1
|
Elsaid NMH, Peters DC, Galiana G, Sinusas AJ. Clinical physiology: the crucial role of MRI in evaluation of peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1304-H1323. [PMID: 38517227 PMCID: PMC11381027 DOI: 10.1152/ajpheart.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning. Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and multiplanar imaging capabilities and is useful as a noninvasive imaging tool in the comprehensive physiological assessment of PAD. This review provides an overview of the current state of the art of MRI in the evaluation and characterization of PAD, including an analysis of the many applicable MR imaging techniques, describing the advantages and disadvantages of each approach. We also present recent developments, future clinical applications, and future MRI directions in assessing PAD. The development of new MR imaging technologies and applications in preclinical models with translation to clinical research holds considerable potential for improving the understanding of the pathophysiology of PAD and clinical applications for improving diagnostic precision, risk stratification, and treatment outcomes in patients with PAD.
Collapse
Affiliation(s)
- Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
2
|
Arvidsson J, Eriksson S, Johansson E, Lagerstrand K. Arterial occlusion duration affects the cuff-induced hyperemic response in skeletal muscle BOLD perfusion imaging as shown in young healthy subjects. MAGMA (NEW YORK, N.Y.) 2023; 36:897-910. [PMID: 37330431 PMCID: PMC10667151 DOI: 10.1007/s10334-023-01105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Dynamic BOLD MRI with cuff compression, inducing ischemia and post-occlusive hyperemia in skeletal muscle, has been pointed out as a potential diagnostic tool to assess peripheral limb perfusion. The objective was to explore the robustness of this technique and its sensitivity to the occlusion duration. MATERIALS AND METHODS BOLD images were acquired at 3 T in 14 healthy volunteers. [Formula: see text]-imaging with 5- and 1.5-min occlusions were acquired and several semi-quantitative BOLD parameters were derived from ROI-based [Formula: see text]-time curves. Differences in parameters from the two different occlusion durations were evaluated in the gastrocnemius and soleus muscles using non-parametrical tests. Intra- and inter-scan repeatability were evaluated with coefficient of variation. RESULTS Longer occlusion duration resulted in an increased hyperemic signal effect yielding significantly different values (p < 0.05) in gastrocnemius for all parameters describing the hyperemic response, and in soleus for two of these parameters. Specifically, 5-min occlusion yielded steeper hyperemic upslope in gastrocnemius (41.0%; p < 0.05) and soleus (59.7%; p = 0.03), shorter time to half peak in gastrocnemius (46.9%; p = 0.00008) and soleus (33.5%; p = 0.0003), and shorter time to peak in gastrocnemius (13.5%; p = 0.02). Coefficients of variation were lower than percentage differences that were found significant. DISCUSSION Findings show that the occlusion duration indeed influences the hyperemic response and thus should play a part in future methodological developments.
Collapse
Affiliation(s)
- Jonathan Arvidsson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Stefanie Eriksson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Kerstin Lagerstrand
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Luck JC, Sica CT, Blaha C, Cauffman A, Vesek J, Eckenrode J, Stavres J. Agreement between multiparametric MRI (PIVOT), Doppler ultrasound, and near-infrared spectroscopy-based assessments of skeletal muscle oxygenation and perfusion. Magn Reson Imaging 2023; 96:27-37. [PMID: 36396004 PMCID: PMC9789193 DOI: 10.1016/j.mri.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Skeletal muscle perfusion and oxygenation are commonly evaluated using Doppler ultrasound and near-infrared spectroscopy (NIRS) techniques. However, a recently developed magnetic resonance imaging (MRI) sequence, termed PIVOT, permits the simultaneous collection of skeletal muscle perfusion and T2* (an index of skeletal muscle oxygenation). PURPOSE To determine the level of agreement between PIVOT, Doppler ultrasound, and NIRS-based assessments of skeletal muscle perfusion and oxygenation. METHODS Twelve healthy volunteers (8 females, 25 ± 3 years, 170 ± 11 cm, 71.5 ± 8.0 kg) performed six total reactive hyperemia protocols. During three of these reactive hyperemia protocols, Tissue Saturation Index (TSI) and oxygenated hemoglobin (O2Hb) were recorded from the medial gastrocnemius (MG) and tibialis anterior (TA), and blood flow velocity was recorded from the popliteal artery (BFvpop) via Doppler Ultrasound. The other three trials were performed inside the bore of a 3 T MRI scanner, and the PIVOT sequence was used to assess perfusion (PIVOTperf) and oxygenation (T2*) of the medial gastrocnemius and tibialis anterior muscles. Positive incremental areas under the curve (iAUC) and times to peak (TTP) were calculated for each variable, and the level of agreement between collection methods was evaluated via Bland-Altman analyses and Spearman's Rho correlation analyses. RESULTS The only significant bivariate relationships observed were between the T2* vs. TSI iAUC and PIVOTperf vs. BFvpop values recorded from the MG. Significant mean differences were observed for all comparisons (all P ≤ 0.038), and significant proportional biases were observed for the PIVOTperf vs. tHb TTP (R2 = 0.848, P < 0.001) and T2* vs. TSI TTP comparisons in the TA (R2 = 0.488, P = 0.011), and the PIVOTperf vs. BFvpop iAUC (R2 = 0.477, P = 0.013) and time to peak (R2 = 0.851, P < 0.001) comparisons in the MG. CONCLUSIONS Our findings suggest that the PIVOT technique has, at best, a moderate level of agreement with Doppler ultrasound and NIRS assessment methods and is subject to significant proportional bias. These findings do not challenge the accuracy of either measurement technique but instead reflect differences in the vascular compartments, sampling volumes, and parameters being evaluated.
Collapse
Affiliation(s)
- J Carter Luck
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - Jeffrey Vesek
- Department of Molecular Biology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America
| | - John Eckenrode
- School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, United States of America; School of Kinesiology and Nutrition, University of Southern Mississippi, Hattiesburg, MS, United States of America.
| |
Collapse
|
4
|
Caroca S, Villagran D, Chabert S. Four functional magnetic resonance imaging techniques for skeletal muscle exploration, a systematic review. Eur J Radiol 2021; 144:109995. [PMID: 34628310 DOI: 10.1016/j.ejrad.2021.109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The study of muscle health has become more relevant lately, due to global aging and a higher incidence of musculoskeletal pathologies. Current exploration techniques, such as electromyography, do not provide accurate spatial information. OBJECTIVE The objective of this work is to perform a systematic review of the literature to synthesize the contributions that can offer functional MRI techniques commonly used in neuroimaging, applied to skeletal muscle: Blood Oxygen Level Dependent (BOLD), IntraVoxel Incoherent Motion (IVIM), Arterial Spin Labeling (ASL) and Dynamic Contrast Enhanced (DCE). EVIDENCE ACQUISITION Web of Science and Medline databases were searched, over the last 10 years, focused on the use of BOLD, ASL, IVIM or DCE in skeletal muscle. EVIDENCE SYNTHESIS 59 articles were included after applying the selection criteria. 37 studies were performed in healthy subjects, and 22 in patients with different pathologies: in peripheral arterial disease, systemic sclerosis, diabetes, osteoporosis, adolescent idiopathic scoliosis, and dermatomyositis. Reference values in healthy subjects still vary in some cases. CONCLUSION The studies show the feasibility of implementing functional MRI through BOLD, ASL, IVIM or DCE imaging in several muscles and their possible utility in different pathologies. A synthesis of how to implement such exploration is given here. CLINICAL IMPACT These four techniques are based on sequences already present in clinical MRI scanners, therefore, their use for functional muscle exploration does not require additional investment. These techniques allow visualization and quantification of parameters associated with the vascular health of the muscles and represent interesting support for musculoskeletal exploration.
Collapse
Affiliation(s)
- Sergio Caroca
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile
| | - Diego Villagran
- Servicio de Imagenología, Hospital Carlos van Buren, Valparaíso, Chile
| | - Steren Chabert
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile; CINGS, Centro de Investigación y Desarrollo en INGeniería en Salud, Universidad de Valparaiso, Valparaíso, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Chile.
| |
Collapse
|
5
|
Ohno N, Miyati T, Fujihara S, Gabata T, Kobayashi S. Biexponential analysis of intravoxel incoherent motion in calf muscle before and after exercise: Comparisons with arterial spin labeling perfusion and T2. Magn Reson Imaging 2020; 72:42-48. [DOI: 10.1016/j.mri.2020.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022]
|
6
|
Mahmud SZ, Gladden LB, Kavazis AN, Motl RW, Denney TS, Bashir A. Simultaneous Measurement of Perfusion and T 2* in Calf Muscle at 7T with Submaximal Exercise using Radial Acquisition. Sci Rep 2020; 10:6342. [PMID: 32286372 PMCID: PMC7156440 DOI: 10.1038/s41598-020-63009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Impairments in oxygen delivery and consumption can lead to reduced muscle endurance and physical disability. Perfusion, a measure of microvascular blood flow, provides information on nutrient delivery. T2* provides information about relative tissue oxygenation. Changes in these parameters following stress, such as exercise, can yield important information about imbalance between delivery and consumption. In this study, we implemented novel golden angle radial MRI acquisition technique to simultaneously quantify muscle perfusion and T2* at 7T with improved temporal resolution, and demonstrated assessment of spatial and temporal changes in these parameters within calf muscles during recovery from plantar flexion exercise. Nine healthy subjects participated the studies. At rest, perfusion and T2* in gastrocnemius muscle group within calf muscle were 5 ± 2 mL/100 g/min and 21.1 ± 3 ms respectively. Then the subjects performed plantar flexion exercise producing a torque of ~8ft-lb. Immediately after the exercise, perfusion was elevated to 79.3 ± 9 mL/100 g/min and T2* was decreased by 6 ± 3%. The time constants for 50% perfusion and T2* recovery were 54.1 ± 10 s and 68.5 ± 7 s respectively. These results demonstrate successful simultaneous quantification of perfusion and T2* in skeletal muscle using the developed technique.
Collapse
Affiliation(s)
- Sultan Z Mahmud
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, AL, 36849, USA
| | | | - Robert W Motl
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Thomas S Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
7
|
Englund EK, Langham MC. Quantitative and Dynamic MRI Measures of Peripheral Vascular Function. Front Physiol 2020; 11:120. [PMID: 32184733 PMCID: PMC7058683 DOI: 10.3389/fphys.2020.00120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
The endothelium regulates and mediates vascular homeostasis, allowing for dynamic changes of blood flow in response to mechanical and chemical stimuli. Endothelial dysfunction underlies many diseases and is purported to be the earliest pathologic change in the progression of atherosclerotic disease. Peripheral vascular function can be interrogated by measuring the response kinetics following induced ischemia or exercise. In the presence of endothelial dysfunction, there is a blunting and delay of the hyperemic response, which can be measured non-invasively using a variety of quantitative magnetic resonance imaging (MRI) methods. In this review, we summarize recent developments in non-contrast, proton MRI for dynamic quantification of blood flow and oxygenation. Methodologic description is provided for: blood oxygenation-level dependent (BOLD) signal that reflect combined effect of blood flow and capillary bed oxygen content; arterial spin labeling (ASL) for quantification of regional perfusion; phase contrast (PC) to quantify arterial flow waveforms and macrovascular blood flow velocity and rate; high-resolution MRI for luminal flow-mediated dilation; and dynamic MR oximetry to quantify oxygen saturation. Overall, results suggest that these dynamic and quantitative MRI methods can detect endothelial dysfunction both in the presence of overt cardiovascular disease (such as in patients with peripheral artery disease), as well as in sub-clinical settings (i.e., in chronic smokers, non-smokers exposed to e-cigarette aerosol, and as a function of age). Thus far, these tools have been relegated to the realm of research, used as biomarkers of disease progression and therapeutic response. With proper validation, MRI-measures of vascular function may ultimately be used to complement the standard clinical workup, providing additional insight into the optimal treatment strategy and evaluation of treatment efficacy.
Collapse
Affiliation(s)
- Erin K Englund
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Michael C Langham
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Koolstra K, Webb AG, Veeger TTJ, Kan HE, Koken P, Börnert P. Water-fat separation in spiral magnetic resonance fingerprinting for high temporal resolution tissue relaxation time quantification in muscle. Magn Reson Med 2020; 84:646-662. [PMID: 31898834 PMCID: PMC7217066 DOI: 10.1002/mrm.28143] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022]
Abstract
Purpose To minimize the known biases introduced by fat in rapid T1 and T2 quantification in muscle using a single‐run magnetic resonance fingerprinting (MRF) water–fat separation sequence. Methods The single‐run MRF acquisition uses an alternating in‐phase/out‐of‐phase TE pattern to achieve water–fat separation based on a 2‐point DIXON method. Conjugate phase reconstruction and fat deblurring were applied to correct for B0 inhomogeneities and chemical shift blurring. Water and fat signals were matched to the on‐resonance MRF dictionary. The method was first tested in a multicompartment phantom. To test whether the approach is capable of measuring small in vivo dynamic changes in relaxation times, experiments were run in 9 healthy volunteers; parameter values were compared with and without water–fat separation during muscle recovery after plantar flexion exercise. Results Phantom results show the robustness of the water–fat resolving MRF approach to undersampling. Parameter maps in volunteers show a significant (P < .01) increase in T1 (105 ± 94 ms) and decrease in T2 (14 ± 6 ms) when using water–fat‐separated MRF, suggesting improved parameter quantification by reducing the well‐known biases introduced by fat. Exercise results showed smooth T1 and T2 recovery curves. Conclusion Water–fat separation using conjugate phase reconstruction is possible within a single‐run MRF scan. This technique can be used to rapidly map relaxation times in studies requiring dynamic scanning, in which the presence of fat is problematic.
Collapse
Affiliation(s)
- Kirsten Koolstra
- C.J. Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Thom T J Veeger
- C.J. Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Peter Börnert
- C.J. Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands.,Philips Research, Hamburg, Germany
| |
Collapse
|
9
|
Bakermans AJ, Wessel CH, Zheng KH, Groot PFC, Stroes ESG, Nederveen AJ. Dynamic magnetic resonance measurements of calf muscle oxygenation and energy metabolism in peripheral artery disease. J Magn Reson Imaging 2019; 51:98-107. [PMID: 31218803 PMCID: PMC6916546 DOI: 10.1002/jmri.26841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background Clinical assessments of peripheral artery disease (PAD) severity are insensitive to pathophysiological changes in muscle tissue oxygenation and energy metabolism distal to the affected artery. Purpose To quantify the blood oxygenation level‐dependent (BOLD) response and phosphocreatine (PCr) recovery kinetics on a clinical MR system during a single exercise‐recovery session in PAD patients. Study Type Case–control study. Subjects Fifteen Fontaine stage II patients, and 18 healthy control subjects Field Strength/Sequence Interleaved dynamic multiecho gradient‐echo 1H T2* mapping and adiabatic pulse‐acquire 31P‐MR spectroscopy at 3T. Assessment Blood pressure in the arms and ankles were measured to determine the ankle‐brachial index (ABI). Subjects performed a plantar flexion exercise‐recovery protocol. The gastrocnemius and soleus muscle BOLD responses were characterized using the T2* maps. High‐energy phosphate metabolite concentrations were quantified by fitting the series of 31P‐MR spectra. The PCr recovery time constant (τPCr) was derived as a measure of in vivo mitochondrial oxidative capacity. Statistical Tests Comparisons between groups were performed using two‐sided Mann–Whitney U‐tests. Relations between variables were assessed by Pearson's r correlation coefficients. Results The amplitude of the functional hyperemic BOLD response in the gastrocnemius muscle was higher in PAD patients compared with healthy subjects (–3.8 ± 1.4% vs. –1.4 ± 0.3%; P < 0.001), and correlated with the ABI (r = 0.79; P < 0.001). PCr recovery was slower in PAD patients (τPCr = 52.0 ± 13.5 vs. 30.3 ± 9.7 sec; P < 0.0001), and correlated with the ABI (r = –0.64; P < 0.001). Moreover, τPCr correlated with the hyperemic BOLD response in the gastrocnemius muscle (r = –0.66; P < 0.01). Data Conclusion MR readouts of calf muscle tissue oxygenation and high‐energy phosphate metabolism were acquired essentially simultaneously during a single exercise‐recovery session. A pronounced hypoxia‐triggered vasodilation in PAD is associated with a reduced mitochondrial oxidative capacity. Level of Evidence: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:98–107.
Collapse
Affiliation(s)
- Adrianus J Bakermans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Chang Ho Wessel
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul F C Groot
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|