data was observed. Despite lower peak velocity, an equivalent rigid-wall simulation predicted a mean Time-Averaged Wall Shear Stress (TAWSS) 13% higher than the compliant simulation. The agreement observed between compliant simulation results and MRI data is testament to the accuracy and efficiency of this MRI-based simulation technique.
Collapse
Affiliation(s)
- Catriona Stokes
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Mirko Bonfanti
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Zeyan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Jiang Xiong
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing, China.
| | - Duanduan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| | - Stavroula Balabani
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| | - Vanessa Díaz-Zuccarini
- Mechanical Engineering Department, Roberts Engineering Building, University College London, Torrington Place, London, WC1E 7JE, United Kingdom; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, London, W1W 7TY, United Kingdom.
| |
Collapse
|
21
|
Doyle CM, Orr J, Greenwood JP, Plein S, Tsoumpas C, Bissell MM. Four-Dimensional Flow Magnetic Resonance Imaging in the Assessment of Blood Flow in the Heart and Great Vessels: A Systematic Review. J Magn Reson Imaging 2021; 55:1301-1321. [PMID: 34416048 DOI: 10.1002/jmri.27874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022] Open
Abstract
Four-dimensional (4D) flow magnetic resonance imaging (MRI) allows multidirectional quantification of blood flow in the heart and great vessels. Comparability of the technique to the current reference standards of flow assessment-two-dimensional (2D) flow MRI and Doppler echocardiography-varies in the literature. Image acquisition parameters likely impact upon the accuracy and reproducibility of 4D flow MRI. We therefore sought to review the current literature on 4D flow MRI in the heart and great vessels, in comparison to 2D flow MRI, Doppler echocardiography, and invasive catheterization. Using a predefined search strategy and inclusion and exclusion criteria, the databases EMBASE and Medline were searched in January 2021 for peer-reviewed research articles comparing cardiac 4D flow MRI to 2D flow MRI, Doppler echocardiography and/or invasive catheterization. The data from all relevant articles were assimilated and analyzed using Mann-Whitney U and chi χ2 test. Forty-four manuscripts met the eligibility criteria and were included in the review. The review showed agreement of 4D flow MRI to the reference standard methods of flow assessment, particular in the measurement of peak velocity and stroke volume in 55% of manuscripts. The use of valve tracking significantly improves agreement between 4D flow MRI and the reference modalities (79% matching with the use of valve tracking vs. 50% without, P = 0.04). This review highlights that the impact of acquisition parameters on 4D flow MRI accuracy is multifactorial. It is therefore important that each center conducts its own quality assurance prior to using 4D flow MRI for clinical decision-making. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ciara M Doyle
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - Jenny Orr
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - John P Greenwood
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| | - Charalampos Tsoumpas
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK.,Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Malenka M Bissell
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, UK
| |
Collapse
|
22
|
Xu K, Wang XD, Yang ZG, Xu HY, Xu R, Xie LJ, Wen LY, Fu H, Yan WF, Guo YK. Quantification of peak blood flow velocity at the cardiac valve and great thoracic vessels by four-dimensional flow and two-dimensional phase-contrast MRI compared with echocardiography: a systematic review and meta-analysis. Clin Radiol 2021; 76:863.e1-863.e10. [PMID: 34404516 DOI: 10.1016/j.crad.2021.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
AIM To objectively examine the agreement and correlation between four-dimensional (4D) flow magnetic resonance imaging (MRI) and traditional two-dimensional (2D) phase-contrast (PC) MRI with the reference standard of Doppler echocardiography for measuring peak blood velocity at the cardiac valve and great arteries, and to assess if 4D flow MRI offers an advantage over the traditional 2D method. MATERIALS AND METHODS The literature was searched systematically for studies that evaluate the degree of correlation and agreement between 4D flow MRI or 2D PC MRI and Doppler retrieved from PubMed, EMBASE, and the Cochrane Library. A meta-analysis was conducted to determine the peak velocity pooled bias with 95% limits of agreement (LoA) and correlation coefficient (r) for 4D flow MRI and 2D PC MRI compared with Doppler. RESULTS Ten studies that compared 4D flow MRI with Doppler and 12 studies that compared 2D PC MRI with Doppler were included. 4D flow MRI showed an underestimation with bias and 95% LoA of -0.09 (-0.41, 0.24) m/s (p=0.079) while 2D PC MRI showed a poorer agreement with a bias and 95% LoA of -0.25 (-0.53, 0.03), p=0.596. 4D flow MRI and 2D PC MRI showed a strong correlation with R=0.80 (95% CI 0.75, 0.84; p<0.001) and R=0.83 (95% CI 0.79, 0.87; p<0.001), respectively. CONCLUSION In this meta-analysis, 4D flow MRI provides improved assessment of peak velocity when compared with traditional 2D PC MRI. 4D flow MRI can be considered an important complement or substitute to Doppler echocardiography for peak velocity assessment.
Collapse
Affiliation(s)
- K Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - X D Wang
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Z G Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - H Y Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - R Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - L J Xie
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - L Y Wen
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - H Fu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - W F Yan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Y K Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Abstract
Aortic valve stenosis has become the most common valvular heart disease on account of aging population and increasing life expectancy. Echocardiography is the primary diagnosis tool for this, but it still has many flaws. Therefore, advanced cardiovascular multimodal imaging techniques are continuously being developed in order to overcome these limitations. Cardiac magnetic resonance imaging (CMR) allows a comprehensive morphological and functional evaluation of the aortic valve and provides important data for the diagnosis and risk stratification in patients with aortic stenosis. CMR can functionally assess the aortic flow using two-dimensional and time-resolved three-dimensional velocity-encoded phase-contrast techniques. Furthermore, by late gadolinium enhancement and T1-mapping, CMR can reveal the presence of both irreversible replacement and diffuse interstitial myocardial fibrosis. Moreover, its role in guiding aortic valve replacement procedures is beginning to take shape. Recent studies have rendered the importance of active and passive biomechanics in risk stratification and prognosis prediction in patients with aortic stenosis, but more work is required is just in its infancy, but data are promising. In addition, cardiac computed tomography is particularly useful for the diagnosis of aortic valve stenosis, and in preprocedural evaluation of the aorta, while positron emission tomography can be also used to assess valvular inflammation and active calcification. The purpose of this review is to provide a comprehensive overview of current available data regarding advanced cardiovascular multimodal imaging in aortic stenosis.
Collapse
|
24
|
Wang J, Deng W, Lv Q, Li Y, Liu T, Xie M. Aortic Dilatation in Patients With Bicuspid Aortic Valve. Front Physiol 2021; 12:615175. [PMID: 34295254 PMCID: PMC8290129 DOI: 10.3389/fphys.2021.615175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac abnormality. BAV aortic dilatation is associated with an increased risk of adverse aortic events and represents a potentially lethal disease and hence a considerable medical burden. BAV with aortic dilatation warrants frequent monitoring, and elective surgical intervention is the only effective method to prevent dissection or rupture. The predictive value of the aortic diameter is known to be limited. The aortic diameter is presently still the main reference standard for surgical intervention owing to the lack of a comprehensive understanding of BAV aortopathy progression. This article provides a brief comprehensive review of the current knowledge on BAV aortopathy regarding clinical definitions, epidemiology, natural course, and pathophysiology, as well as hemodynamic and clinically significant aspects on the basis of the limited data available.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
25
|
Abstract
MRI is an essential diagnostic tool in the anatomic and functional evaluation of cardiovascular disease. In many practices, 2D phase-contrast (2D-PC) has been used for blood flow quantification. 4D Flow MRI is a time-resolved volumetric acquisition that captures the vector field of blood flow along with anatomic images. 4D Flow MRI provides a simpler acquisition compared to 2D-PC and facilitates a more accurate and comprehensive hemodynamic assessment. Advancements in accelerated imaging have significantly shortened scan times of 4D Flow MRI while preserving image quality, enabling this technology to transition from the research arena to routine clinical practice. In this article, we review technical optimization based on our clinical experience of over 10 years with 4D Flow MRI. We also present pearls and pitfalls in the practical application of 4D Flow MRI, including how to quantify cardiovascular shunts, valvular or vascular stenosis, and valvular regurgitation. As experience increases, and as 4D Flow sequences and post-processing software become more broadly available, 4D Flow MRI will likely become an essential component of cardiac imaging for practices involved in the management of congenital and acquired structural heart disease.
Collapse
|
26
|
Garcia J, Beckie K, Hassanabad AF, Sojoudi A, White JA. Aortic and mitral flow quantification using dynamic valve tracking and machine learning: Prospective study assessing static and dynamic plane repeatability, variability and agreement. JRSM Cardiovasc Dis 2021; 10:2048004021999900. [PMID: 33717471 PMCID: PMC7923984 DOI: 10.1177/2048004021999900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Blood flow is a crucial measurement in the assessment of heart valve disease. Time-resolved flow using magnetic resonance imaging (4 D flow MRI) can provide a comprehensive assessment of heart valve hemodynamics but it relies in manual plane analysis. In this study, we aimed to demonstrate the feasibility of automate the detection and tracking of aortic and mitral valve planes to assess blood flow from 4 D flow MRI. Methods In this prospective study, a total of n = 106 subjects were enrolled: 19 patients with mitral disease, 65 aortic disease patients and 22 healthy controls. Machine learning was employed to detect aortic and mitral location and motion in a cine three-chamber plane and a perpendicular projection was co-registered to the 4 D flow MRI dataset to quantify flow volume, regurgitant fraction, and a peak velocity. Static and dynamic plane association and agreement were evaluated. Intra- and inter-observer, and scan-rescan reproducibility were also assessed. Results Aortic regurgitant fraction was elevated in aortic valve disease patients as compared with controls and mitral valve disease patients (p < 0.05). Similarly, mitral regurgitant fraction was higher in mitral valve patients (p < 0.05). Both aortic and mitral total flow were high in aortic patients. Static and dynamic were good (r > 0.6, p < 0.005) for aortic total flow and peak velocity, and mitral peak velocity and regurgitant fraction. All measurements showed good inter- and intra-observer, and scan-rescan reproducibility. Conclusion We demonstrated that aortic and mitral hemodynamics can efficiently be quantified from 4 D flow MRI using assisted valve detection with machine learning.
Collapse
Affiliation(s)
- Julio Garcia
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada.,Stephenson Cardiac Imaging Centre, University of Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Kailey Beckie
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada.,Stephenson Cardiac Imaging Centre, University of Calgary, AB, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Ali F Hassanabad
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada.,Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Alireza Sojoudi
- Circle Cardiovascular Imaging, Advanced Technologies, Calgary, AB, Canada
| | - James A White
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada.,Stephenson Cardiac Imaging Centre, University of Calgary, AB, Canada
| |
Collapse
|
27
|
Suzuki K, Takehara Y, Sakata M, Kawate M, Ohishi N, Sugiyama K, Akai T, Suzuki Y, Sugiyama M, Kawamura T, Morita Y, Kikuchi H, Hiramatsu Y, Yamamoto M, Nasu H, Johnson K, Wieben O, Kurachi K, Takeuchi H. Daikenchuto increases blood flow in the superior mesenteric artery in humans: A comparison study between four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction magnetic resonance imaging and Doppler ultrasound. PLoS One 2021; 16:e0245878. [PMID: 33503053 PMCID: PMC7840032 DOI: 10.1371/journal.pone.0245878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Respiratory-gated four-dimensional phase-contrast vastly undersampled isotropic projection reconstruction (4D PC-VIPR) is magnetic resonance (MR) imaging technique that enables analysis of vascular morphology and hemodynamics in a single examination using cardiac phase resolved 3D phase-contrast magnetic resonance imaging. The present study aimed to assess the usefulness of 4D PC-VIPR for the superior mesenteric artery (SMA) flowmetry before and after flow increase was induced by the herbal medicine Daikenchuto (TJ-100) by comparing it with Doppler ultrasound (DUS) as a current standard. Twenty healthy volunteers were enrolled in this prospective single-arm study. The peak cross-sectionally averaged velocity was measured by 4D PC-VIPR, peak velocity was measured by DUS, and flow volume (FV) of SMA and aorta were measured by 4D PC-VIPR and DUS 25 min before and after the peroral administration of TJ-100. The peak cross-sectionally averaged velocity, peak velocity, and FV of SMA measured by 4D PC-VIPR and DUS significantly increased after administration of TJ-100 (4D PC-VIPR: the peak cross-sectionally averaged velocity; p = 0.004, FV; p = 0.035, DUS: the peak velocity; p = 0.003, FV; p = 0.010). Furthermore, 4D PC-VIPR can analyze multiple blood vessels simultaneously. The ratio of the SMA FV to the aorta, before and after oral administration on the 4D PC-VIPR test also increased (p = 0.015). The rate of change assessed by 4D PC-VIPR and DUS were significantly correlated (the peak cross-sectionally averaged velocity and peak velocity: r = 0.650; p = 0.005, FV: r = 0.659; p = 0.004). Retrospective 4D PC-VIPR was a useful modality for morphological and hemodynamic analysis of SMA.
Collapse
Affiliation(s)
- Katsunori Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yasuo Takehara
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mayu Sakata
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masanori Kawate
- Department of Radiology, Hamamatsu University Hospital, Hamamatsu, Shizuoka, Japan
| | - Naoki Ohishi
- Department of Radiology, Hamamatsu University Hospital, Hamamatsu, Shizuoka, Japan
| | - Kosuke Sugiyama
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshiya Akai
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuhi Suzuki
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masataka Sugiyama
- Department of Fundamental Development for Advanced Low Invasive Diagnostic Imaging, Nagoya University, Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takafumi Kawamura
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshifumi Morita
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hirotoshi Kikuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yoshihiro Hiramatsu
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Masayoshi Yamamoto
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hatsuko Nasu
- Department of Diagnostic Radiology & Nuclear Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kevin Johnson
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin, Madison, WI, United States of America
| | - Oliver Wieben
- Department of Medical Physics, University of Wisconsin, Madison, WI, United States of America
- Department of Radiology, University of Wisconsin, Madison, WI, United States of America
| | - Kiyotaka Kurachi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Hiroya Takeuchi
- Second Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
28
|
Schmidt S, Flassbeck S, Schmelter S, Schmeyer E, Ladd ME, Schmitter S. The impact of 4D flow displacement artifacts on wall shear stress estimation. Magn Reson Med 2021; 85:3154-3168. [PMID: 33421221 DOI: 10.1002/mrm.28641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the amplitude and spatial distribution of errors in wall shear stress (WSS) values derived from 4D flow measurements caused by displacement artifacts intrinsic to the 4D flow acquisition. METHODS Phase-contrast MRI velocimetry was performed in a model of a stenotic aorta using two different timing schemes, both of which are commonly applied in vivo but differ in their resulting displacement artifacts. Whereas one scheme is optimized to minimize the duration of the encoding gradients (herein called FAST), the other aims to specifically minimize displacement artifacts by synchronizing all three spatial-encoding time points (called ECHO). WSS estimates were calculated and compared to unbiased WSS values obtained by a 5-hour single-point imaging acquisition. In addition, MRI simulations based on computational fluid dynamics data were carried out to investigate the impact of gradient timings corresponding to different spatial resolutions. RESULTS 4D flow displacement artifacts were found to have an impact on the quantified WSS peak values, spatial location, and overall WSS pattern. FAST leads to the underestimation of local WSS values in the phantom arch by up to 90%. Moreover, the corresponding WSS estimates depend on the image orientation. This effect was avoided using ECHO, which, however, results in biased WSS values within the stenosis, yielding an underestimation of peak WSS by up to 17%. Computational fluid dynamics-based simulation results show that the bias in WSS due to displacement artifacts increases with increasing spatial resolution, thus counteracting the resolution benefit for WSS due to reduced partial volume effects and segmentation errors. CONCLUSIONS 4D flow displacement artifacts can significantly impact the WSS estimates and depend on the timing scheme as well as potentially the image orientation. Whereas FAST might allow correct WSS estimation for lower resolutions, ECHO is recommended especially when spatial resolutions of 1 mm and smaller are used. Users need to be aware of this nonnegligible effect, particularly when conducting inter-site studies or studies between vendors. The timing scheme should thus be explicitly mentioned in publications.
Collapse
Affiliation(s)
- Simon Schmidt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA.,Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA
| | - Sonja Schmelter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Ellen Schmeyer
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
29
|
Choe YH, Kim SM, Park SJ. Computed tomography and magnetic resonance imaging assessment of aortic valve stenosis: an update. PRECISION AND FUTURE MEDICINE 2020. [DOI: 10.23838/pfm.2020.00093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
30
|
Pathrose A, Ma L, Berhane H, Scott MB, Chow K, Forman C, Jin N, Serhal A, Avery R, Carr J, Markl M. Highly accelerated aortic 4D flow MRI using compressed sensing: Performance at different acceleration factors in patients with aortic disease. Magn Reson Med 2020; 85:2174-2187. [PMID: 33107141 DOI: 10.1002/mrm.28561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE To systematically assess the feasibility and performance of a highly accelerated compressed sensing (CS) 4D flow MRI framework at three different acceleration factors (R) for the quantification of aortic flow dynamics and wall shear stress (WSS) in patients with aortic disease. METHODS Twenty patients with aortic disease (58 ± 15 y old; 19 M) underwent four 4D flow scans: one conventional (GRAPPA, R = 2) and three CS 4D flows with R = 5.7, 7.7, and 10.2. All scans were acquired with otherwise equivalent imaging parameters on a 1.5T scanner. Peak-systolic velocity (Vmax ), peak flow (Qmax ), and net flow (Qnet ) were quantified at the ascending aorta (AAo), arch, and descending aorta (DAo). WSS was calculated at six regions within the AAo and arch. RESULTS Mean scan times for the conventional and CS 4D flows with R = 5.7, 7.7, and 10.2 were 9:58 ± 2:58 min, 3:40 ± 1:19 min, 2:50 ± 0:56 min, and 2:05 ± 0:42 min, respectively. Vmax , Qmax , and Qnet were significantly underestimated by all CS protocols (underestimation ≤ -7%, -9%, and -10% by CS, R = 5.7, 7.7, and 10.2, respectively). WSS measurements showed the highest underestimation by all CS protocols (underestimation ≤ -9%, -12%, and -14% by CS, R = 5.7, 7.7, and 10.2). CONCLUSIONS Highly accelerated aortic CS 4D flow at R = 5.7, 7.7, and 10.2 showed moderate agreement with the conventional 4D flow, despite systematically underestimating various hemodynamic parameters. The shortened scan time may enable the clinical translation of CS 4D flow, although potential hemodynamic underestimation should be considered when interpreting the results.
Collapse
Affiliation(s)
- Ashitha Pathrose
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liliana Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Haben Berhane
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Michael B Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Kelvin Chow
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
| | | | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc., Chicago, Illinois, USA
| | - Ali Serhal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ryan Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
31
|
Rizk J. 4D flow MRI applications in congenital heart disease. Eur Radiol 2020; 31:1160-1174. [PMID: 32870392 DOI: 10.1007/s00330-020-07210-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/04/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Advances in the diagnosis and management of congenital heart disease (CHD) have resulted in a growing population of patients surviving well into adulthood and requiring lifelong follow-up. Flow quantification is a central component in the assessment of patients with CHD. 4D flow magnetic resonance imaging (MRI) has emerged as a tool that enables comprehensive study of flow. It involves the acquisition of a three-dimensional time-resolved volume with velocity encoding in all three spatial directions along the cardiac cycle. This allows flow quantification and visualization of blood flow patterns as well as the study of advanced hemodynamic parameters as kinetic energy and wall shear stress. 4D flow MRI-based study of flow has given insight into the altered hemodynamics in CHD particularly in bicuspid aortic valve disease and Fontan circulation. The aim of this review is to discuss the expanding clinical and research applications of 4D flow MRI in CHD as well its limitations.Key Points• Three-dimensional velocity encoding allows not only flow quantification but also the visualization of multidirectional flow patterns and the study of advanced hemodynamic parameters.• 4D flow MRI has added insight into the abnormal hemodynamics involved in congenital heart disease in particular in bicuspid aortic valve and Fontan circulation.• The main limitation of 4D flow MRI in congenital heart disease is the relatively long scan duration required for the complete coverage of the heart and great vessels with adequate spatiotemporal resolution.
Collapse
Affiliation(s)
- Judy Rizk
- Department of Cardiology, Faculty of Medicine, Alexandria University, El-Khartoum Square, Alexandria, 21521, Egypt.
| |
Collapse
|
32
|
Wiesemann S, Schmitter S, Demir A, Prothmann M, Schwenke C, Chawla A, von Knobelsdorff-Brenkenhoff F, Greiser A, Jin N, Bollache E, Markl M, Schulz-Menger J. Impact of sequence type and field strength (1.5, 3, and 7T) on 4D flow MRI hemodynamic aortic parameters in healthy volunteers. Magn Reson Med 2020; 85:721-733. [PMID: 32754969 DOI: 10.1002/mrm.28450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/22/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023]
Abstract
PURPOSE 4D flow magnetic resonance imaging (4D-MRI) allows time-resolved visualization of blood flow patterns, quantification of volumes, velocities, and advanced parameters, such as wall shear stress (WSS). As 4D-MRI enters the clinical arena, standardization and awareness of confounders are important. Our aim was to evaluate the equivalence of 4D flow-derived aortic hemodynamics in healthy volunteers using different sequences and field strengths. METHODS 4D-MRI was acquired in 10 healthy volunteers at 1.5T using three different prototype sequences, at 3T and at 7T (Siemens Healthineers). After evaluation of diagnostic quality in three segments (ascending-, descending aorta, aortic arch), peak velocity, flow volumes, and WSS were investigated. Equivalence limits for comparison of field strengths/sequences were based on the limits of Bland-Altman analyses of the intraobserver variability. RESULTS Non-diagnostic quality was found in 10/144 segments, 9/10 were obtained at 7T. Apart for the comparison of forward flow between sequence 1 and 3, the differences in measurements between field strengths/sequences exceeded the range of agreement. Significant differences were found between field strengths/sequences for forward flow (1.5T vs. 3T, 3T vs. 7T, sequence 1 vs. 3, 2 vs. 3 [P < .001]), WSS (1.5T vs. 3T [P < .05], sequence 1 vs. 2, 1 vs. 3, 2 vs. 3 [P < .001]), and peak velocity (1.5T vs. 7T, sequence 1 vs. 3 [P > .001]). All parameters at all field strengths/with all sequences correlated moderately to strongly (r ≥ 0.5). CONCLUSION Data from all sequences could be acquired and resulting images showed sufficient quality for further analysis. However, the variability of the measurements of peak velocity, flow volumes, and WSS was higher when comparing field strengths/sequences as the equivalence limits defined by the intraobserver assessments.
Collapse
Affiliation(s)
- Stephanie Wiesemann
- Department of Cardiology and Nephrology, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Aylin Demir
- Department of Cardiology and Nephrology, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany
| | - Marcel Prothmann
- Department of Cardiology and Nephrology, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany
| | | | - Ashish Chawla
- Khoo Teck Puat Hospital, Yishun Central, Singapore, Singapore
| | - Florian von Knobelsdorff-Brenkenhoff
- Department of Cardiology and Nephrology, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany.,Clinic Agatharied, Department of Cardiology, Ludwig-Maximilians-University Munich, Hausham, Germany
| | | | - Ning Jin
- Siemens Medical Solutions, Columbus, Ohio, USA
| | - Emilie Bollache
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, Paris, France
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeanette Schulz-Menger
- Department of Cardiology and Nephrology, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine and HELIOS Hospital Berlin Buch, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
33
|
Abstract
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiac and vascular diseases. Since its introduction in the late 1980s, quantitative flow imaging with MRI has become a routine part of standard-of-care cardiothoracic and vascular MRI for the assessment of pathological changes in blood flow in patients with cardiovascular disease. More recently, time-resolved flow imaging with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (4D flow MRI) has been developed and applied to enable comprehensive 3D visualization and quantification of hemodynamics throughout the human circulatory system. This article provides an overview of the use of 4D flow applications in different cardiac and vascular regions in the human circulatory system, with a focus on using 4D flow MRI in cardiothoracic and cerebrovascular diseases.
Collapse
Affiliation(s)
- Gilles Soulat
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Patrick McCarthy
- Division of Cardiac Surgery, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
34
|
Four-dimensional-flow Magnetic Resonance Imaging of the Aortic Valve and Thoracic Aorta. Radiol Clin North Am 2020; 58:753-763. [PMID: 32471542 DOI: 10.1016/j.rcl.2020.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Blood flow through the heart and great vessels is sensitive to time and multiple velocity directions. The assessment of its three-dimensional nature has been limited. Recent advances in magnetic resonance imaging (MRI) allow the comprehensive visualization and quantification of in vivo flow dynamics using four-dimensional (4D)-flow MRI. In addition, the technique provides the opportunity to obtain advanced hemodynamic measures. This article introduces 4D-flow MRI as it is currently used for blood flow visualization and quantification of cardiac hemodynamic parameters. It discusses its advantages relative to other flow MRI techniques and describes its potential clinical applications.
Collapse
|
35
|
Bohbot Y, Renard C, Manrique A, Levy F, Maréchaux S, Gerber BL, Tribouilloy C. Usefulness of Cardiac Magnetic Resonance Imaging in Aortic Stenosis. Circ Cardiovasc Imaging 2020; 13:e010356. [PMID: 32370617 DOI: 10.1161/circimaging.119.010356] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of this review is to provide an overview of the role of cardiac magnetic resonance (CMR) in aortic stenosis (AS). Although CMR is undeniably the gold standard for assessing left ventricular volume, mass, and function, the assessment of the left ventricular repercussions of AS by CMR is not routinely performed in clinical practice, and its role in evaluating and quantifying AS is not yet well established. CMR is an imaging modality integrating myocardial function and disease, which could be particularly useful in a pathology like AS that should be considered as a global myocardial disease rather than an isolated valve disease. In this review, we discuss the emerging potential of CMR for the diagnosis and prognosis of AS. We detail its utility for studying all aspects of AS, including valve anatomy, flow quantification, left ventricular volumes, mass, remodeling, and function, tissue mapping, and 4-dimensional flow magnetic resonance imaging. We also discuss different clinical situations where CMR could be useful in AS, for example, in low-flow low-gradient AS to confirm the low-flow state and to understand the reason for the left ventricular dysfunction or when there is a suspicion of associated cardiac amyloidosis.
Collapse
Affiliation(s)
- Yohann Bohbot
- Department of Cardiology (Y.B., C.T.), Amiens University Hospital, France.,UR UPJV 7517, Jules Verne University of Picardie, Amiens, France (Y.B., S.M., C.T.)
| | - Cédric Renard
- Department of Radiology (C.R.), Amiens University Hospital, France
| | - Alain Manrique
- Department of Nuclear Medicine, CHU Cote de Nacre, Normandy University, Caen, France (A.M.)
| | - Franck Levy
- Department of Cardiology, Centre Cardio-Thoracique De Monaco (F.L.)
| | - Sylvestre Maréchaux
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France (Y.B., S.M., C.T.).,Groupement des Hôpitaux de l'Institut Catholique de Lille/Faculté libre de médecine, Université Lille Nord de France (S.M.)
| | - Bernhard L Gerber
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium (B.L.G.).,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium (B.L.G.)
| | - Christophe Tribouilloy
- Department of Cardiology (Y.B., C.T.), Amiens University Hospital, France.,UR UPJV 7517, Jules Verne University of Picardie, Amiens, France (Y.B., S.M., C.T.)
| |
Collapse
|
36
|
Xu J, Zhou J, Zhong Y, Zhang Y, Ye M, Hou J, Wang Z, Ran H, Liu J, Guo D. EWVDV-Mediated Platelet-Targeting Nanoparticles for the Multimodal Imaging of Thrombi at Different Blood Flow Velocities. Int J Nanomedicine 2020; 15:1759-1770. [PMID: 32214809 PMCID: PMC7083630 DOI: 10.2147/ijn.s233968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
Background There have been many recent reports of molecular probes for thrombi but with unsatisfactory in vivo targeting effects, which could be related to the blood flow velocity in vivo. Therefore, it is worth explaining the relationship between the targeting effect and the blood flow velocity. Methods and Materials In this study, we constructed a platelet-targeting nanoparticle (NP) based on EWVDV for targeting P-selectin combined with the phase transition material perfluorohexane and India ink to achieve the multimodal imaging of thrombi. We studied the targeting effect of the NPs for rabbit blood thrombi under different flow velocities simulating blood flow velocities in vivo. Results The results show the successful fabrication of NPs with the ability to undergo a phase transition via low-intensity focused ultrasound irradiation to achieve ultrasound imaging and with a high binding affinity for activated platelets. In vitro, low flow velocities (20 cm/s) hardly affected the targeting effect of the NPs, while moderate flow velocities (40 cm/s) reduced the number of NPs that target thrombi by 52.6% comparing to static fluid (0 cm/s). High flow velocities (60 cm/s) greatly reduced the targeting effect of the NPs by 83.5%. Conclusion These results can serve as a reference for the design of NPs targeting thrombi at different sites and in different blood vessel types according to the blood flow velocity, thereby establishing a foundation for in vivo experiments.
Collapse
Affiliation(s)
- Jie Xu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Zhou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yixin Zhong
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Man Ye
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingxin Hou
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haitao Ran
- Institute of Ultrasound Imaging, Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jia Liu
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dajing Guo
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
37
|
Scott MB, Huh H, van Ooij P, Chen V, Herrera B, Elbaz M, McCarthy P, Malaisrie SC, Carr J, Fedak PWM, Markl M, Barker AJ. Impact of age, sex, and global function on normal aortic hemodynamics. Magn Reson Med 2020; 84:2088-2102. [PMID: 32162416 DOI: 10.1002/mrm.28250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 02/01/2023]
Abstract
PURPOSE To examine the effects of age, sex, and left ventricular global function on velocity, helicity, and 3D wall shear stress (3D-WSS) in the aorta of N = 100 healthy controls. METHODS Fifty female and 50 male volunteers with no history of cardiovascular disease, with 10 volunteers per age group (18-30, 31-40, 41-50, 51-60, and 61-80 years) underwent aortic 4D-flow MRI. Quantification of systolic aortic peak velocity, helicity, and 3D-WSS distribution and the calculation of age group-averaged peak systolic velocity and 3D-WSS maps ("atlases") were computed. Age-related and sex-related changes in peak velocity, helicity, and 3D-WSS were computed and correlated with standard metrics of left ventricular function derived from short-axis cine MRI. RESULTS No significant differences were found in peak systolic velocity or 3D-WSS based on sex except for the 18- to 30-year-old group (males 8% higher velocity volume and 3D-WSS surface area). Between successively older groups, systolic velocity decreased (13%, <1%, 7%, and 55% of the aorta volume) and 3D-WSS decreased (21%, 2%, 30%, and 62% of the aorta surface area). Mean velocity, mean 3D-3D-WSS, and median helicity increased with cardiac output (r = 0.27-0.43, all P < .01), and mean velocity and 3D-WSS decreased with increasing diameter (r > 0.35, P < .001). Arch and descending aorta systolic mean velocity, mean 3D-WSS, and median helicity increased with normalized left ventricular volumes: end diastolic volume (r = 0.31-0.37, P < .01), end systolic volume (r = 0.27-0.35, P < .01), and stroke volume (r = 0.28-0.35, P < .01). CONCLUSION Healthy aortic hemodynamics are dependent on subject age, and correlate with vessel diameter and cardiac function.
Collapse
Affiliation(s)
- Michael B Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Hyungkyu Huh
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Vincent Chen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brenda Herrera
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mohammed Elbaz
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick McCarthy
- Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Chris Malaisrie
- Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul W M Fedak
- Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Alex J Barker
- Department of Radiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
38
|
Pruijssen JT, Allen BD, Barker AJ, Bonow RO, Choudhury L, Carr JC, Markl M, van Ooij P. Hypertrophic Cardiomyopathy Is Associated with Altered Left Ventricular 3D Blood Flow Dynamics. Radiol Cardiothorac Imaging 2020; 2:e190038. [PMID: 33778534 DOI: 10.1148/ryct.2020190038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 11/11/2022]
Abstract
Purpose To employ four-dimensional (4D) flow MRI to investigate associations between hemodynamic parameters with systolic anterior motion (SAM), mitral regurgitation (MR), stroke volume, and cardiac mass in patients with hypertrophic cardiomyopathy (HCM). Materials and Methods A total of 13 patients with HCM (51 years ± 16 [standard deviation]; 10 men) and 11 age-matched healthy control subjects (54 years ± 15; eight men) underwent cardiac 4D flow MRI data analysis including calculation of peak systolic and diastolic control-averaged left ventricular (LV) velocity maps to quantify volumes of elevated velocity (EVV) in the left ventricle. Standard-of-care cine imaging was performed in short-axis, LV outflow tract (LVOT), and two-, three-, and four-chamber views on which the presence of SAM, presence of MR, total stroke volume, and cardiac mass were assessed. Results Systolic EVV in patients with HCM was 7 mL ± 5, which was significantly associated with elevated aortic peak velocity (R = 0.87; P < .001), decreased LVOT diameter (R = 0.68; P = .01), and increased cardiac mass (R = 0.62; P = .02). In addition, EVV differed significantly between patients with and those without SAM (10 mL ± 4.7 vs 3 mL ± 2.3; P = .03) and those with and those without MR (9.9 mL ± 4.8 vs 4.0 mL ± 3.2; P < .05). In the atrial systolic phase, peak diastolic velocity in the LV correlated with septal thickness (R = 0.66; P = .01). Conclusion Quantification and visualization of EVV in the LV is feasible and may provide further insight into the clinical manifestations of altered hemodynamics in HCM.© RSNA, 2020.
Collapse
Affiliation(s)
- Judith T Pruijssen
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Bradley D Allen
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Alex J Barker
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Robert O Bonow
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Lubna Choudhury
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - James C Carr
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Michael Markl
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| | - Pim van Ooij
- Department of Biomedical Engineering and Physics (J.T.P.) and Department of Radiology & Nuclear Medicine (P.v.O.), Academic Medical Center, Amsterdam University Medical Centers, Location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Radiology (B.D.A., J.C.C., M.M.), Department of Medicine-Cardiology (R.O.B., L.C.), and Department of Biomedical Engineering (M.M.), Northwestern University, Chicago, Ill; and Department of Radiology & Bioengineering, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Denver, Colo (A.J.B.)
| |
Collapse
|
39
|
Pressure drop mapping using 4D flow MRI in patients with bicuspid aortic valve disease: A novel marker of valvular obstruction. Magn Reson Imaging 2020; 65:175-182. [DOI: 10.1016/j.mri.2019.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/02/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
|
40
|
Altered 4-D magnetic resonance imaging flow characteristics in complex congenital aortic arch repair. Pediatr Radiol 2020; 50:17-27. [PMID: 31473788 PMCID: PMC6943192 DOI: 10.1007/s00247-019-04507-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/08/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Interrupted aortic arch (IAA) is a rare but severe congenital abnormality often associated with bicuspid aortic valve (BAV). Complex re-interventions are often needed despite surgical advances, but the impact of aortic hemodynamics in repaired patients is unknown. OBJECTIVE Investigate effect of IAA repairs on aortic hemodynamics, wall shear stress and flow derangements via 4-D flow MRI. MATERIALS AND METHODS We retrospectively analyzed age- and gender-matched cohorts (IAA [n=6], BAV alone [n=6], controls [n=6]) undergoing cardiac MRI including 4-D flow. Aortic dimensions were measured from standard MR angiography. We quantified peak systolic velocities, regurgitant fractions and wall shear stress in the ascending aorta (AAo), transverse arch and descending aorta (DAo) from 4-D flow, and we graded helix/vortex flow patterns from 3-D blood flow visualization. RESULTS Children and young adults with IAA had a wide range of arch dimensions, peak systolic velocities, regurgitant fractions and flow grades. Peak transverse arch systolic velocities were higher in patients with IAA versus controls (P=0.02). Flow derangements in the AAo were found in patients with IAA (median grade=2, 5/6 patients, P=0.04) and BAV (median grade=3, 5/6 patients, P=0.03) versus controls. Flow derangements in the DAo were only seen in patients with IAA (median grade=1, 5/6 patients, P=0.04), and 5/6 people with IAA had helical flow in head and neck vessels. Wall shear stress was increased in people with IAA along the superior transverse arch and proximal DAo versus controls (P=0.02). CONCLUSION Complex congenital aortic arch repairs can change aortic hemodynamics. Associated cardiac defects can further alter findings. Studies are warranted to investigate clinical implications in larger cohorts.
Collapse
|
41
|
Comprehensive MR Analysis of Cardiac Function, Aortic Hemodynamics and Left Ventricular Strain in Pediatric Cohort with Isolated Bicuspid Aortic Valve. Pediatr Cardiol 2019; 40:1450-1459. [PMID: 31342116 PMCID: PMC6786923 DOI: 10.1007/s00246-019-02157-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/13/2019] [Indexed: 02/08/2023]
Abstract
Bicuspid aortic valve (BAV) disease demonstrates a range of clinical presentations and complications. We aim to use cardiac MRI (CMR) to evaluate left ventricular (LV) parameters, myocardial strain and aortic hemodynamics in pediatric BAV patients with and without aortic stenosis (AS) or regurgitation (AR) compared to tricuspid aortic valve (TAV) controls. We identified 58 pediatric BAV patients without additional cardiovascular pathology and 25 healthy TAV controls (15.3 ± 2.2 years) who underwent CMR with 4D flow. BAV cohort included subgroups with no valvulopathy (n = 13, 14.3 ± 4.7 years), isolated AS (n = 19, 14.5 ± 4.0 years), mixed valve disease (AS + AR) (n = 13, 17.1 ± 3.2 years), and prior valvotomy/valvuloplasty (n = 13, 13.9 ± 3.2 years). CMR data included LV volumetric and mass indices, myocardial strain and aortic hemodynamics. BAV patients with no valvulopathy or isolated AS had similar LV parameters to controls excepting cardiac output (p < 0.05). AS + AR and post-surgical patients had abnormal LV volumetric and mass indices (p < 0.01). Post-surgical patients had decreased global longitudinal strain (p = 0.02); other subgroups had comparable strain to controls. Patients with valvulopathy demonstrated elevated velocity and wall shear stress (WSS) in the ascending aorta (AAo) and arch (p < 0.01), while those without valve dysfunction had only elevated AAo velocity (p = 0.03). Across the cohort, elevated AAo velocity and WSS correlated to higher LV mass (p < 0.01), and abnormal hemodynamics correlated to decreased strain rates (p < 0.045). Pediatric BAV patients demonstrate abnormalities in LV parameters as a function of valvular dysfunction, most significantly in children with AS + AR or prior valvotomy/valvuloplasty. Correlations between aortic hemodynamics, LV mass and strain suggest valvular dysfunction could drive LV remodeling. Multiparametric CMR assessment in pediatric BAV may help stratify risk for cardiac remodeling and dysfunction.
Collapse
|
42
|
Blanken CPS, Farag ES, Boekholdt SM, Leiner T, Kluin J, Nederveen AJ, van Ooij P, Planken RN. Advanced cardiac MRI techniques for evaluation of left-sided valvular heart disease. J Magn Reson Imaging 2019; 48:318-329. [PMID: 30134000 PMCID: PMC6667896 DOI: 10.1002/jmri.26204] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
The most common types of left‐sided valvular heart disease (VHD) in the Western world are aortic valve stenosis, aortic valve regurgitation, and mitral valve regurgitation. Comprehensive clinical evaluation entails both hemodynamic analysis and structural as well as functional characterization of the left ventricle. Cardiac magnetic resonance imaging (MRI) is an established diagnostic modality for assessment of left‐sided VHD and is progressively gaining ground in modern‐day clinical practice. Detailed flow visualization and quantification of flow‐related biomarkers in VHD can be obtained using 4D flow MRI, an imaging technique capable of measuring blood flow in three orthogonal directions over time. In addition, recent MRI sequences enable myocardial tissue characterization and strain analysis. In this review we discuss the emerging potential of state‐of‐the‐art MRI including 4D flow MRI, tissue mapping, and strain quantification for the diagnosis and prognosis of left‐sided VHD. Level of Evidence: 1 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2018. J. MAGN. RESON. IMAGING 2018;48:318–329.
Collapse
Affiliation(s)
- Carmen P S Blanken
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Emile S Farag
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Tim Leiner
- Department of Radiology, University Medical Center, Utrecht, the Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
43
|
Aherne EA, Koktzoglou I, Lind BB, Edelman RR. Dynamic quantitative nonenhanced magnetic resonance angiography of the abdominal aorta and lower extremities using cine fast interrupted steady-state in combination with arterial spin labeling: a feasibility study. J Cardiovasc Magn Reson 2019; 21:55. [PMID: 31474219 PMCID: PMC6717984 DOI: 10.1186/s12968-019-0562-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cine fast interrupted steady-state in combination with arterial spin labeling is a recently described nonenhanced magnetic resonance angiography (MRA) technique that relies on bolus tracking for time-resolved digital subtraction angiography-like displays of blood flow patterns. We evaluated the feasibility of applying this technique to display in-plane flow patterns in two regions: the abdominal aorta and lower extremity peripheral arteries. METHODS We performed an institutional review board-approved study in healthy subjects and patients. In 7 healthy subjects, in-plane flow was imaged at 4 stations ranging from the lower legs to the aorto-iliac bifurcation (junction of the distal thigh and upper calf, mid-thigh, junction of the upper thigh and pelvis, upper pelvis). In 5 healthy subjects and 6 patients without abdominal aortopathy, images were acquired through the suprarenal abdominal aorta. Ten patients with known peripheral arterial disease and two patients with stable disease of the abdominal aorta were also evaluated. Peak velocity was compared at each of the 4 stations for cine fast interrupted steady-state in combination with arterial spin labeling and two-dimensional cine phase contrast in patients with normal vessels. RESULTS In-plane flow patterns were well visualized in all peripheral arterial stations and in the abdominal aorta, providing a high quality display of hemodynamic patterns along extensive lengths of the vessels. There was very strong positive correlation (r = 0.952, P < 0.05) and excellent agreement (intraclass correlation coefficient, 0.935; 95% confidence interval, 0.812-0.972) between peak flow velocities measured by cine fast interrupted steady-state in combination with arterial spin labeling and two-dimensional cine phase contrast. In 10 patients with peripheral artery disease and 2 patients with aortic pathology, cine fast interrupted steady-state in combination with arterial spin labeling provided a visual demonstration of abnormal hemodynamics. CONCLUSION This feasibility study suggests that cine fast interrupted steady-state in combination with arterial spin labeling provides an efficient, high quality and physiologically accurate display of in-plane flow patterns over extensive lengths of the lower extremity peripheral arteries, which can be difficult to achieve using other MRA techniques.
Collapse
Affiliation(s)
- Emily A. Aherne
- Department of Radiology, NorthShore University HealthSystem, Walgreen Building, G507 2650 Ridge Ave, Evanston, USA
- McGaw Medical Center of Northwestern University, 2650 Ridge Ave Evanston, Chicago, IL 60201 USA
| | - Ioannis Koktzoglou
- Department of Radiology, NorthShore University HealthSystem, Walgreen Building, G507 2650 Ridge Ave, Evanston, USA
- University of Chicago Pritzker School of Medicine, Chicago, USA
| | - Benjamin B. Lind
- Department of Surgery, NorthShore University HealthSystem, 9650 Gross Point Rd Ste 4900, Skokie, Evanston, IL 60076 USA
| | - Robert R. Edelman
- Department of Radiology, NorthShore University HealthSystem, Walgreen Building, G507 2650 Ridge Ave, Evanston, USA
- Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
44
|
Adriaans BP, Westenberg JJM, van Cauteren YJM, Gerretsen S, Elbaz MSM, Bekkers SCAM, Veenstra LF, Crijns HJGM, Wildberger JE, Schalla S. Clinical assessment of aortic valve stenosis: Comparison between 4D flow MRI and transthoracic echocardiography. J Magn Reson Imaging 2019; 51:472-480. [PMID: 31257647 PMCID: PMC7004028 DOI: 10.1002/jmri.26847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Background The prevalence of valvular aortic stenosis (AS) increases as the population ages. Echocardiographic measurements of peak jet velocity (Vpeak), mean pressure gradient (Pmean), and aortic valve area (AVA) determine AS severity and play a pivotal role in the stratification towards valvular replacement. A multimodality imaging approach might be needed in cases of uncertainty about the actual severity of the stenosis. Purpose To compare four‐dimensional phase‐contrast magnetic resonance (4D PC‐MR), two‐dimensional (2D) PC‐MR, and transthoracic echocardiography (TTE) for quantification of AS. Study Type Prospective. Population Twenty patients with various degrees of AS (69.3 ± 5.0 years). Field Strength/Sequences 4D PC‐MR and 2D PC‐MR at 3T. Assessment We compared Vpeak, Pmean, and AVA between TTE, 4D PC‐MR, and 2D PC‐MR. Flow eccentricity was quantified by means of normalized flow displacement, and its influence on the accuracy of TTE measurements was investigated. Statistical Tests Pearson's correlation, Bland–Altman analysis, paired t‐test, and intraclass correlation coefficient. Results 4D PC‐MR measured higher Vpeak (r = 0.95, mean difference + 16.4 ± 10.7%, P <0.001), and Pmean (r = 0.92, mean difference + 14.9 ± 16.0%, P = 0.013), but a less critical AVA (r = 0.80, mean difference + 19.9 ± 20.6%, P = 0.002) than TTE. In contrast, unidirectional 2D PC‐MR substantially underestimated AS severity when compared with TTE. Differences in Vpeak between 4D PC‐MR and TTE showed to be strongly correlated with the eccentricity of the flow jet (r = 0.89, P <0.001). Use of 4D PC‐MR improved the concordance between Vpeak and AVA (from 0.68 to 0.87), and between PGmean and AVA (from 0.68 to 0.86). Data Conclusion 4D PC‐MR improves the concordance between the different AS parameters and could serve as an additional imaging technique next to TTE. Future studies should address the potential value of 4D PC‐MR in patients with discordant echocardiographic parameters. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:472–480.
Collapse
Affiliation(s)
- Bouke P Adriaans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Yvonne J M van Cauteren
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Suzanne Gerretsen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sebastiaan C A M Bekkers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Leo F Veenstra
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Simon Schalla
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
45
|
Bollache E, Knott KD, Jarvis K, Boubertakh R, Dolan RS, Camaioni C, Collins L, Scully P, Rabin S, Treibel T, Carr JC, van Ooij P, Collins JD, Geiger J, Moon JC, Barker AJ, Petersen SE, Markl M. Two-Minute k-Space and Time-accelerated Aortic Four-dimensional Flow MRI: Dual-Center Study of Feasibility and Impact on Velocity and Wall Shear Stress Quantification. Radiol Cardiothorac Imaging 2019; 1:e180008. [PMID: 32076666 DOI: 10.1148/ryct.2019180008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 01/12/2023]
Abstract
Purpose To investigate the two-center feasibility of highly k-space and time (k-t)-accelerated 2-minute aortic four-dimensional (4D) flow MRI and to evaluate its performance for the quantification of velocities and wall shear stress (WSS). Materials and Methods This cross-sectional study prospectively included 68 participants (center 1, 11 healthy volunteers [mean age ± standard deviation, 61 years ± 15] and 16 patients with aortic disease [mean age, 60 years ± 10]; center 2, 14 healthy volunteers [mean age, 38 years ± 13] and 27 patients with aortic or cardiac disease [mean age, 78 years ± 18]). Each participant underwent highly accelerated 4D flow MRI (k-t acceleration, acceleration factor of 5) of the thoracic aorta. For comparison, conventional 4D flow MRI (acceleration factor of 2) was acquired in the participants at center 1 (n = 27). Regional aortic peak systolic velocities and three-dimensional WSS were quantified. Results k-t-accelerated scan times (center 1, 2:03 minutes ± 0:29; center 2, 2:06 minutes ± 0:20) were significantly reduced compared with conventional 4D flow MRI (center 1, 12:38 minutes ± 2:25; P < .0001). Overall good agreement was found between the two techniques (absolute differences ≤15%), but proximal aortic WSS was significantly underestimated in patients by using k-t-accelerated 4D flow when compared with conventional 4D flow (P ≤ .03). k-t-accelerated 4D flow MRI was reproducible (intra- and interobserver intraclass correlation coefficient ≥0.98) and identified significantly increased peak velocities and WSS in patients with stenotic (P ≤ .003) or bicuspid (P ≤ .04) aortic valves compared with healthy volunteers. In addition, k-t-accelerated 4D flow MRI-derived velocities and WSS were inversely related to age (r ≥-0.53; P ≤ .03) over all healthy volunteers. Conclusion k-t-accelerated aortic 4D flow MRI providing 2-minute scan times was feasible and reproducible at two centers. Although consistent healthy aging- and disease-related changes in aortic hemodynamics were observed, care should be taken when considering WSS, which can be underestimated in patients.© RSNA, 2019See also the commentary by François in this issue.
Collapse
Affiliation(s)
- Emilie Bollache
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Kristopher D Knott
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Kelly Jarvis
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Redha Boubertakh
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Ryan Scott Dolan
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Claudia Camaioni
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Louise Collins
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Paul Scully
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Sydney Rabin
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Thomas Treibel
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - James C Carr
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Pim van Ooij
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Jeremy D Collins
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Julia Geiger
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - James C Moon
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Alex J Barker
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Steffen E Petersen
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| | - Michael Markl
- Department of Radiology, Northwestern University, Feinberg School of Medicine, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611 (E.B., K.J., R.S.D., L.C., S.R., J.C.C., J.D.C., A.J.B., M.M.); Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France (E.B.); Barts Heart Centre, London, England (K.D.K., R.B., C.C., P.S., T.T., J.C.M., S.E.P.); Institute of Cardiovascular Science, University College London, London, England (K.D.K., P.S., T.T., J.C.M.); Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands (P.v.O.); Department of Diagnostic Imaging, University Children's Hospital, Zurich, Switzerland (J.G.); NIHR Barts Biomedical Research Unit, William Harvey Research Institute, Queen Mary University of London, London, England (S.E.P.); and Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Evanston, Ill (M.M.)
| |
Collapse
|
46
|
Suwa K, Rahman OA, Bollache E, Rose MJ, Rahsepar AA, Carr JC, Collins JD, Barker AJ, Markl M. Effect of Aortic Valve Disease on 3D Hemodynamics in Patients With Aortic Dilation and Trileaflet Aortic Valve Morphology. J Magn Reson Imaging 2019; 51:481-491. [PMID: 31169969 DOI: 10.1002/jmri.26804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The effect of different expressions of aortic valve disease on 3D aortic hemodynamics is unclear. PURPOSE To investigate changes in aortic hemodynamics in patients with dilated ascending aorta (AAo) but different severity of aortic valve stenosis (AS) and/or regurgitation (AR). STUDY TYPE Retrospective. POPULATION A total of 111 subjects (86 patients with AAo diameter ≥ 40 mm and 25 healthy controls, all with trileaflet aortic valve [TAV]). Patients were further stratified by TAV dysfunction: n = 9 with combined moderate or severe AS and AR (ASR, 56 ± 13 years), n = 14 with moderate or severe AS (AS, 64 ± 14 years), n = 33 with moderate or severe AR (AR, 62 ± 14 years), n = 30 with neither AS nor AR (no AS/AR, 63 ± 9 years). FIELD STRENGTH/SEQUENCE 4D flow MRI on 1.5/3T systems for the in vivo analysis of aortic blood flow dynamics. ASSESSMENT Data analysis included grading of 3D AAo vortex/helix flow and AAo flow eccentricity as well as quantification of systolic peak velocities and wall shear stress (WSS). STATISTICAL TESTS Continuous variables were compared by one-way analysis of variance or Kruskal-Wallis, followed by a pairwise Tukey or Dunn test if there was a significant difference. RESULTS All patients demonstrated markedly elevated vortex and helix flow compared with controls (P < 0.05). Peak velocities were significantly elevated in ASR, AS, and AR patients compared with controls (P < 0.05). Increased flow eccentricity was observed in entire AAo for AR, at the mid and distal AAo for ASR and AS, and at the proximal AAo for no AS/AR. Compared with controls, WSS in the AAo was significantly elevated in ASR and AS patients (P < 0.05) and reduced in no AS/AR patients (P < 0.05). DATA CONCLUSION The presence of TAV dysfunction is associated with aberrant hemodynamics and altered WSS, which may play a role in the development of aortopathy. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:481-491.
Collapse
Affiliation(s)
- Kenichiro Suwa
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ozair Abdul Rahman
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emilie Bollache
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael J Rose
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Amir Ali Rahsepar
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Radiology, Yale New Haven Health System, Bridgeport Hospital, Bridgeport, Connecticut, USA
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeremy D Collins
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex J Barker
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, Illinois, USA
| |
Collapse
|
47
|
Rahman O, Scott M, Bollache E, Suwa K, Collins J, Carr J, Fedak P, McCarthy P, Malaisrie C, Barker AJ, Markl M. Interval changes in aortic peak velocity and wall shear stress in patients with bicuspid aortic valve disease. Int J Cardiovasc Imaging 2019; 35:1925-1934. [PMID: 31144256 DOI: 10.1007/s10554-019-01632-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/18/2019] [Indexed: 11/28/2022]
Abstract
Bicuspid aortic valve (BAV) is associated with abnormal valve-mediated hemodynamics including high velocity jets and elevated wall shear stress (WSS). This study investigated interval changes in flow and WSS in a multi-year follow-up study. This cross-sectional study included n = 44 patients with BAV (age = 44.9 ± 12 years), n = 17 patients with tricuspid aortic valve and thoracic aortic dilatation (TAV with dilation, age = 54.6 ± 16.5 years), and n = 9 healthy controls (age = 49.3 ± 14.7 years) underwent baseline and serial aortic 4D flow MRI (follow-up duration: BAV: 2.6 ± 0.7 years, TAV with dilation: 2.7 ± 0.5 years, controls: 1.1 ± 0.5 years). Data analysis included quantification of aortic dimensions, peak systolic velocities, as well as regional 3D WSS in the ascending aorta. At baseline, BAV patients demonstrated uniformly elevated peak velocity and WSS compared to TAV with dilation and control groups (peak velocity 2.2 m/s vs. 1.6 m/s vs. 1.5 m/s, p < 0.004; WSS: 0.74 Pa vs. 0.45 Pa vs. 0.55 Pa, p < 0.001). For BAV, peak velocity increased from baseline to follow up (2.2 ± 0.8 to 2.3 ± 0.9 m/s, p < 0.001) while WSS decreased (0.74 ± 0.22 to 0.65 ± 0.21 Pa, p < 0.001). Aortic growth was minimal for both BAV (0.05 cm/year) and TAV with dilation (0.03-0.04 cm/year) patients. For BAV patients, increase of ascending aorta peak velocities indicated worsening of valve function at follow-up. Compared to TAV with dilation patients, BAV patients demonstrated a reduction in WSS which may indicate a compensatory mechanism to reduce elevated WSS forces by aortic remodeling.
Collapse
Affiliation(s)
- Ozair Rahman
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Scott
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Emilie Bollache
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kenichiro Suwa
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeremy Collins
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Fedak
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada.,Division of Surgery-Cardiac Surgery, Northwestern University, Chicago, IL, USA
| | - Patrick McCarthy
- Bluhm Cardiovascular Institute and Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chris Malaisrie
- Bluhm Cardiovascular Institute and Division of Cardiac Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alex J Barker
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA. .,Department of Radiology, Northwestern University, 737 N. Michigan Avenue Suite 1600, Chicago, IL, 60611, USA.
| |
Collapse
|
48
|
Ma LE, Markl M, Chow K, Huh H, Forman C, Vali A, Greiser A, Carr J, Schnell S, Barker AJ, Jin N. Aortic 4D flow MRI in 2 minutes using compressed sensing, respiratory controlled adaptive k-space reordering, and inline reconstruction. Magn Reson Med 2019; 81:3675-3690. [PMID: 30803006 DOI: 10.1002/mrm.27684] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the accuracy and feasibility of a free-breathing 4D flow technique using compressed sensing (CS), where 4D flow imaging of the thoracic aorta is performed in 2 min with inline image reconstruction on the MRI scanner in less than 5 min. METHODS The 10 in vitro 4D flow MRI scans were performed with different acceleration rates on a pulsatile flow phantom (9 CS acceleration factors [R = 5.4-14.1], 1 generalized autocalibrating partially parallel acquisition [GRAPPA] R = 2). Based on in vitro results, CS-accelerated 4D flow of the thoracic aorta was acquired in 20 healthy volunteers (38.3 ± 15.2 years old) and 11 patients with aortic disease (61.3 ± 15.1 years) with R = 7.7. A conventional 4D flow scan was acquired with matched spatial coverage and temporal resolution. RESULTS CS depicted similar hemodynamics to conventional 4D flow in vitro, and in vivo, with >70% reduction in scan time (volunteers: 1:52 ± 0:25 versus 7:25 ± 2:35 min). Net flow values were within 3.5% in healthy volunteers, and voxel-by-voxel comparison demonstrated good agreement. CS significantly underestimated peak velocities (vmax ) and peak flow (Qmax ) in both volunteers and patients (volunteers: vmax , -16.2% to -9.4%, Qmax : -11.6% to -2.9%, patients: vmax , -11.2% to -4.0%; Qmax , -10.2% to -5.8%). CONCLUSION Aortic 4D flow with CS is feasible in a two minute scan with less than 5 min for inline reconstruction. While net flow agreement was excellent, CS with R = 7.7 produced underestimation of Qmax and vmax ; however, these were generally within 13% of conventional 4D flow-derived values. This approach allows 4D flow to be feasible in clinical practice for comprehensive assessment of hemodynamics.
Collapse
Affiliation(s)
- Liliana E Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Kelvin Chow
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Chicago, Illinois
| | - Hyungkyu Huh
- Daegu-Gyeongbuk Medical Innovation Foundation, Medical Device Development Center, Daegu, South Korea
| | | | - Alireza Vali
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - James Carr
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Susanne Schnell
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alex J Barker
- Department of Radiology, Children's Hospital Colorado, University of Colorado, Anschutz Medical Campus, Denver, Colorado.,Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Inc, Cleveland, Ohio
| |
Collapse
|
49
|
Farag ES, Schade EL, van Ooij P, Boekholdt SM, Planken RN, van Kimmenade R, Nederveen AJ, de Mol BAJM, Kluin J. Bileaflet mechanical aortic valves do not alter ascending aortic wall shear stress. Int J Cardiovasc Imaging 2019; 35:703-710. [PMID: 30741363 PMCID: PMC6482125 DOI: 10.1007/s10554-018-1508-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 11/22/2018] [Indexed: 01/12/2023]
Abstract
Progressive ascending aortic dilatation has been observed after mechanical aortic valve replacement (mAVR), possibly due to altered blood flow and wall shear stress (WSS) patterns induced by their bileaflet design. We examined the effect of mAVR on WSS in the ascending aorta using time-resolved 4D flow MRI. Fifteen patients with mechanical aortic valve prostheses, 10 patients with bicuspid aortic valve disease and 10 healthy individuals underwent thoracic 4D flow MRI. Peak systolic hemodynamic parameters (velocity and WSS) and vessel diameters were assessed in the ascending aorta. In addition, three-dimensional per-voxel analysis was used to compare velocity and WSS between patient groups and healthy controls. Peak aortic diameters were significantly higher in mAVR and BAV patients compared to healthy controls (p = 0.011). Mean aortic diameters were comparable between mAVR and BAV patients. No differences in 4D flow MRI-derived mean blood flow velocity and peak WSS were found between the three groups. Compared to healthy controls, mean WSS was significantly lower in mAVR patients (p = 0.031). Per-voxel analysis revealed no increased WSS in the ascending aortic wall and significantly lower velocity and WSS values in mAVR patients compared to healthy controls. In contrast, regions of significantly increased outer lumen velocities and WSS in BAV patients compared to healthy controls were found. This study shows that there is no increased ascending aortic WSS after mAVR. Our results suggest that, in contrast to BAV patients, there is no indication for intensified follow-up of the ascending aorta after mAVR.
Collapse
Affiliation(s)
- Emile S Farag
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, The Netherlands.
| | - Emilio L Schade
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Pim van Ooij
- Department of Radiology and nuclear medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | - R Nils Planken
- Department of Radiology and nuclear medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Aart J Nederveen
- Department of Radiology and nuclear medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Bas A J M de Mol
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, The Netherlands
| | - Jolanda Kluin
- Department of Cardiothoracic Surgery, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Garcia J, Barker AJ, Markl M. The Role of Imaging of Flow Patterns by 4D Flow MRI in Aortic Stenosis. JACC Cardiovasc Imaging 2019; 12:252-266. [DOI: 10.1016/j.jcmg.2018.10.034] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
|