1
|
Knudsen MH, Vestergaard MB, Lindberg U, Simonsen HJ, Frederiksen JL, Cramer SP, Larsson HBW. Age-related decline in cerebral oxygen consumption in multiple sclerosis. J Cereb Blood Flow Metab 2024; 44:1039-1052. [PMID: 38190981 PMCID: PMC11318400 DOI: 10.1177/0271678x231224502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Cerebral oxygen metabolism is altered in relapsing-remitting multiple sclerosis (RRMS), possibly a result of disease related cerebral atrophy with subsequent decreased oxygen demand. However, MS inflammation can also inhibit brain metabolism. Therefore, we measured cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) using MRI phase contrast mapping and susceptibility-based oximetry in 44 patients with early RRMS and 36 healthy controls. Cerebral atrophy and white matter lesion load were assessed from high-resolution structural MRI. Expanded Disability Status Scale (EDSS) scores were collected from medical records. The CMRO2 was significantly lower in patients (-15%, p = 0.002) and decreased significantly with age in patients relative to the controls (-1.35 µmol/100 g/min/year, p = 0.036). The lower CMRO2 in RRMS was primarily driven by a higher venous oxygen saturation in the sagittal sinus (p = 0.007) and not a reduction in CBF (p = 0.69). There was no difference in cerebral atrophy between the groups, and no correlation between CMRO2 and MS lesion volume or EDSS score. Therefore, the progressive CMRO2 decline observed before the occurrence of significant cerebral atrophy and despite adequate CBF supports emerging evidence of dysfunctional cellular respiration as a potential pathogenic mechanism and therapeutic target in RRMS.
Collapse
Affiliation(s)
- Maria H Knudsen
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Helle J Simonsen
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Jette L Frederiksen
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Henrik BW Larsson
- Functional Imaging Unit, Dept. of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Dept. of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
2
|
Linninger AA, Ventimiglia T, Jamshidi M, Pascal Suisse M, Alaraj A, Lesage F, Li X, Schwartz DL, Rooney WD. Vascular synthesis based on hemodynamic efficiency principle recapitulates measured cerebral circulation properties in the human brain. J Cereb Blood Flow Metab 2024; 44:801-816. [PMID: 37988131 PMCID: PMC11197140 DOI: 10.1177/0271678x231214840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Quantifying anatomical and hemodynamical properties of the brain vasculature in vivo is difficult due to limited spatiotemporal resolution neuroimaging, variability between subjects, and bias between acquisition techniques. This work introduces a metabolically inspired vascular synthesis algorithm for creating a digital representation of the cortical blood supply in humans. Spatial organization and segment resistances of a cortical vascular network were generated. Cortical folding and macroscale arterial and venous vessels were reconstructed from anatomical MRI and MR angiography. The remaining network, including ensembles representing the parenchymal capillary bed, were synthesized following a mechanistic principle based on hydrodynamic efficiency of the cortical blood supply. We evaluated the digital model by comparing its simulated values with in vivo healthy human brain measurements of macrovessel blood velocity from phase contrast MRI and capillary bed transit times and bolus arrival times from dynamic susceptibility contrast. We find that measured and simulated values reasonably agree and that relevant neuroimaging observables can be recapitulated in silico. This work provides a basis for describing and testing quantitative aspects of the cerebrovascular circulation that are not directly observable. Future applications of such digital brains include the investigation of the organ-wide effects of simulated vascular and metabolic pathologies.
Collapse
Affiliation(s)
- Andreas A Linninger
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Thomas Ventimiglia
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammad Jamshidi
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mathieu Pascal Suisse
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Alaraj
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Frédéric Lesage
- Department of Electrical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Daniel L Schwartz
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
3
|
Larsson HBW, Law I, Andersen TL, Andersen FL, Fischer BM, Vestergaard MB, Larsson TSW, Lindberg U. Brain perfusion estimation by Tikhonov model-free deconvolution in a long axial field of view PET/CT scanner exploring five different PET tracers. Eur J Nucl Med Mol Imaging 2024; 51:707-720. [PMID: 37843600 PMCID: PMC10796558 DOI: 10.1007/s00259-023-06469-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE New total-body PET scanners with a long axial field of view (LAFOV) allow for higher temporal resolution due to higher sensitivity, which facilitates perfusion estimation by model-free deconvolution. Fundamental tracer kinetic theory predicts that perfusion can be estimated for all tracers despite their different fates given sufficiently high temporal resolution of 1 s or better, bypassing the need for compartment modelling. The aim of this study was to investigate whether brain perfusion could be estimated using model-free Tikhonov generalized deconvolution for five different PET tracers, [15O]H2O, [11C]PIB, [18F]FE-PE2I, [18F]FDG and [18F]FET. To our knowledge, this is the first example of a general model-free approach to estimate cerebral blood flow (CBF) from PET data. METHODS Twenty-five patients underwent dynamic LAFOV PET scanning (Siemens, Quadra). PET images were reconstructed with an isotropic voxel resolution of 1.65 mm3. Time framing was 40 × 1 s during bolus passage followed by increasing framing up to 60 min. AIF was obtained from the descending aorta. Both voxel- and region-based calculations of perfusion in the thalamus were performed using the Tikhonov method. The residue impulse response function was used to estimate the extraction fraction of tracer leakage across the blood-brain barrier. RESULTS CBF ranged from 37 to 69 mL blood min-1 100 mL of tissue-1 in the thalamus. Voxelwise calculation of CBF resulted in CBF maps in the physiologically normal range. The extraction fractions of [15O]H2O, [18F]FE-PE2I, [11C]PIB, [18F]FDG and [18F]FET in the thalamus were 0.95, 0.78, 0.62, 0.19 and 0.03, respectively. CONCLUSION The high temporal resolution and sensitivity associated with LAFOV PET scanners allow for noninvasive perfusion estimation of multiple tracers. The method provides an estimation of the residue impulse response function, from which the fate of the tracer can be studied, including the extraction fraction, influx constant, volume of distribution and transit time distribution, providing detailed physiological insight into normal and pathologic tissue.
Collapse
Affiliation(s)
- Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Ian Law
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Thomas L Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Barbara M Fischer
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
| | - Tanne S W Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark
| |
Collapse
|
4
|
Abstract
The non-invasive dynamic contrast-enhanced MRI (DCE-MRI) method provides valuable insights into tissue perfusion and vascularity. Primarily used in oncology, DCE-MRI is typically utilized to assess morphology and contrast agent (CA) kinetics in the tissue of interest. Interpretation of the temporal signatures of DCE-MRI data includes qualitative, semi-quantitative, and quantitative approaches. Recent advances in MRI technology allow simultaneous high spatial and temporal resolutions in DCE-MRI data acquisition on most vendor platforms, enabling the more desirable approach of quantitative data analysis using pharmacokinetic (PK) modeling. Many technical factors, including signal-to-noise ratio, temporal resolution, quantifications of arterial input function and native tissue T1, and PK model selection, need to be carefully considered when performing quantitative DCE-MRI. Standardization in data acquisition and analysis is especially important in multi-center studies.
Collapse
Affiliation(s)
- Xin Li
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - James H Holmes
- Radiology, Biomedical Engineering, and Holden Cancer Center, University of Iowa, 169 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
5
|
Hindel S. A Generalized Kinetic Model of Fractional Order Transport Dynamics with Transit Time Heterogeneity in Microvascular Space. Bull Math Biol 2024; 86:26. [PMID: 38300429 DOI: 10.1007/s11538-023-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
The aim of this study is to develop and validate a unifying kinetic model for microvascular transport by introducing an impulse response function that incorporates essential physiological parameters and integrates key features of existing models. This new methodology combines a one-compartment model of fractional order with a model that uses the gamma distribution to describe the distribution of capillary transit times. Central to this model are two primary parameters: [Formula: see text], representing the kurtosis of residue times, and [Formula: see text], signifying the width of the distribution of capillary transit times within a tissue voxel. To validate this proposed model, data from dynamic contrast-enhanced magnetic resonance imaging (DCI-MRI) were employed and the findings were compared with three existing models. Using the Akaike information criterion for model selection, the results demonstrate that the integrative model, especially at elevated blood flow rates, frequently offers superior fits in comparison to constrained models.
Collapse
Affiliation(s)
- Stefan Hindel
- Department of Radiation Therapy, Medical Physics Division, University Hospital Essen, Essen, North Rhine-Westphalia, Germany.
- Faculty of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Rhineland-Palatinate, Germany.
| |
Collapse
|
6
|
Vestergaard MB, Iversen HK, Simonsen SA, Lindberg U, Cramer SP, Andersen UB, Larsson HB. Capillary transit time heterogeneity inhibits cerebral oxygen metabolism in patients with reduced cerebrovascular reserve capacity from steno-occlusive disease. J Cereb Blood Flow Metab 2023; 43:460-475. [PMID: 36369740 PMCID: PMC9941865 DOI: 10.1177/0271678x221139084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The healthy cerebral perfusion demonstrates a homogenous distribution of capillary transit times. A disruption of this homogeneity may inhibit the extraction of oxygen. A high degree of capillary transit time heterogeneity (CTH) describes that some capillaries have very low blood flows, while others have excessively high blood flows and consequently short transit times. Very short transit times could hinder the oxygen extraction due to insufficient time for diffusion of oxygen into the tissue. CTH could be a consequence of cerebral vessel disease. We examined whether patients with cerebral steno-occlusive vessel disease demonstrate high CTH and if elevation of cerebral blood flow (CBF) by administration of acetazolamide (ACZ) increases the cerebral metabolic rate of oxygen (CMRO2), or if some patients demonstrate reduced CMRO2 related to detrimental CTH. Thirty-four patients and thirty-one healthy controls participated. Global CBF and CMRO2 were acquired using phase-contrast MRI. Regional brain maps of CTH were acquired using dynamic contrast-enhanced MRI. Patients with impaired cerebrovascular reserve capacity demonstrated elevated CTH and a significant reduction of CMRO2 after administration of ACZ, which could be related to high CTH. Impaired oxygen extraction from CTH could be a contributing part of the declining brain health observed in patients with cerebral vessel disease.
Collapse
Affiliation(s)
- Mark B Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Helle K Iversen
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Amalie Simonsen
- Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Stig P Cramer
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Ulrik B Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark
| | - Henrik Bw Larsson
- Functional Imaging Unit, Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Barloese MCJ, Bauer C, Petersen ET, Hansen CS, Madsbad S, Siebner HR. Neurovascular Coupling in Type 2 Diabetes With Cognitive Decline. A Narrative Review of Neuroimaging Findings and Their Pathophysiological Implications. Front Endocrinol (Lausanne) 2022; 13:874007. [PMID: 35860697 PMCID: PMC9289474 DOI: 10.3389/fendo.2022.874007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 01/21/2023] Open
Abstract
Type 2 diabetes causes substantial long-term damage in several organs including the brain. Cognitive decline is receiving increased attention as diabetes has been established as an independent risk factor along with the identification of several other pathophysiological mechanisms. Early detection of detrimental changes in cerebral blood flow regulation may represent a useful clinical marker for development of cognitive decline for at-risk persons. Technically, reliable evaluation of neurovascular coupling is possible with several caveats but needs further development before it is clinically convenient. Different modalities including ultrasound, positron emission tomography and magnetic resonance are used preclinically to shed light on the many influences on vascular supply to the brain. In this narrative review, we focus on the complex link between type 2 diabetes, cognition, and neurovascular coupling and discuss how the disease-related pathology changes neurovascular coupling in the brain from the organ to the cellular level. Different modalities and their respective pitfalls are covered, and future directions suggested.
Collapse
Affiliation(s)
- Mads C. J. Barloese
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Imaging, Center for Functional and Diagnostic Imaging, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Christian Bauer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Radiography, Department of Technology, University College Copenhagen, Copenhagen, Denmark
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Fredriksberg, Copenhagen, Denmark
| |
Collapse
|
8
|
Zhang W, Davis CM, Zeppenfeld DM, Golgotiu K, Wang MX, Haveliwala M, Hong D, Li Y, Wang RK, Iliff JJ, Alkayed NJ. Role of endothelium-pericyte signaling in capillary blood flow response to neuronal activity. J Cereb Blood Flow Metab 2021; 41:1873-1885. [PMID: 33853406 PMCID: PMC8327110 DOI: 10.1177/0271678x211007957] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Local blood flow in the brain is tightly coupled to metabolic demands, a phenomenon termed functional hyperemia. Both capillaries and arterioles contribute to the hyperemic response to neuronal activity via different mechanisms and timescales. The nature and specific signaling involved in the hyperemic response of capillaries versus arterioles, and their temporal relationship are not fully defined. We determined the time-dependent changes in capillary flux and diameter versus arteriolar velocity and flow following whisker stimulation using optical microangiography (OMAG) and two-photon microscopy. We further characterized depth-resolved responses of individual capillaries versus capillary networks. We hypothesized that capillaries respond first to neuronal activation, and that they exhibit a coordinated response mediated via endothelial-derived epoxyeicosatrienoates (EETs) acting on pericytes. To visualize peri-capillary pericytes, we used Tie2-GFP/NG2-DsRed mice, and to determine the role of endothelial-derived EETs, we compared cerebrovascular responses to whisker stimulation between wild-type mice and mice with lower endothelial EETs (Tie2-hsEH). We found that capillaries respond immediately to neuronal activation in an orchestrated network-level manner, a response attenuated in Tie2-hsEH and inhibited by blocking EETs action on pericytes. These results demonstrate that capillaries are first responders during functional hyperemia, and that they exhibit a network-level response mediated via endothelial-derived EETs' action on peri-capillary pericytes.
Collapse
Affiliation(s)
- Wenri Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Douglas M Zeppenfeld
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kirsti Golgotiu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Marie X Wang
- Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Mariya Haveliwala
- Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel Hong
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yuandong Li
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - Jeffrey J Iliff
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care Center, Seattle, WA, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
9
|
Hindel S, Heuchel L, Lüdemann L. Fractional calculus tracer kinetic compartment model for quantification of microvascular perfusion. Physiol Meas 2021; 42. [PMID: 34049294 DOI: 10.1088/1361-6579/ac067c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/26/2021] [Indexed: 11/11/2022]
Abstract
Objective. We evaluate a tracer kinetic model for quantification of physiological perfusion and microvascular residue time kurtosis (RTK) in skeletal muscle vasculature with first pass bolus experiments in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Approach. A decreasing stretched Mittag-Leffler function (f1C model) was obtained as the impulse response solution of a rate equation of real-valued ('fractional') derivation order. The method was validated in skeletal muscle in the lower limb of seven female pigs examined by DCE-MRI. Dynamic imaging during blood pool contrast agent elimination was performed using a 3D gradient echo sequence with k-space sharing. Blood flow was augmented by continuous infusion of the vasodilator adenosine into the femoral artery increasing blood flow up to four times. Blood flow measured by a Doppler flow probe placed at the femoral artery served as ground truth.Main results. Goodness of fit and correlation with the Doppler measurements,r= 0.80 (P< 0.001), of the 4-parameter f1C model was comparable with the results obtained with a previously tested 6-parameter two-compartment (2C) model. The derivation orderαof the f1C model can be interpreted as a measure of microvascular RTK. With increasing blood flow,αdropped significantly, leading to an increase in RTK.Significance. The f1C model is a practical approach based on hemodynamic principles to quantify physiological microvascular perfusion but it is impaired due to its compartmental nature.
Collapse
Affiliation(s)
- Stefan Hindel
- Department of Radiotherapy, Medical Physics section, University Hospital Essen, Essen, North Rhine-Westphalia, Germany.,Faculty of Physics, Technische Universität Kaiserslautern, Kaiserslautern, Rhineland-Palatinate, Germany
| | - Lena Heuchel
- Faculty of Physics, Technische Universität Dortmund, Dortmund, North Rhine-Westphalia, Germany
| | - Lutz Lüdemann
- Department of Radiotherapy, Medical Physics section, University Hospital Essen, Essen, North Rhine-Westphalia, Germany
| |
Collapse
|
10
|
Egelund J, Nyberg M, Mandrup CM, Abdulla J, Stallknecht B, Bangsbo J, Hellsten Y, Larsson HBW. Cardiac perfusion and function after high-intensity exercise training in late premenopausal and recent postmenopausal women: an MRI study. J Appl Physiol (1985) 2019; 126:1272-1280. [PMID: 30870082 DOI: 10.1152/japplphysiol.01089.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the influence of recent menopause and aerobic exercise training in women on myocardial perfusion, left ventricular (LV) dimension, and function. Two groups (n = 14 each) of healthy late premenopausal (50.2 ± 2.1 yr) and recent postmenopausal (54.2 ± 2.8 yr) women underwent cardiac magnetic resonance imaging (cMRI) at baseline and after 12 wk of high-intensity aerobic training. Measurements included LV morphology, systolic function, and myocardial perfusion at rest and during an adenosine stress test. At baseline, resting myocardial perfusion was lower in the postmenopausal than the premenopausal group (77 ± 3 vs. 89 ± 3 ml·100 g-1·min-1; P = 0.01), while adenosine-induced myocardial perfusion was not different (P = 0.81). After exercise training, resting myocardial perfusion was lower in both groups (66 ± 2; P = 0.002 vs. 81 ± 3 ml·100 g-1·min-1; P = 0.03). The adenosine-induced change in myocardial perfusion was lower in the groups combined (by 402 ± 17 ml·100 g-1·min-1; P = 0.02), and the adenosine-induced increase in heart rate was 10 ± 2 beats/min lower (P < 0.0001) in both groups after training. Normalization of myocardial perfusion using an estimate of cardiac work eliminated the differences in perfusion between the premenopausal and postmenopausal groups and the effect of training. Left ventricle mass was higher in both groups (P = 0.03; P = 0.006), whereas LV end-diastolic (P = 0.02) and stroke (P = 0.045) volumes were higher in the postmenopausal group after training. Twelve weeks of exercise training increased left ventricle mass and lowered resting and adenosine-induced myocardial perfusion, an effect that was likely related to cardiac work. The current data also suggest that the early menopausal transition has limited impact on cardiac function and structure. NEW & NOTEWORTHY This study provides for the first time estimates of myocardial perfusion in late premenopausal and recent postmenopausal women before and after a period of intense aerobic training. Resting myocardial perfusion was lower in postmenopausal than premenopausal women. Training lowered myocardial resting and stress perfusion in both groups, an effect that was likely influenced by the lower heart rate.
Collapse
Affiliation(s)
- Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Camilla M Mandrup
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jawdat Abdulla
- Department of Medicine, Division of Cardiology, Glostrup Hospital, University of Copenhagen , Copenhagen , Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
11
|
Increased volumes of mildly elevated capillary transit time heterogeneity positively predict favorable outcome and negatively predict intracranial hemorrhage in acute ischemic stroke with large vessel occlusion. Eur Radiol 2019; 29:3523-3532. [DOI: 10.1007/s00330-019-06064-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/05/2019] [Accepted: 02/04/2019] [Indexed: 01/11/2023]
|
12
|
Bae J, Zhang J, Wadghiri YZ, Minhas AS, Poptani H, Ge Y, Kim SG. Measurement of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging with reduced scan time. Magn Reson Med 2018; 80:1686-1696. [PMID: 29508443 DOI: 10.1002/mrm.27145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the feasibility of measuring the subtle disruption of blood-brain barrier (BBB) using DCE-MRI with a scan duration shorter than 10 min. METHODS The extended Patlak-model (EPM) was introduced to include the effect of plasma flow (Fp ) in the estimation of vascular permeability-surface area product (PS). Numerical simulation studies were carried out to investigate how the reduction in scan time affects the accuracy in estimating contrast kinetic parameters. DCE-MRI studies of the rat brain were conducted with Fisher rats to confirm the results from the simulation. Intracranial F98 glioblastoma models were used to assess areas with different levels of permeability. In the normal brain tissues, the Patlak model (PM) and EPM were compared, whereas the 2-compartment-exchange-model (TCM) and EPM were assessed in the peri-tumor and the tumor regions. RESULTS The simulation study results demonstrated that scan time reduction could lead to larger bias in PS estimated by PM (>2000%) than by EPM (<47%), especially when Fp is low. When Fp was high as in the gray matter, the bias in PM-PS (>900%) were larger than that in EPM-PS (<42%). The animal study also showed similar results, where the PM parameters were more sensitive to the scan duration than the EPM parameters. It was also demonstrated that, in the peri-tumor region, the EPM parameters showed less change by scan duration than the TCM parameters. CONCLUSION The results of this study suggest that EPM can be used to measure PS with a scan duration of 10 min or less.
Collapse
Affiliation(s)
- Jonghyun Bae
- Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Jin Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Youssef Zaim Wadghiri
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Atul Singh Minhas
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Harish Poptani
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yulin Ge
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Sungheon Gene Kim
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|