1
|
Varghese NP, Austin ED, Galambos C, Mullen MP, Yung D, Guillerman RP, Vargas SO, Avitabile CM, Chartan CA, Cortes-Santiago N, Ibach M, Jackson EO, Jarrell JA, Keller RL, Krishnan US, Patel KR, Pogoriler J, Whalen EC, Wikenheiser-Brokamp KA, Villafranco NM, Hopper RK, Usha Raj J, Abman SH. An interdisciplinary consensus approach to pulmonary hypertension in developmental lung disease. Eur Respir J 2024; 64:2400639. [PMID: 39147412 PMCID: PMC11424926 DOI: 10.1183/13993003.00639-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
It is increasingly recognised that diverse genetic respiratory disorders present as severe pulmonary hypertension (PH) in the neonate and young infant, but many controversies and uncertainties persist regarding optimal strategies for diagnosis and management to maximise long-term outcomes. To better define the nature of PH in the setting of developmental lung disease (DEVLD), in addition to the common diagnoses of bronchopulmonary dysplasia and congenital diaphragmatic hernia, we established a multidisciplinary group of expert clinicians from stakeholder paediatric specialties to highlight current challenges and recommendations for clinical approaches, as well as counselling and support of families. In this review, we characterise clinical features of infants with DEVLD/DEVLD-PH and identify decision-making challenges including genetic evaluations, the role of lung biopsies, the use of imaging modalities and treatment approaches. The importance of working with team members from multiple disciplines, enhancing communication and providing sufficient counselling services for families is emphasised to create an interdisciplinary consensus.
Collapse
Affiliation(s)
- Nidhy P Varghese
- Department of Pediatrics, Division of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado and Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| | - Mary P Mullen
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Delphine Yung
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - R Paul Guillerman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine M Avitabile
- Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Corey A Chartan
- Department of Pediatrics, Divisions of Critical Care Medicine and Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Michaela Ibach
- Section of Palliative Care, Division of Hospital Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma O Jackson
- Heart Center, Pulmonary Hypertension Program, Seattle Children's Hospital, Seattle, WA, USA
| | - Jill Ann Jarrell
- Division of Palliative Care, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Roberta L Keller
- Department of Pediatrics/Neonatology, University of California San Francisco and Benioff Children's Hospital, San Francisco, CA, USA
| | - Usha S Krishnan
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Irving Medical Center and Morgan Stanley Children's Hospital of New York Presbyterian Hospital, New York, NY, USA
| | - Kalyani R Patel
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, TX, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elise C Whalen
- Department of Pediatrics, Division of Pulmonology, Advanced Practice Providers, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine and Division of Pathology & Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Natalie M Villafranco
- Department of Pediatrics, Division of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rachel K Hopper
- Department of Pediatrics, Division of Cardiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - J Usha Raj
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven H Abman
- Department of Pediatrics, University of Colorado and Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
2
|
Enzer KG, Baker CD, Wisniewski BL. Bronchopulmonary Dysplasia. Clin Chest Med 2024; 45:639-650. [PMID: 39069327 DOI: 10.1016/j.ccm.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease, associated with premature birth, that arises during the infantile period. It is an evolving disease process with an unchanged incidence due to advancements in neonatal care which allow for the survival of premature infants of lower gestational ages and birth weights. Currently, there are few effective interventions to prevent BPD. However, careful attention to BPD phenotypes and comprehensive care provided by an interdisciplinary team have improved care. Interventions early in the disease course hold promise for improving long-term survival and outcomes in adulthood for this high-risk population.
Collapse
Affiliation(s)
- Katelyn G Enzer
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado School of Medicine, 13123 East 16th Avenue Box B-395, Aurora, CO 80045, USA.
| | - Christopher D Baker
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado School of Medicine, 13123 East 16th Avenue Box B-395, Aurora, CO 80045, USA
| | - Benjamin L Wisniewski
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado School of Medicine, 13123 East 16th Avenue Box B-395, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Tong Y, Udupa JK, McDonough JM, Wu C, Xie L, Rajapakse CS, Gogel S, Sarkar S, Mayer OH, Anari JB, Torigian DA, Cahill PJ. Characterizing Lung Parenchymal Aeration via Standardized Signal Intensity from Free-breathing 4D Dynamic MRI in Phantoms, Healthy Children, and Pediatric Patients with Thoracic Insufficiency Syndrome. Radiol Cardiothorac Imaging 2024; 6:e230262. [PMID: 39051878 PMCID: PMC11369656 DOI: 10.1148/ryct.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
Purpose To investigate free-breathing thoracic bright-blood four-dimensional (4D) dynamic MRI (dMRI) to characterize aeration of parenchymal lung tissue in healthy children and patients with thoracic insufficiency syndrome (TIS). Materials and Methods All dMR images in patients with TIS were collected from July 2009 to June 2017. Standardized signal intensity (sSI) was investigated, first using a lung aeration phantom to establish feasibility and sensitivity and then in a retrospective research study of 40 healthy children (16 male, 24 female; mean age, 9.6 years ± 2.1 [SD]), 20 patients with TIS before and after surgery (11 male, nine female; mean age, 6.2 years ± 4.2), and another 10 healthy children who underwent repeated dMRI examinations (seven male, three female; mean age, 9 years ± 3.6). Individual lungs in 4D dMR images were segmented, and sSI was assessed for each lung at end expiration (EE), at end inspiration (EI), preoperatively, postoperatively, in comparison to normal lungs, and in repeated scans. Results Air content changes of approximately 6% were detectable in phantoms via sSI. sSI within phantoms significantly correlated with air occupation (Pearson correlation coefficient = -0.96 [P < .001]). For healthy children, right lung sSI was significantly lower than that of left lung sSI (at EE: 41 ± 6 vs 47 ± 6 and at EI: 39 ± 6 vs 43 ± 7, respectively; P < .001), lung sSI at EI was significantly lower than that at EE (P < .001), and left lung sSI at EE linearly decreased with age (r = -0.82). Lung sSI at EE and EI decreased after surgery for patients (although not statistically significantly, with P values of sSI before surgery vs sSI after surgery, left and right lung separately, in the range of 0.13-0.51). sSI varied within 1.6%-4.7% between repeated scans. Conclusion This study demonstrates the feasibility of detecting change in sSI in phantoms via bright-blood dMRI when air occupancy changes. The observed reduction in average lung sSI after surgery in pediatric patients with TIS may indicate postoperative improvement in parenchymal aeration. Keywords: MR Imaging, Thorax, Lung, Pediatrics, Thoracic Surgery, Lung Parenchymal Aeration, Free-breathing Dynamic MRI, MRI Intensity Standardization, Thoracic Insufficiency Syndrome Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Yubing Tong
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Jayaram K. Udupa
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Joseph M. McDonough
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Caiyun Wu
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Lipeng Xie
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Chamith S. Rajapakse
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Samantha Gogel
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Sulagna Sarkar
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Oscar H. Mayer
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Jason B. Anari
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Drew A. Torigian
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| | - Patrick J. Cahill
- From Department of Radiology, the Medical Image Processing Group,
University of Pennsylvania, 3710 Hamilton Walk, Goddard Bldg, 6th Fl,
Philadelphia, PA 19104 (Y.T., J.K.U., C.W., L.X., D.A.T.); The Wyss/Campbell
Center for Thoracic Insufficiency Syndrome, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (J.M.D., S.G., S.S., J.B.A., P.J.C.); Departments
of Radiology and Orthopedic Surgery, University of Pennsylvania, Philadelphia,
Pa (C.S.R.); and Division of Pulmonology, The Children’s Hospital of
Philadelphia, Philadelphia, Pa (O.H.M.)
| |
Collapse
|
4
|
Hayashida Y, Murakami Y, Fukumitsu S, Yoshimatsu Y, Anai K, Todoroki Y, Fujisaki A, Ide S, Aoki T. Feasibility of Breath-Hold Zero TE Magnetic Resonance Imaging Sequence for Evaluation of Pulmonary Arteriovenous Malformations After Embolotherapy. J Comput Assist Tomogr 2024; 48:233-235. [PMID: 38110292 DOI: 10.1097/rct.0000000000001568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
ABSTRACT We obtained breath-hold zero TE (ZTE) magnetic resonance imaging for the evaluation of pulmonary arteriovenous malformations before and after embolotherapy. To the best of our knowledge, there have been no reports of ZTE for the entire lung imaging in single breath-hold scan time such as 20 seconds. Breath-hold ZTE magnetic resonance imaging can be a useful technique for magnetic resonance-based follow-up of vascular lung diseases without using contrast media, reducing the undesired artifacts from metallic devices.
Collapse
Affiliation(s)
- Yoshiko Hayashida
- From the Department of Radiology, University of Occupational and Environmental Health, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Giltmier AJ, Higano NS, Woods JC, Kingma PS. Evaluation of regional lung mass and growth in neonates with bronchopulmonary dysplasia using ultrashort echo time magnetic resonance imaging. Pediatr Pulmonol 2024; 59:55-62. [PMID: 37787390 PMCID: PMC10841165 DOI: 10.1002/ppul.26705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD) is the most common long term pulmonary morbidity in premature infants and is characterized by impaired lung growth and development. We hypothesized that lung mass growth is a critical factor in determining outcomes in infants with BPD. OBJECTIVES To measure regional lung density and mass in infants with BPD and compare to clinical variables. METHODS We conducted a retrospective cohort study of neonates (n = 5 controls, n = 46 with BPD). Lung mass and lung density were calculated using ultrashort echo time (UTE) magnetic resonance imaging (MRI). MEASUREMENTS AND MAIN RESULTS Lung mass increased with increasing corrected gestational age at the time of MRI in all patients. Total, right, and left lung mass in infants with BPD trended higher than control infants (65.7 vs. 49.9 g, 36.2 vs. 26.8 g, 29.5 vs. 23.1 g, respectively). Babies with BPD who survived to discharge had higher relative lung mass than control infants and infants with BPD that did not survive to discharge (21.6 vs. 15.7 g/kg, p = .01). There was a significant association between the rate of lung mass growth and linear growth at the time of MRI (p = .034). CONCLUSIONS Infants with BPD are capable of building lung mass over time. While this lung mass growth in infants with BPD may not represent fully functional lung tissue, higher lung mass growth is associated with increased linear growth.
Collapse
Affiliation(s)
- Andrew J Giltmier
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Cincinnati Children's Hospital Medical Center, The Perinatal Institute, Cincinnati, Ohio, USA
| | - Nara S Higano
- Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati, Ohio, USA
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason C Woods
- Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati, Ohio, USA
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Paul S Kingma
- Cincinnati Children's Hospital Medical Center, The Perinatal Institute, Cincinnati, Ohio, USA
- Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Center for Pulmonary Imaging Research, Division of Pulmonary Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Stewart NJ, Higano NS, Mukthapuram S, Willmering MM, Loew W, West M, Arnsperger A, Pratt R, Rao MR, Schulte RF, Wild JM, Woods JC. Initial feasibility and challenges of hyperpolarized 129 Xe MRI in neonates with bronchopulmonary dysplasia. Magn Reson Med 2023; 90:2420-2431. [PMID: 37526031 PMCID: PMC10629838 DOI: 10.1002/mrm.29808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/14/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE The underlying functional and microstructural lung disease in neonates who are born preterm (bronchopulmonary dysplasia, BPD) remains poorly characterized. Moreover, there is a lack of suitable techniques to reliably assess lung function in this population. Here, we report our preliminary experience with hyperpolarized 129 Xe MRI in neonates with BPD. METHODS Neonatal intensive care patients with established BPD were recruited (N = 9) and imaged at a corrected gestational age of median:40.7 (range:37.1, 44.4) wk using a 1.5T neonatal scanner. 2D 129 Xe ventilation and diffusion-weighted images and dissolved phase spectroscopy were acquired, alongside 1 H 3D radial UTE. 129 Xe images were acquired during a series of short apneic breath-holds (˜3 s). 1 H UTE images were acquired during tidal breathing. Ventilation defects were manually identified and qualitatively compared to lung structures on UTE. ADCs were calculated on a voxel-wise basis. The signal ratio of the 129 Xe red blood cell (RBC) and tissue membrane (M) resonances from spectroscopy was determined. RESULTS Spiral-based 129 Xe ventilation imaging showed good image quality and sufficient sensitivity to detect mild ventilation abnormalities in patients with BPD. 129 Xe ADC values were elevated above that expected given healthy data in older children and adults (median:0.046 [range:0.041, 0.064] cm2 s-1 ); the highest value obtained from an extremely pre-term patient. 129 Xe spectroscopy revealed a low RBC/M ratio (0.14 [0.06, 0.21]). CONCLUSION We have demonstrated initial feasibility of 129 Xe lung MRI in neonates. With further data, the technique may help guide management of infant lung diseases in the neonatal period and beyond.
Collapse
Affiliation(s)
- Neil J Stewart
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Nara S Higano
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shanmukha Mukthapuram
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew M Willmering
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wolfgang Loew
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael West
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anita Arnsperger
- Division of Respiratory Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ronald Pratt
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Madhwesha R Rao
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | - Jim M Wild
- POLARIS, Imaging Sciences, Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Pulmonary Medicine and Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
De Luca D, Loi B, Tingay D, Fiori H, Kingma P, Dellacà R, Autilio C. Surfactant status assessment and personalized therapy for surfactant deficiency or dysfunction. Semin Fetal Neonatal Med 2023; 28:101494. [PMID: 38016825 DOI: 10.1016/j.siny.2023.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Surfactant is a pivotal neonatal drug used both for respiratory distress syndrome due to surfactant deficiency and for more complex surfactant dysfunctions (such as in case of neonatal acute respiratory distress syndrome). Despite its importance, indications for surfactant therapy are often based on oversimplified criteria. Lung biology and modern monitoring provide several diagnostic tools to assess the patient surfactant status and they can be used for a personalized surfactant therapy. This is desirable to improve the efficacy of surfactant treatment and reduce associated costs and side effects. In this review we will discuss these diagnostic tools from a pathophysiological and multi-disciplinary perspective, focusing on the quantitative or qualitative surfactant assays, lung mechanics or aeration measurements, and gas exchange metrics. Their biological and technical characteristics are described with practical information for clinicians. Finally, available evidence-based data are reviewed, and the diagnostic accuracy of the different tools is compared. Lung ultrasound seems the most suitable tool for assessing the surfactant status, while some other promising tests require further research and/or development.
Collapse
Affiliation(s)
- Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "Antoine Béclère" Hospital, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit, INSERM U999, Paris Saclay University, Paris, France; Department of Pediatrics, Division of Neonatology, Stanford University, School of Medicine - Lucile Packard Children's Hospital, Palo Alto, CA, USA.
| | - Barbara Loi
- Division of Pediatrics and Neonatal Critical Care, "Antoine Béclère" Hospital, Paris Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit, INSERM U999, Paris Saclay University, Paris, France
| | - David Tingay
- Neonatal Research Unit, Murdoch Children's Research Institute, Parkville, Australia; Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Humberto Fiori
- Division of Neonatology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Paul Kingma
- Perinatal Institute, Cincinnati Children's University Hospital Medical Center, Cincinnati, OH, USA
| | - Raffaele Dellacà
- Department of Electronics, Information and Bio-engineering, Polytechnical University of Milan, Milan, Italy
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology and Research Institute Hospital October 12 (imas12), Faculty of Biology, Complutense University, Madrid, Spain; Clinical Pathology and Microbiology Unit, San Carlo Hospital, Potenza, Italy
| |
Collapse
|
8
|
Parraga G, Sharma M. Don't Forget the Kids!: Novel Pulmonary MRI and AI of Neonatal Lung Disease. Radiol Artif Intell 2023; 5:e230400. [PMID: 38074786 PMCID: PMC10698590 DOI: 10.1148/ryai.230400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2024]
Affiliation(s)
- Grace Parraga
- From the Department of Medical Biophysics, Western University, Robarts Research Institute, 1151 Richmond St, London, ON, Canada N6A 5B7
| | - Maksym Sharma
- From the Department of Medical Biophysics, Western University, Robarts Research Institute, 1151 Richmond St, London, ON, Canada N6A 5B7
| |
Collapse
|
9
|
Alonso-Ojembarrena A, Aldecoa-Bilbao V, De Luca D. Imaging of bronchopulmonary dysplasia. Semin Perinatol 2023; 47:151812. [PMID: 37775364 DOI: 10.1016/j.semperi.2023.151812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease with many associated co-morbidities, responsible for most cases of chronic lung disease in childhood. The use of imaging exams is pivotal for the clinical care of BPD and the identification of candidates for experimental therapies and a closer follow-up. Imaging is also useful to improve communication with the family and objectively evaluate the clinical evolution of the patient's disease. BPD imaging has been classically performed using only chest X-rays, but several modern techniques are currently available, such as lung ultrasound, thoracic tomography, magnetic resonance imaging and electrical impedance tomography. These techniques are more accurate and provide clinically meaningful information. We reviewed the most recent evidence published in the last five years regarding these techniques and analyzed their advantages and disadvantages.
Collapse
Affiliation(s)
- Almudena Alonso-Ojembarrena
- Neonatal Intensive Care Unit, Puerta del Mar University Hospital, Cádiz. Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA). Research Unit, Puerta del Mar University Hospital, Cádiz. Spain.
| | - Victoria Aldecoa-Bilbao
- Neonatology Department, Hospital Clinic Barcelona. BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine. Barcelona, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, "A.Béclère" Medical Center, Paris- Saclay University Hospitals, APHP, Paris, France; Physiopathology and Therapeutic Innovation Unit-INSERM U999, Paris-Saclay University, Paris, France; Department of Pediatrics, Division of Neonatology, Stanford University, School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
10
|
Hsia CCW, Bates JHT, Driehuys B, Fain SB, Goldin JG, Hoffman EA, Hogg JC, Levin DL, Lynch DA, Ochs M, Parraga G, Prisk GK, Smith BM, Tawhai M, Vidal Melo MF, Woods JC, Hopkins SR. Quantitative Imaging Metrics for the Assessment of Pulmonary Pathophysiology: An Official American Thoracic Society and Fleischner Society Joint Workshop Report. Ann Am Thorac Soc 2023; 20:161-195. [PMID: 36723475 PMCID: PMC9989862 DOI: 10.1513/annalsats.202211-915st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Multiple thoracic imaging modalities have been developed to link structure to function in the diagnosis and monitoring of lung disease. Volumetric computed tomography (CT) renders three-dimensional maps of lung structures and may be combined with positron emission tomography (PET) to obtain dynamic physiological data. Magnetic resonance imaging (MRI) using ultrashort-echo time (UTE) sequences has improved signal detection from lung parenchyma; contrast agents are used to deduce airway function, ventilation-perfusion-diffusion, and mechanics. Proton MRI can measure regional ventilation-perfusion ratio. Quantitative imaging (QI)-derived endpoints have been developed to identify structure-function phenotypes, including air-blood-tissue volume partition, bronchovascular remodeling, emphysema, fibrosis, and textural patterns indicating architectural alteration. Coregistered landmarks on paired images obtained at different lung volumes are used to infer airway caliber, air trapping, gas and blood transport, compliance, and deformation. This document summarizes fundamental "good practice" stereological principles in QI study design and analysis; evaluates technical capabilities and limitations of common imaging modalities; and assesses major QI endpoints regarding underlying assumptions and limitations, ability to detect and stratify heterogeneous, overlapping pathophysiology, and monitor disease progression and therapeutic response, correlated with and complementary to, functional indices. The goal is to promote unbiased quantification and interpretation of in vivo imaging data, compare metrics obtained using different QI modalities to ensure accurate and reproducible metric derivation, and avoid misrepresentation of inferred physiological processes. The role of imaging-based computational modeling in advancing these goals is emphasized. Fundamental principles outlined herein are critical for all forms of QI irrespective of acquisition modality or disease entity.
Collapse
|
11
|
Metz C, Weng AM, Böckle D, Heidenreich JF, Slawig A, Benkert T, Kraus S, Köstler H, Veldhoen S. Comparison of diagnostic quality of 3D ultrashort-echo-time techniques for pulmonary magnetic resonance imaging in free-breathing. Acta Radiol 2023; 64:1851-1858. [PMID: 36718493 DOI: 10.1177/02841851231151366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Ultrashort-echo-time (UTE) sequences have been developed to overcome technical limitations of pulmonary magnetic resonance imaging (MRI). Recently, it has been shown that UTE sequences with breath-hold allow rapid image acquisition with sufficient image quality. However, patients with impaired respiration require alternative acquisition strategies while breathing freely. PURPOSE To compare the diagnostic performance of free-breathing three-dimensional (3D)-UTE sequences with different trajectories based on pulmonary imaging of immunocompromised patients. MATERIAL AND METHODS In a prospective study setting, two 3D-UTE sequences performed in free-breathing and exploiting non-Cartesian trajectories-one using a stack-of-spirals and the other exploiting a radial trajectory-were acquired at 3 T in patients undergoing hematopoietic stem cell transplantation. Two radiologists assessed the images regarding presence of pleural effusions and pulmonary infiltrations. Computed tomography (CT) was used as reference. RESULTS A total of 28 datasets, each consisting of free-breathing 3D-UTE MRI with the two sequence techniques and a reference CT scan, were acquired in 20 patients. Interrater agreement was substantial for pulmonary infiltrations using both sequence techniques (κ = 0.77 - 0.78). Regarding pleural effusions, agreement was almost perfect in the stack-of-spirals (κ = 0.81) and moderate in the radial sequence (κ = 0.59). No significant differences in detectability of the assessed pulmonary pathologies were observed between both 3D-UTE sequence techniques (P > 0.05), and their level of agreement was substantial throughout (κ = 0.62-0.81). Both techniques provided high sensitivities and specificities (79%-100%) for the detection of pulmonary infiltrations and pleural effusions compared to reference CT. CONCLUSION The diagnostic performance of the assessed 3D-UTE MRI sequences was similar. Both sequences enable the detection of typical inflammatory lung pathologies.
Collapse
Affiliation(s)
- Corona Metz
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - David Böckle
- Department of Internal Medicine II (Hematology and Oncology), 27207University Hospital of Würzburg, Würzburg, Germany
| | - Julius Frederik Heidenreich
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - Anne Slawig
- Department for Radiation Medicine, Section Medical Physics, University Clinic and Outpatient Clinic for Radiology, 14942University Hospital Halle (Saale), Halle (Saale), Germany
| | - Thomas Benkert
- Application Development, 42406Siemens Healthcare GmbH, Erlangen, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II (Hematology and Oncology), 27207University Hospital of Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, 27207University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Hysinger EB, Ahlfeld SK. Respiratory support strategies in the prevention and treatment of bronchopulmonary dysplasia. Front Pediatr 2023; 11:1087857. [PMID: 36937965 PMCID: PMC10018229 DOI: 10.3389/fped.2023.1087857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Neonates who are born preterm frequently have inadequate lung development to support independent breathing and will need respiratory support. The underdeveloped lung is also particularly susceptible to lung injury, especially during the first weeks of life. Consequently, respiratory support strategies in the early stages of premature lung disease focus on minimizing alveolar damage. As infants grow and lung disease progresses, it becomes necessary to shift respiratory support to a strategy targeting the often severe pulmonary heterogeneity and obstructive respiratory physiology. With appropriate management, time, and growth, even those children with the most extreme prematurity and severe lung disease can be expected to wean from respiratory support.
Collapse
Affiliation(s)
- Erik B. Hysinger
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Correspondence: Erik B. Hysinger
| | - Shawn K. Ahlfeld
- Division of Neonatology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
13
|
Hysinger EB, Woods JC. Seeing Premature Lung Disease: Hyperpolarized Xe Magnetic Resonance Imaging. Am J Respir Crit Care Med 2023; 207:15-16. [PMID: 36067056 PMCID: PMC9952862 DOI: 10.1164/rccm.202208-1612ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Erik B. Hysinger
- Division of Pulmonary MedicineCincinnati Children’s Hospital Medical CenterCincinnati, Ohio
| | - Jason C. Woods
- Division of Pulmonary MedicineCincinnati Children’s Hospital Medical CenterCincinnati, Ohio
| |
Collapse
|
14
|
Elders BBLJ, Tiddens HAWM, Pijnenburg MWH, Reiss IKM, Wielopolski PA, Ciet P. Lung structure and function on MRI in preterm born school children with and without BPD: A feasibility study. Pediatr Pulmonol 2022; 57:2981-2991. [PMID: 35982507 PMCID: PMC9826116 DOI: 10.1002/ppul.26119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The most common respiratory complication of prematurity is bronchopulmonary dysplasia (BPD), leading to structural lung changes and impaired respiratory outcomes. However, also preterm children without BPD may show similar adverse respiratory outcomes. There is a need for a safe imaging modality for preterm children with and without BPD for disease severity assessment and risk stratification. Our objective was to develop a magnetic resonance imaging (MRI) protocol in preterm children with and without BPD at school age. METHODS Nine healthy volunteers (median age 11.6 [range: 8.8-12.8] years), 11 preterm children with BPD (11.0 [7.2-15.6] years), and 9 without BPD (11.1 [10.7-12.6] years) underwent MRI. Images were scored on hypo- and hyperintense abnormalities, bronchopathy, and architectural distortion. MRI data were correlated to spirometry. Ventilation and perfusion defects were analyzed using Fourier Decomposition (FD) MRI. RESULTS On MRI, children with BPD had higher %diseased lung (9.1 (interquartile range [IQR] 5.9-11.6)%) compared to preterm children without BPD (3.4 (IQR 2.5-5.4)%, p < 0.001) and healthy volunteers (0.4 (IQR 0.1-0.8)%, p < 0.001). %Diseased lung correlated negatively with %predicted FEV1 (r = -0.40, p = 0.04), FEV1 /FVC (r = -0.49, p = 0.009) and FEF75 (r = -0.63, p < 0.001). Ventilation and perfusion defects on FD sequence corresponded to hypointense regions on expiratory MRI. CONCLUSION Chest MRI can identify structural and functional lung damage at school age in preterm children with and without BPD, showing a good correlation with spirometry. We propose MRI as a sensitive and safe imaging method (without ionizing radiation, contrast agents, or the use of anesthesia) for the long-term follow-up of preterm children.
Collapse
Affiliation(s)
- Bernadette B L J Elders
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Mariëlle W H Pijnenburg
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Irwin K M Reiss
- Department of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Piotr A Wielopolski
- Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Department of Paediatric Pulmonology and Allergology, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC-Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Quantitative cardiopulmonary magnetic resonance imaging in neonatal congenital diaphragmatic hernia. Pediatr Radiol 2022; 52:2306-2318. [PMID: 35556152 DOI: 10.1007/s00247-022-05384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/15/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension, impaired cardiac function and lung hypoplasia are common in infants with congenital diaphragmatic hernia (CDH) and are associated with increased morbidity and mortality. Robust noninvasive methods to quantify these abnormalities in early infancy are lacking. OBJECTIVE To determine the feasibility of MRI to quantify cardiopulmonary hemodynamics and function in infants with CDH and to investigate left-right blood flow and lung volume discrepancies. MATERIALS AND METHODS We conducted a prospective MRI study of 23 neonates (isolated left CDH: 4 pre-repair, 7 post-repair, 3 pre- and post-repair; and 9 controls) performed on a small-footprint 1.5-tesla (T) scanner. We calculated MRI-based pulmonary arterial blood flow, left ventricular eccentricity index, cardiac function and lung volume. Using the Wilcoxon rank sum test for continuous data and Fisher exact test for categorical data, we made pairwise group comparisons. RESULTS The right-to-left ratios for pulmonary artery blood flow and lung volume were elevated in pre-repair and post-repair CDH versus controls (flow: P<0.005; volume: P<0.05 pre-/post-repair). Eccentricity index at end-systole significantly differed between pre-repair and post-repair CDH (P<0.01) and between pre-repair CDH and controls (P<0.001). CONCLUSION Cardiopulmonary MRI is a viable method to serially evaluate cardiopulmonary hemodynamics and function in critically ill infants and is useful for capturing left-right asymmetries in pulmonary blood flow and lung volume.
Collapse
|
16
|
Hysinger EB, Higano NS, Critser PJ, Woods JC. Imaging in neonatal respiratory disease. Paediatr Respir Rev 2022; 43:44-52. [PMID: 35074281 PMCID: PMC10439744 DOI: 10.1016/j.prrv.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to describe the current state of the art in clinical imaging for NICU patients, divided into major areas that correspond to likely phenotypes of neonatal respiratory disease: airway abnormalities, parenchymal disease, and pulmonary vascular disease. All common imaging modalities (ultrasound, X-ray, CT, and MRI) are discussed, with an emphasis on modalities that are most relevant to the individual underlying aspects of disease. Some promising aspects of dynamic and functional imaging are included, where there may be future clinical applicability.
Collapse
Affiliation(s)
- E B Hysinger
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States.
| | - N S Higano
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States
| | - P J Critser
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States
| | - J C Woods
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States
| |
Collapse
|
17
|
Fetal lung development via quantitative biomarkers from diffusion MRI and histological validation in rhesus macaques. J Perinatol 2022; 42:866-872. [PMID: 34686834 PMCID: PMC9023595 DOI: 10.1038/s41372-021-01236-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To demonstrate sensitivity of diffusion-weighted MRI (DW-MRI) to pulmonary cellular-space changes during normal in utero development using fetal rhesus macaques, compared to histological biomarkers. STUDY DESIGN In vivo/ex vivo DW-MRI was acquired in 26 fetal rhesus lungs (early-canalicular through saccular stages). Apparent diffusion coefficients (ADC) from MRI and tissue area density (H&E), alveolar type-II cells (ABCA3), and epithelial cells (TTF1) from histology were compared between gestational stages. RESULTS In vivo/ex vivo ADC correlated with each other (Spearman ρ = 0.47, P = 0.038; Bland-Altman bias = 0.0835) and with area-density (in vivo ρ = -0.56, P = 0.011; ex vivo ρ = -0.83, P < 0.0001). In vivo/ex vivo ADC increased exponentially toward saturation with gestational stage (R2 = 0.49/0.49), while area-density decreased exponentially (R2 = 0.53). ABCA3 and TTF1 stains demonstrated expected fetal cellular development. CONCLUSIONS Fetal DW-MRI provides a non-invasive biomarker for pulmonary structural maturation, with a strong correlation to histological markers during tissue development in rhesus macaques. This method has strong potential for assessing human fetal development, particularly in patients with pulmonary hypoplasia.
Collapse
|
18
|
Higano NS, Bates AJ, Gunatilaka CC, Hysinger EB, Critser PJ, Hirsch R, Woods JC, Fleck RJ. Bronchopulmonary dysplasia from chest radiographs to magnetic resonance imaging and computed tomography: adding value. Pediatr Radiol 2022; 52:643-660. [PMID: 35122130 PMCID: PMC8921108 DOI: 10.1007/s00247-021-05250-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/13/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a common long-term complication of preterm birth. The chest radiograph appearance and survivability have evolved since the first description of BPD in 1967 because of improved ventilation and clinical strategies and the introduction of surfactant in the early 1990s. Contemporary imaging care is evolving with the recognition that comorbidities of tracheobronchomalacia and pulmonary hypertension have a great influence on outcomes and can be noninvasively evaluated with CT and MRI techniques, which provide a detailed evaluation of the lungs, trachea and to a lesser degree the heart. However, echocardiography remains the primary modality to evaluate and screen for pulmonary hypertension. This review is intended to highlight the important findings that chest radiograph, CT and MRI can contribute to precision diagnosis, phenotyping and prognosis resulting in optimal management and therapeutics.
Collapse
Affiliation(s)
- Nara S Higano
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alister J Bates
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chamindu C Gunatilaka
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erik B Hysinger
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul J Critser
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Russel Hirsch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert J Fleck
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Radiology, University of Cincinnati College of Medicine, 3333 Burnet Ave., ML 5031, Cincinnati, OH, 45229, USA.
| |
Collapse
|
19
|
Adaikalam SA, Higano NS, Hysinger EB, Bates AJ, Fleck RJ, Schapiro AH, House MA, Nathan AT, Ahlfeld SK, Brady JM, Woods JC, Kingma PS. Tracheostomy prediction model in neonatal bronchopulmonary dysplasia via lung and airway MRI. Pediatr Pulmonol 2022; 57:1042-1050. [PMID: 35029053 PMCID: PMC8930535 DOI: 10.1002/ppul.25826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022]
Abstract
RATIONALE Clinical management of neonatal bronchopulmonary dysplasia (BPD) is often imprecise and can vary widely between different institutions and providers, due to limited objective measurements of disease pathology severity. There is critical need to improve guidance on the application and timing of interventional treatments, such as tracheostomy. OBJECTIVES To generate an imaging-based clinical tool for early identification of those patients with BPD who are likely to require later tracheostomy and long-term mechanical ventilation. METHODS We conducted a prospective cohort study of n = 61 infants (55 BPD, 6 preterm non-BPD). Magnetic resonance imaging (MRI) scores of lung parenchymal disease were used to create a binomial logistic regression model for predicting tracheostomy requirement. This model was further investigated using clinical variables and MRI-quantified tracheomalacia (TM). MEASUREMENTS AND MAIN RESULTS A model for predicting tracheostomy requirement was created using MRI parenchymal score. This model had 89% accuracy, 100% positive predictive value (PPV), and 85% negative predictive value (NPV), compared with 84%, 60%, and 83%, respectively, when using only relevant clinical variables. In a subset of patients with airway MRI (n = 36), a model including lung and TM measurements had 83% accuracy, 92% PPV, and 78% NPV. CONCLUSIONS MRI-based measurements of parenchymal disease and TM can be used to predict need for tracheostomy in infants with BPD, more accurately than clinical factors alone. This prediction model has strong potential as a clinical tool for physicians and families for early determination of tracheostomy requirement.
Collapse
Affiliation(s)
- Stephanie A Adaikalam
- Department of Pediatrics, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nara S Higano
- Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Erik B Hysinger
- Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alister J Bates
- Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Robert J Fleck
- Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrew H Schapiro
- Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa A House
- Department of Pediatrics, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amy T Nathan
- Department of Pediatrics, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shawn K Ahlfeld
- Department of Pediatrics, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer M Brady
- Department of Pediatrics, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason C Woods
- Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Paul S Kingma
- Department of Pediatrics, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Pulmonary Medicine and Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
20
|
Zanette B, Schrauben EM, Munidasa S, Goolaub DS, Singh A, Coblentz A, Stirrat E, Couch MJ, Grimm R, Voskrebenzev A, Vogel-Claussen J, Seethamraju RT, Macgowan CK, Greer MLC, Tam EWY, Santyr G. Clinical Feasibility of Structural and Functional MRI in Free-Breathing Neonates and Infants. J Magn Reson Imaging 2022; 55:1696-1707. [PMID: 35312203 DOI: 10.1002/jmri.28165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Evaluation of structural lung abnormalities with magnetic resonance imaging (MRI) has previously been shown to be predictive of clinical neonatal outcomes in preterm birth. MRI during free-breathing with phase-resolved functional lung (PREFUL) may allow for complimentary functional information without exogenous contrast. PURPOSE To investigate the feasibility of structural and functional pulmonary MRI in a cohort of neonates and infants with no cardiorespiratory disease. Macrovascular pulmonary blood flows were also evaluated. STUDY TYPE Prospective. POPULATION Ten term infants with no clinically defined cardiorespiratory disease were imaged. Infants recruited from the general population and neonatal intensive care unit (NICU) were studied. FIELD STRENGTH/SEQUENCE T1 -weighted VIBE, T2 -weighted BLADE uncorrected for motion. Ultrashort echo time (UTE) and 3D-flow data were acquired during free-breathing with self-navigation and retrospective reconstruction. Single slice 2D-gradient echo (GRE) images were acquired during free-breathing for PREFUL analysis. Imaging was performed at 3 T. ASSESSMENT T1 , T2 , and UTE images were scored according to the modified Ochiai scheme by three pediatric body radiologists. Ventilation/perfusion-weighted maps were extracted from free-breathing GRE images using PREFUL analysis. Ventilation and perfusion defect percent (VDP, QDP) were calculated from the segmented ventilation and perfusion-weighted maps. Time-averaged cardiac blood velocities from three-dimensional-flow were evaluated in major pulmonary arteries and veins. STATISTICAL TEST Intraclass correlation coefficient (ICC). RESULTS The ICC of replicate structural scores was 0.81 (95% CI: 0.45-0.95) across three observers. Elevated Ochiai scores, VDP, and QDP were observed in two NICU participants. Excluding these participants, mean ± standard deviation structural scores were 1.2 ± 0.8, while VDP and QDP were 1.0% ± 1.1% and 0.4% ± 0.5%, respectively. Main pulmonary arterial blood flows normalized to body surface area were 3.15 ± 0.78 L/min/m2 . DATA CONCLUSION Structural and functional pulmonary imaging is feasible using standard clinical MRI hardware (commercial whole-body 3 T scanner, table spine array, and flexible thoracic array) in free-breathing infants. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Brandon Zanette
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Eric M Schrauben
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Samal Munidasa
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Datta S Goolaub
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Anuradha Singh
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
| | - Ailish Coblentz
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Elaine Stirrat
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Marcus J Couch
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert Grimm
- MR Application Predevelopment, Siemens Healthcare, Erlangen, Germany
| | - Andreas Voskrebenzev
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jens Vogel-Claussen
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Christopher K Macgowan
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mary-Louise C Greer
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Emily W Y Tam
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Giles Santyr
- Translational Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Farag A. Editorial for "Clinical Feasibility of Structural and Functional MRI in Free-Breathing Neonates and Infants". J Magn Reson Imaging 2022; 55:1708-1709. [PMID: 35312209 DOI: 10.1002/jmri.28161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/10/2022] Open
Affiliation(s)
- Adam Farag
- Joint Department of Medical Imaging, Mount Sinai Hospital and Women's College Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Hochhegger B, Lonzetti L, Rubin A, de Mattos JN, Verma N, Mohammed TLH, Patel PP, Marchiori E. Chest MRI with CT in the assessment of interstitial lung disease progression in patients with systemic sclerosis. Rheumatology (Oxford) 2022; 61:4420-4426. [PMID: 35258556 DOI: 10.1093/rheumatology/keac148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To describe the performance of CT and MRI in the assessment of the progression of interstitial lung disease (ILD) associated with systemic sclerosis (SSc) and demonstrate the correlations of MRI with pulmonary function test (PFT) and CT scores. METHODS This prospective single-center observational study included patients with SSc diagnoses and MR images were assessed visually using the Scleroderma Lung Study (SLS) I system. Differences in the median scores were assessed with t-test and the Wilcoxon rank-sum test. Pearson's and Spearman's Rank correlation coefficients were calculated to correlate imaging scores and PFT results. Using disease progression as the gold standard, we calculated the AUCs of the CT and MRI scores with Harrel's c-index. The best thresholds for the prediction of disease progression were determined by ROC curve analysis with maximum Youden's Index (p < 0.05). The sensitivity, specificity, PPV, and NPV of the scores were calculated. RESULTS The AUCs for MRI and CT scores were 0.86 (0.72-0.98; p = 0.04) and 0.83 (0.70-0.99; p = 0.05), respectively. CT and MRI scores correlated with FVC% (MR: r = -0.54, p= 0.0045-CT: r = -0.44; p= 0.137) and DCO (MR: r = -0.39; p= 0.007-CT r = -0.36: p= 0.006). The sensitivity, specificity, PPV, and NPV were 85%, 87.5%, 88.34% and 86.11% (MR score) and 84.21%, 82.35%, 84.14% and 82.4% (CT score). CONCLUSIONS MRI scores from patients with SSc may be an alternative modality for the assessment of ILD progression in patients with SSc.
Collapse
Affiliation(s)
- Bruno Hochhegger
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Lilian Lonzetti
- Santa Casa de Misericórdia de Porto Alegre. Prof. Annes Dias, 285. 90020090. Porto Alegre, RS, Brazil
| | - Adalberto Rubin
- Santa Casa de Misericórdia de Porto Alegre. Prof. Annes Dias, 285. 90020090. Porto Alegre, RS, Brazil
| | - Juliane Nascimento de Mattos
- Graduate Program in Pathology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Santa Casa de Misericórdia de Porto Alegre. Prof. Annes Dias, 285. 90020090. Porto Alegre, RS, Brazil
| | - Nupur Verma
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32611, USA
| | - Tan-Lucien H Mohammed
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32611, USA
| | - Pratik P Patel
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL, 32611, USA
| | - Edson Marchiori
- Universidade Federal do Rio de Janeiro, Faculdade de Medicina. Avenida Brigadeiro Trompowski-Galeão 21941590. Rio de Janeiro, RJ, Brazil
| |
Collapse
|
23
|
Zeimpekis KG, Kellenberger CJ, Geiger J. Assessment of lung density in pediatric patients using three-dimensional ultrashort echo-time and four-dimensional zero echo-time sequences. Jpn J Radiol 2022; 40:722-729. [PMID: 35237890 PMCID: PMC8890957 DOI: 10.1007/s11604-022-01258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Purpose Lung magnetic resonance imaging (MRI) using conventional sequences is limited due to strong signal loss by susceptibility effects of aerated lung. Our aim is to assess lung signal intensity in children on ultrashort echo-time (UTE) and zero echo-time (ZTE) sequences. We hypothesize that lung signal intensity can be correlated to lung physical density. Materials and methods Lung MRI was performed in 17 children with morphologically normal lungs (median age: 4.7 years, range 15 days to 17 years). Both lungs were manually segmented in UTE and ZTE images and the average signal intensities were extracted. Lung-to-background signal ratios (LBR) were compared for both sequences and between both patient groups using non-parametric tests and correlation analysis. Anatomical region-of-interest (ROI) analysis was performed for the normal cohort for assessment of the anteroposterior lung gradient. Results There was no significant difference between LBR of normal lungs using UTE and ZTE (p < 0.05). Both sequences revealed a LBR age-dependency with a high negative correlation for UTE (Rs = – 0.77; range 2.98–1.41) and ZTE (Rs = – 0.82; range 2.66–1.38)). Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were age-dependent for both sequences. SNR was higher for children up to 2 years old with 3D UTE Cones while for the rest it was higher with 4D ZTE. CNR was similar for both sequences. Posterior lung areas exhibited higher signal intensity compared to anterior ones (UTE 9.4% and ZTE 12% higher), both with high correlation coefficients (R2UTE = 0.94, R2ZTE = 0.97). Conclusion The ZTE sequence can measure signal intensity similarly to UTE in pediatric patients. Both sequences reveal an age- and gravity-dependency of LBR.
Collapse
Affiliation(s)
- Konstantinos G Zeimpekis
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland.
| | - Christian J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Moutafidis D, Gavra M, Golfinopoulos S, Kattamis A, Chrousos G, Kanaka-Gantenbein C, Kaditis AG. Low- and High-Attenuation Lung Volume in Quantitative Chest CT in Children without Lung Disease. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121172. [PMID: 34943369 PMCID: PMC8700567 DOI: 10.3390/children8121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
In contrast to studies of adults with emphysema, application of fixed thresholds to determine low- and high-attenuation areas (air-trapping and parenchymal lung disease) in pediatric quantitative chest CT is problematic. We aimed to assess age effects on: (i) mean lung attenuation (full inspiration); and (ii) low and high attenuation thresholds (LAT and HAT) defined as mean attenuation and 1 SD below and above mean, respectively. Chest CTs from children aged 6-17 years without abnormalities were retrieved, and histograms of attenuation coefficients were analyzed. Eighty examinations were included. Inverse functions described relationships between age and mean lung attenuation, LAT or HAT (p < 0.0001). Predicted value for LAT decreased from -846 HU in 6-year-old to -950 HU in 13- to 17-year-old subjects (cut-off value for assessing emphysema in adults). %TLCCT with low attenuation correlated with age (rs = -0.31; p = 0.005) and was <5% for 9-17-year-old subjects. Inverse associations were demonstrated between: (i) %TLCCT with high attenuation and age (r2 = 0.49; p < 0.0001); (ii) %TLCCT with low attenuation and TLCCT (r2 = 0.47; p < 0.0001); (iii) %TLCCT with high attenuation and TLCCT (r2 = 0.76; p < 0.0001). In conclusion, quantitative analysis of chest CTs from children without lung disease can be used to define age-specific LAT and HAT for evaluation of pediatric lung disease severity.
Collapse
Affiliation(s)
- Dimitrios Moutafidis
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (D.M.); (C.K.-G.)
| | - Maria Gavra
- CT, MRI & PET/CT Department, Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (M.G.); (S.G.)
| | - Sotirios Golfinopoulos
- CT, MRI & PET/CT Department, Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (M.G.); (S.G.)
| | - Antonios Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece;
| | - George Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, UNESCO, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Christina Kanaka-Gantenbein
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (D.M.); (C.K.-G.)
| | - Athanasios G. Kaditis
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Agia Sofia Children’s Hospital, 115 27 Athens, Greece; (D.M.); (C.K.-G.)
| |
Collapse
|
25
|
Gräfe D, Anders R, Prenzel F, Sorge I, Roth C, Benkert T, Hirsch FW. Pediatric MR lung imaging with 3D ultrashort-TE in free breathing: Are we past the conventional T2 sequence? Pediatr Pulmonol 2021; 56:3899-3907. [PMID: 34491627 DOI: 10.1002/ppul.25664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI) of the lungs is challenging for several reasons, mainly due to the respiratory motion, low proton density, and rapid T2* decay. Recent MR sequences with ultrashort TE (UTE) coupled with respiratory compensation promise to overcome these obstacles. So far, there are very few studies on the relevance of these sequences in children. The aim of the study was to compare the diagnostic value of a respiratory-self-gated three-dimensional UTE sequence versus a conventional respiratory-triggered T2-weighted turbo spin echo (T2-TSE) sequence in a pediatric collective. STUDY DESIGN Seventy-one patients between 0 and 18 years of age, who were scheduled for a thoracic MRI based on diverse clinical indications, were examined on a 3T MRI system. The UTE and T2-TSE sequences were evaluated by two readers regarding quality features and visualization of eight common pathology patterns. RESULTS The image quality of both sequences was equally high, with UTE depicting pleural and central bronchi more clearly. In pathologies, UTE was superior to T2-TSE for so-called "MR-negative pathologies", significant for air trapping, and in tendency for bullae and cysts. In all remaining pathologies, T2-TSE proved to be at least equivalent to UTE. CONCLUSIONS At present, UTE cannot serve as a universal replacement for conventional T2-TSE for all pathologies. It yields, however, a substantial benefit in the context of hyperinflation, emphysema, cysts, or pathologies of the bronchial system.
Collapse
Affiliation(s)
- Daniel Gräfe
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Rebecca Anders
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Freerk Prenzel
- Department of Pediatrics, University of Leipzig, Leipzig, Germany
| | - Ina Sorge
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Christian Roth
- Department of Pediatric Radiology, University of Leipzig, Leipzig, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | | |
Collapse
|
26
|
Renz DM, Herrmann KH, Kraemer M, Boettcher J, Waginger M, Krueger PC, Pfeil A, Streitparth F, Kentouche K, Gruhn B, Mainz JG, Stenzel M, Teichgraeber UK, Reichenbach JR, Mentzel HJ. Ultrashort echo time MRI of the lung in children and adolescents: comparison with non-enhanced computed tomography and standard post-contrast T1w MRI sequences. Eur Radiol 2021; 32:1833-1842. [PMID: 34668994 PMCID: PMC8831263 DOI: 10.1007/s00330-021-08236-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
Objectives To compare the diagnostic value of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the lung versus the gold standard computed tomography (CT) and two T1-weighted MRI sequences in children. Methods Twenty-three patients with proven oncologic disease (14 male, 9 female; mean age 9.0 + / − 5.4 years) received 35 low-dose CT and MRI examinations of the lung. The MRI protocol (1.5-T) included the following post-contrast sequences: two-dimensional (2D) incoherent gradient echo (GRE; acquisition with breath-hold), 3D volume interpolated GRE (breath-hold), and 3D high-resolution radial UTE sequences (performed during free-breathing). Images were evaluated by considering image quality as well as distinct diagnosis of pulmonary nodules and parenchymal areal opacities with consideration of sizes and characterisations. Results The UTE technique showed significantly higher overall image quality, better sharpness, and fewer artefacts than both other sequences. On CT, 110 pulmonary nodules with a mean diameter of 4.9 + / − 2.9 mm were detected. UTE imaging resulted in a significantly higher detection rate compared to both other sequences (p < 0.01): 76.4% (84 of 110 nodules) for UTE versus 60.9% (67 of 110) for incoherent GRE and 62.7% (69 of 110) for volume interpolated GRE sequences. The detection of parenchymal areal opacities by the UTE technique was also significantly higher with a rate of 93.3% (42 of 45 opacities) versus 77.8% (35 of 45) for 2D GRE and 80.0% (36 of 45) for 3D GRE sequences (p < 0.05). Conclusion The UTE technique for lung MRI is favourable in children with generally high diagnostic performance compared to standard T1-weighted sequences as well as CT. Key Points • Due to the possible acquisition during free-breathing of the patients, the UTE MRI sequence for the lung is favourable in children. • The UTE technique reaches higher overall image quality, better sharpness, and lower artefacts, but not higher contrast compared to standard post-contrast T1-weighted sequences. • In comparison to the gold standard chest CT, the detection rate of small pulmonary nodules small nodules ≤ 4 mm and subtle parenchymal areal opacities is higher with the UTE imaging than standard T1-weighted sequences. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08236-7.
Collapse
Affiliation(s)
- Diane M Renz
- Department of Paediatric Radiology, Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Martin Kraemer
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | | | - Matthias Waginger
- Department of Paediatric Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Paul-Christian Krueger
- Department of Paediatric Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Alexander Pfeil
- Department of Internal Medicine III, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Florian Streitparth
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Karim Kentouche
- Department of Paediatrics, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Bernd Gruhn
- Department of Paediatrics, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Jochen G Mainz
- Department of Paediatric Pulmonology and Cystic Fibrosis, Brandenburg Medical School, University Hospital, Brandenburg, Germany
| | - Martin Stenzel
- Department of Paediatric Radiology, Children´s Hospital, Cologne, Germany
| | - Ulf K Teichgraeber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Juergen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - Hans-Joachim Mentzel
- Department of Paediatric Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
27
|
Metz C, Böckle D, Heidenreich JF, Weng AM, Benkert T, Grigoleit GU, Bley T, Köstler H, Veldhoen S. Pulmonary Imaging of Immunocompromised Patients during Hematopoietic Stem Cell Transplantation using Non-Contrast-Enhanced Three-Dimensional Ultrashort Echo Time (3D-UTE) MRI. ROFO-FORTSCHR RONTG 2021; 194:39-48. [PMID: 34649285 DOI: 10.1055/a-1535-2341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the feasibility of non-contrast-enhanced three-dimensional ultrashort echo time (3D-UTE) MRI for pulmonary imaging in immunocompromised patients during hematopoietic stem cell transplantation (HSCT). METHODS MRI was performed using a stack-of-spirals 3D-UTE sequence (slice thickness: 2.34mm; matrix: 256 × 256; acquisition time: 12.7-17.6 seconds) enabling imaging of the entire thorax within single breath-holds. Patients underwent MRI before HSCT initiation, in the case of periprocedural pneumonia, before discharge, and in the case of re-hospitalization. Two readers separately assessed the images regarding presence of pleural effusions, ground glass opacities (GGO), and consolidations on a per lung basis. A T2-weighted (T2w) multi-shot Turbo Spin Echo sequence (BLADE) was acquired in coronal orientation during breath-hold (slice thickness: 6.00mm; matrix: 320 × 320; acquisition time: 3.1-5.5 min) and read on a per lesion basis. Low-dose CT scans in inspiration were used as reference and were read on a per lung basis. Only scans performed within a maximum of three days were included in the inter-method analyses. Interrater agreement, sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy of 3D-UTE MRI were calculated. RESULTS 67 MRI scans of 28 patients were acquired. A reference CT examination was available for 33 scans of 23 patients. 3D-UTE MRI showed high sensitivity and specificity regarding pleural effusions (n = 6; sensitivity, 92 %; specificity, 100 %) and consolidations (n = 22; sensitivity 98 %, specificity, 86 %). Diagnostic performance was lower for GGO (n = 9; sensitivity, 63 %; specificity, 84 %). Accuracy rates were high (pleural effusions, 98 %; GGO, 79 %; consolidations 94 %). Interrater agreement was substantial for consolidations and pleural effusions (κ = 0.69-0.82) and moderate for GGO (κ = 0.54). Compared to T2w imaging, 3D-UTE MRI depicted the assessed pathologies with at least equivalent quality and was rated superior regarding consolidations and GGO in ~50 %. CONCLUSION Non-contrast 3D-UTE MRI enables radiation-free assessment of typical pulmonary complications during HSCT procedure within a single breath-hold. Yet, CT was found to be superior regarding the identification of pure GGO changes. KEY POINTS · 3D-UTE MRI of the thorax can be acquired within a single breath-hold.. · 3D-UTE MRI provides diagnostic imaging of pulmonary consolidations and pleural effusions.. · 3D-UTE sequences improve detection rates of ground glass opacities on pulmonary MRI.. · 3D-UTE MRI depicts pulmonary pathologies at least equivalent to T2-weighted Blade sequence.. CITATION FORMAT · Metz C, Böckle D, Heidenreich JF et al. Pulmonary Imaging of Immunocompromised Patients during Hematopoietic Stem Cell Transplantation using Non-Contrast-Enhanced Three-Dimensional Ultrashort Echo Time (3D-UTE) MRI. Fortschr Röntgenstr 2021; DOI: 10.1055/a-1535-2341.
Collapse
Affiliation(s)
- Corona Metz
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - David Böckle
- Department of Internal Medicine II (Hematology and Oncology), University Hospital of Würzburg, Germany
| | | | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - Thomas Benkert
- Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Götz Ulrich Grigoleit
- Department of Internal Medicine II (Hematology and Oncology), University Hospital of Würzburg, Germany
| | - Thorsten Bley
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, Germany
| |
Collapse
|
28
|
Ultra-short echo-time magnetic resonance imaging lung segmentation with under-Annotations and domain shift. Med Image Anal 2021; 72:102107. [PMID: 34153626 DOI: 10.1016/j.media.2021.102107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Ultra-short echo-time (UTE) magnetic resonance imaging (MRI) provides enhanced visualization of pulmonary structural and functional abnormalities and has shown promise in phenotyping lung disease. Here, we describe the development and evaluation of a lung segmentation approach to facilitate UTE MRI methods for patient-based imaging. The proposed approach employs a k-means algorithm in kernel space for pair-wise feature clustering and imposes image domain continuous regularization, coined as continuous kernel k-means (CKKM). The high-order CKKM algorithm was simplified through upper bound relaxation and solved within an iterative continuous max-flow framework. We combined the CKKM with U-net and atlas-based approaches and comprehensively evaluated the performance on 100 images from 25 patients with asthma and bronchial pulmonary dysplasia enrolled at Robarts Research Institute (Western University, London, Canada) and Centre Hospitalier Universitaire (Sainte-Justine, Montreal, Canada). For U-net, we trained the network five times on a mixture of five different images with under-annotations and applied the model to 64 images from the two centres. We also trained a U-net on five images with full and brush annotations from one centre, and tested the model on 32 images from the other centre. For an atlas-based approach, we employed three atlas images to segment 64 target images from the two centres through straightforward atlas registration and label fusion. We applied the CKKM algorithm to the baseline U-net and atlas outputs and refined the initial segmentation through multi-volume image fusion. The integration of CKKM substantially improved baseline results and yielded, with minimal computational cost, segmentation accuracy, and precision that were greater than some state-of-the-art deep learning models and similar to experienced observer manual segmentation. This suggests that deep learning and atlas-based approaches may be utilized to segment UTE MRI datasets using relatively small training datasets with under-annotations.
Collapse
|
29
|
Meadus WQ, Stobbe RW, Grenier JG, Beaulieu C, Thompson RB. Quantification of lung water density with UTE Yarnball MRI. Magn Reson Med 2021; 86:1330-1344. [PMID: 33811679 DOI: 10.1002/mrm.28800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE An efficient Yarnball ultrashort-TE k-space trajectory, in combination with an optimized pulse sequence design and automated image-processing approach, is proposed for fast and quantitative imaging of water density in the lung parenchyma. METHODS Three-dimensional Yarnball k-space trajectories (TE = 0.07 ms) were designed at 3 T for breath-hold and free-breathing navigator acquisitions targeting the lung parenchyma (full torso spatial coverage) with minimal T1 and T 2 ∗ weighting. A composite of all solid tissues surrounding the lungs (muscle, liver, heart, blood pool) was used for user-independent lung water density signal referencing and B1 -inhomogeneity correction needed for the calculation of relative lung water density images. Sponge phantom experiments were used to validate absolute water density quantification, and relative lung water density was evaluated in 10 healthy volunteers. RESULTS Phantom experiments showed excellent agreement between sponge wet weight and imaging-derived water density. Breath-hold (13 seconds) and free-breathing (~2 minutes) Yarnball acquisitions in volunteers (2.5-mm isotropic resolution) had negligible artifacts and good lung parenchyma SNR (>10). Whole-lung average relative lung water density values with fully automated analysis were 28.2 ± 1.9% and 28.6 ± 1.8% for breath-hold and free-breathing acquisitions, respectively, with good test-retest reproducibility (intraclass correlation coefficient = 0.86 and 0.95, respectively). CONCLUSIONS Quantitative lung water density imaging with an optimized Yarnball k-space acquisition approach is possible in a breath-hold or short free-breathing study with automated signal referencing and segmentation.
Collapse
Affiliation(s)
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Justin G Grenier
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Richard B Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
30
|
Higano NS, Ruoss JL, Woods JC. Modern pulmonary imaging of bronchopulmonary dysplasia. J Perinatol 2021; 41:707-717. [PMID: 33547408 PMCID: PMC8561744 DOI: 10.1038/s41372-021-00929-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a complex and serious cardiopulmonary morbidity in infants who are born preterm. Despite advances in clinical care, BPD remains a significant source of morbidity and mortality, due in large part to the increased survival of extremely preterm infants. There are few strong early prognostic indicators of BPD or its later outcomes, and evidence for the usage and timing of various interventions is minimal. As a result, clinical management is often imprecise. In this review, we highlight cutting-edge methods and findings from recent pulmonary imaging research that have high translational value. Further, we discuss the potential role that various radiological modalities may play in early risk stratification for development of BPD and in guiding treatment strategies of BPD when employed in varying severities and time-points throughout the neonatal disease course.
Collapse
Affiliation(s)
- Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Lauren Ruoss
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
- Department of Radiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
31
|
Zhao F, Zheng L, Shan F, Dai Y, Shen J, Yang S, Shi Y, Xue K, Zhang Z. Evaluation of pulmonary ventilation in COVID-19 patients using oxygen-enhanced three-dimensional ultrashort echo time MRI: a preliminary study. Clin Radiol 2021; 76:391.e33-391.e41. [PMID: 33712292 PMCID: PMC7906509 DOI: 10.1016/j.crad.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/17/2021] [Indexed: 01/15/2023]
Abstract
AIM To evaluate the lung function of coronavirus disease 2019 (COVID-19) patients using oxygen-enhanced (OE) ultrashort echo time (UTE) MRI. MATERIALS AND METHODS Forty-nine patients with COVID-19 were included in the study. The OE-MRI was based on a respiratory-gated three-dimensional (3D) radial UTE sequence. For each patient, the percent signal enhancement (PSE) map was calculated using the expression PSE = (S100% – S21%)/S21%, where S21% and S100% are signals acquired during room air and 100% oxygen inhalation, respectively. Agreement of lesion detectability between UTE-MRI and computed tomography (CT) was performed using the kappa test. The Mann–Whitney U-test was used to evaluate the difference in the mean PSE between mild-type COVID-19 and common-type COVID-19. Spearman's test was used to assess the relationship between lesion mean PSE and lesion size. Furthermore, the Mann–Whitney U-test was used to evaluate the difference in region of interest (ROI) mean PSE between normal pulmonary parenchyma and lesions. The Kruskal–Wallis test was applied to test the difference in the mean PSE between different lesion types. RESULTS CT and UTE-MRI reached good agreement in lesion detectability. Ventilation measures in mild-type patients (5.3 ± 5.5%) were significantly different from those in common-type patients (3 ± 3.9%). Besides, there was no significant correlation between lesion mean PSE and lesion size. The mean PSE of COVID-19 lesions (3.2 ± 4.9%) was significantly lower than that of the pulmonary parenchyma (5.4 ± 3.9%). No significant difference was found among different lesion types. CONCLUSION OE-UTE-MRI could serve as a promising method for the assessment of lung function or treatment management of COVID-19 patients.
Collapse
Affiliation(s)
- F Zhao
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Department of Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - L Zheng
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai 201800, China
| | - F Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Y Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai 201800, China
| | - J Shen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - S Yang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Y Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - K Xue
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai 201800, China
| | - Z Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Department of the Principal's Office, Fudan University, Shanghai 200433, China.
| |
Collapse
|
32
|
Goralski JL, Stewart NJ, Woods JC. Novel imaging techniques for cystic fibrosis lung disease. Pediatr Pulmonol 2021; 56 Suppl 1:S40-S54. [PMID: 32592531 PMCID: PMC7808406 DOI: 10.1002/ppul.24931] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
With an increasing number of patients with cystic fibrosis (CF) receiving highly effective CFTR (cystic fibrosis transmembrane regulator protein) modulator therapy, particularly at a young age, there is an increasing need to identify imaging tools that can detect and regionally visualize mild CF lung disease and subtle changes in disease state. In this review, we discuss the latest developments in imaging modalities for both structural and functional imaging of the lung available to CF clinicians and researchers, from the widely available, clinically utilized imaging methods for assessing CF lung disease-chest radiography and computed tomography-to newer techniques poised to become the next phase of clinical tools-structural/functional proton and hyperpolarized gas magnetic resonance imaging (MRI). Finally, we provide a brief discussion of several newer lung imaging techniques that are currently available only in selected research settings, including chest tomosynthesis, and fluorinated gas MRI. We provide an update on the clinical and/or research status of each technique, with a focus on sensitivity, early disease detection, and possibilities for monitoring treatment efficacy.
Collapse
Affiliation(s)
- Jennifer L Goralski
- UNC Cystic Fibrosis Center, Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pulmonary and Critical Care Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Pediatric Pulmonology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil J Stewart
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Infection, Immunity & Cardiovascular Disease, POLARIS Group, Imaging Sciences, University of Sheffield, Sheffield, UK
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| |
Collapse
|
33
|
Moutafidis D, Gavra M, Golfinopoulos S, Oikonomopoulou C, Kitra V, Woods JC, Kaditis AG. Lung hyperinflation quantitated by chest CT in children with bronchiolitis obliterans syndrome following allogeneic hematopoietic cell transplantation. Clin Imaging 2021; 75:97-104. [PMID: 33515927 DOI: 10.1016/j.clinimag.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Bronchiolitis obliterans syndrome (BOS) diagnosis in children following allogeneic hematopoietic stem cell transplantation (post-HSCT) is based on detection of airway obstruction on spirometry and air-trapping, small airway thickening or bronchiectasis on chest CT. We assessed the relationship between spirometry indices and low-attenuation lung volume at total lung capacity (TLC) on CT. METHODS Data of children post-HSCT with and without BOS were analyzed. An age-specific, low-attenuation threshold (LAT) was defined as average of (mean-1SD) lung parenchyma attenuation of 5 control subjects without lung disease matched to each age subgroup of post-HSCT patients. % CT lung volume at TLC with attenuation values <LAT was calculated. Association between % lung volume with low attenuation and FEV1/FVC was assessed. RESULTS Twenty-nine children post-HSCT were referred to exclude BOS and 12 of them had spirometry and an analyzable chest CT. We studied: (i) 6 children post-HSCT/BOS (median age: 8.5 years [IQR 7, 15]; median FEV1/FVC z-score: -2.60 [IQR -2.93, -2.14]); (ii) 6 children post-HSCT/no BOS (age: 13.5 years [9.8, 16.3]; FEV1/FVC z-score: 0.44 [-0.30, 2.10]); and (iii) 40 controls without lung disease (age:11 years [8.3, 15.8]). Patients post-HSCT/BOS had significantly higher % lung volume with low attenuation than patients post-HSCT/no BOS: median % volume 16.4% (7.1%, 37.2%) vs. 0.61% (0.34%, 2.79%), respectively; P = .004. An exponential model described the association between % CT lung volume below LAT and FEV1/FVC z-score (r2 = 0.76; P < .001). CONCLUSION In children post-HSCT with BOS, low-attenuation lung volume on chest CT is associated with airway obstruction severity as expressed by FEV1/FVC z-score.
Collapse
Affiliation(s)
- Dimitrios Moutafidis
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Aghia Sophia Children's Hospital, Athens, Greece
| | - Maria Gavra
- CT, MRI & PET/CT Department, Aghia Sophia Children's Hospital, Athens, Greece
| | | | | | - Vasiliki Kitra
- Stem Cell Transplant Unit, Aghia Sophia Children's Hospital, Athens, Greece
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center & Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Athanasios G Kaditis
- Division of Pediatric Pulmonology, First Department of Pediatrics, National and Kapodistrian University of Athens School of Medicine & Aghia Sophia Children's Hospital, Athens, Greece.
| |
Collapse
|
34
|
Hahn AD, Malkus A, Kammerman J, Higano N, Walkup LL, Woods J, Fain SB. Effects of neonatal lung abnormalities on parenchymal R 2 * estimates. J Magn Reson Imaging 2021; 53:1853-1861. [PMID: 33404085 DOI: 10.1002/jmri.27487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022] Open
Abstract
Infants admitted to the neonatal intensive care unit (NICU) often suffer from multifaceted pulmonary morbidities that are not well understood. Ultrashort echo time (UTE) magnetic resonance imaging (MRI) is a promising technique for pulmonary imaging in this population without requiring exposure to ionizing radiation. The aims of this study were to investigate the effect of neonatal pulmonary disease on R2 * and tissue density and to utilize numerical simulations to evaluate the effect of different alveolar structures on predicted R2 *.This was a prospective study, in which 17 neonatal human subjects (five control, seven with bronchopulmonary dysplasia [BPD], five with congenital diaphragmatic hernia [CDH]) were enrolled. Twelve subjects were male and five were female, with postmenstrual age (PMA) at MRI of 39.7 ± 4.7 weeks. A 1.5T/multiecho three-dimensional UTE MRI was used. Pulmonary R2 * and tissue density were compared across disease groups over the whole lung and regionally. A spherical shell alveolar model was used to predict the expected R2 * over a range of tissue densities and tissue susceptibilities. Tests for significantly different mean R2 * and tissue densities across disease groups were evaluated using analysis of variance, with subsequent pairwise group comparisons performed using t tests. Lung tissue density was lower in the ipsilateral lung in CDH compared to both controls and BPD patients (both p < 0.05), while only the contralateral lung in CDH (CDHc) had higher whole-lung R2 * than both controls and BPD (both p < 0.05). R2 * differences were significant between controls and CDHc within all tissue density ranges (all p < 0.05) with the exception of the 80%-90% range (p = 0.17). Simulations predicted an inverse relationship between alveolar tissue density and R2 * that matches empirical human data. Alveolar wall thickness had no effect on R2 * independent of density (p = 1). The inverse relationship between R2 * and tissue density is influenced by the presence of disease globally and regionally in neonates with BPD and CDH in the NICU. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Andrew D Hahn
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Annelise Malkus
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffery Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Nara Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Zeimpekis KG, Geiger J, Wiesinger F, Delso G, Kellenberger CJ. Three-dimensional magnetic resonance imaging ultrashort echo-time cones for assessing lung density in pediatric patients. Pediatr Radiol 2021; 51:57-65. [PMID: 32860525 PMCID: PMC7796870 DOI: 10.1007/s00247-020-04791-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/18/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MRI of lung parenchyma is challenging because of the rapid decay of signal by susceptibility effects of aerated lung on routine fast spin-echo sequences. OBJECTIVE To assess lung signal intensity in children on ultrashort echo-time sequences in comparison to a fast spin-echo technique. MATERIALS AND METHODS We conducted a retrospective study of lung MRI obtained in 30 patients (median age 5 years, range 2 months to 18 years) including 15 with normal lungs and 15 with cystic fibrosis. On a fast spin-echo sequence with radial readout and an ultrashort echo-time sequence, both lungs were segmented and signal intensities were extracted. We compared lung-to-background signal ratios and histogram analysis between the two patient cohorts using non-parametric tests and correlation analysis. RESULTS On ultrashort echo-time the lung-to-background ratio was age-dependent, ranging from 3.15 to 1.33 with high negative correlation (Rs = -0.86). Signal in posterior dependent portions of the lung was 18% and 11% higher than that of the anterior lung for age groups 0-2 and 2-18 years, respectively. The fast spin-echo sequence showed no variation of signal ratios by age or location, with a median of 0.99 (0.98-1.02). Histograms of ultrashort echo-time slices between controls and children with aggravated cystic fibrosis with mucus plugging and wall thickening exhibited significant discrepancies that differentiated between normal and pathological lungs. CONCLUSION Signal intensity of lung on ultrashort echo-time is higher than that on fast spin-echo sequences, is age-dependent and shows a gravity-dependent anterior to posterior gradient. This signal variation appears similar to lung density described on CT.
Collapse
Affiliation(s)
- Konstantinos G. Zeimpekis
- grid.412004.30000 0004 0478 9977Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland ,grid.5801.c0000 0001 2156 2780Department of Information Technology and Electrical Engineering, ETH, Zürich, Switzerland
| | - Julia Geiger
- grid.412341.10000 0001 0726 4330Department of Diagnostic Imaging, University Children’s Hospital Zürich, Zürich, Switzerland ,grid.412341.10000 0001 0726 4330Children’s Research Center, University Children’s Hospital Zürich, Zürich, Switzerland
| | | | - Gaspar Delso
- grid.418143.b0000 0001 0943 0267GE Healthcare, Waukesha, WI USA
| | - Christian J. Kellenberger
- grid.412341.10000 0001 0726 4330Department of Diagnostic Imaging, University Children’s Hospital Zürich, Zürich, Switzerland ,grid.412341.10000 0001 0726 4330Children’s Research Center, University Children’s Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Gouwens KR, Higano NS, Marks KT, Stimpfl JN, Hysinger EB, Woods JC, Kingma PS. Magentic Resonance Imaging Evaluation of Regional Lung Vts in Severe Neonatal Bronchopulmonary Dysplasia. Am J Respir Crit Care Med 2020; 202:1024-1031. [PMID: 32459506 DOI: 10.1164/rccm.202001-0213oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Rationale: Bronchopulmonary dysplasia is a heterogeneous lung disease characterized by regions of cysts and fibrosis, but methods for evaluating lung function are limited to whole lung rather than specific regions of interest.Objectives: Respiratory-gated, ultrashort echo time magnetic resonance imaging was used to test the hypothesis that cystic regions of the lung will exhibit a quantifiable Vt that will correlate with ventilator settings and clinical outcomes.Methods: Magnetic resonance images of 17 nonsedated, quiet-breathing infants with severe bronchopulmonary dysplasia were reconstructed into end-inspiration and end-expiration images. Cysts were identified and measured by using density threshold combined with manual identification and segmentation. Regional Vts were calculated by subtracting end-expiration from end-inspiration volumes in total lung, noncystic lung, total-cystic lung, and individual large cysts.Measurements and Main Results: Cystic lung areas averaged larger Vts than noncystic lung when normalized by volume (0.8 ml Vt/ml lung vs. 0.1 ml Vt/ml lung, P < 0.002). Cyst Vt correlates with cyst size (P = 0.012 for total lung cyst and P < 0.002 for large cysts), although there was variability between individual cyst Vt, with 22% of cysts demonstrating negative Vt. Peak inspiratory pressure positively correlated with total lung Vt (P = 0.027) and noncystic Vt (P = 0.015) but not total lung cyst Vt (P = 0.8). Inspiratory time and respiratory rate did not improve Vt of any analyzed lung region.Conclusions: Cystic lung has greater normalized Vt when compared with noncystic lung. Ventilator pressure increases noncystic lung Vt, but inspiratory time does not correlate with Vt of normal or cystic lung.
Collapse
Affiliation(s)
- Kara R Gouwens
- The Perinatal Institute.,Cincinnati Bronchopulmonary Dysplasia Center
| | - Nara S Higano
- Cincinnati Bronchopulmonary Dysplasia Center.,Center for Pulmonary Imaging Research.,Department of Radiology, and.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and
| | | | | | - Erik B Hysinger
- Cincinnati Bronchopulmonary Dysplasia Center.,Center for Pulmonary Imaging Research.,Department of Radiology, and.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and.,Department of Pediatrics and
| | - Jason C Woods
- Cincinnati Bronchopulmonary Dysplasia Center.,Center for Pulmonary Imaging Research.,Department of Radiology, and.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and.,Department of Pediatrics and.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Paul S Kingma
- The Perinatal Institute.,Cincinnati Bronchopulmonary Dysplasia Center.,Center for Pulmonary Imaging Research.,Department of Radiology, and.,Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; and.,Department of Pediatrics and
| |
Collapse
|
37
|
Thomen RP, Walkup LL, Roach DJ, Higano N, Schapiro A, Brody A, Clancy JP, Cleveland ZI, Woods JC. Regional Structure-Function in Cystic Fibrosis Lung Disease Using Hyperpolarized 129Xe and Ultrashort Echo Magnetic Resonance Imaging. Am J Respir Crit Care Med 2020; 202:290-292. [PMID: 32243189 DOI: 10.1164/rccm.202001-0031le] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Laura L Walkup
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand.,University of CincinnatiCincinnati, Ohio
| | - David J Roach
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand
| | - Nara Higano
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand
| | - Andrew Schapiro
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand
| | - Alan Brody
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand
| | - John P Clancy
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand.,University of CincinnatiCincinnati, Ohio
| | - Zackary I Cleveland
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand.,University of CincinnatiCincinnati, Ohio
| | - Jason C Woods
- Cincinnati Children's Hospital Medical CenterCincinnati, Ohioand.,University of CincinnatiCincinnati, Ohio
| |
Collapse
|
38
|
Heidenreich JF, Veldhoen S, Metz C, Mendes Pereira L, Benkert T, Pfeuffer J, Bley TA, Köstler H, Weng AM. Functional MRI of the Lungs Using Single Breath-Hold and Self-Navigated Ultrashort Echo Time Sequences. Radiol Cardiothorac Imaging 2020; 2:e190162. [PMID: 33778581 DOI: 10.1148/ryct.2020190162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/30/2019] [Accepted: 02/17/2020] [Indexed: 01/29/2023]
Abstract
Purpose To evaluate three-dimensional (3D) ultrashort echo time (UTE) MRI regarding image quality and suitability for functional image analysis using gradient-echo sequences in breath-hold and with self-navigation. Materials and Methods In this prospective exploratory study, 10 patients (mean age, 21 years; age range, 5-58 years; five men) and 10 healthy control participants (mean age, 25 years; age range, 10-39 years; five men) underwent 3D UTE MRI at 3.0 T. Imaging was performed with a prototypical stack-of-spirals 3D UTE sequence during single breath holds (echo time [TE], 0.05 msec) and with a self-navigated "Koosh ball" 3D UTE sequence at free breathing (TE, 0.03 msec). Image quality was rated on a four-point Likert scale. Edge sharpness was calculated. After semiautomated segmentation, fractional ventilation was calculated from MRI signal intensity (FVSI) and volume change (FVVol). The air volume fraction (AVF) was estimated from relative signal intensity (aortic blood signal intensity was used as a reference). Means were compared between techniques and participants. The Wilcoxon signed rank test and Spearman rank correlation were used for statistical analyses. Results Image quality ratings were equal for both techniques. However, stack-of-spirals breath-hold UTE was more susceptible to motion and aliasing artifacts. Mean FVSI was higher during breath hold than at free breathing (mean ± standard deviation in milliliters of gas per milliliters of parenchyma, 0.17 mL/mL ± 0.06 [minimum, 0.07; maximum, 0.34] vs 0.11 mL/mL ± 0.03 [minimum, 0.06; maximum, 0.17], P = .016). Mean FVSI and FVVol were in good agreement (mean difference: at breath hold, -0.008 [95% confidence interval {CI}: 0.007, -0.024]; ρ = 0.97 vs free breathing, -0.004 [95% CI: 0.007, -0.016]; ρ = 0.91). AVF correlated between both techniques (ρ = 0.94). Conclusion Breath-hold and self-navigated 3D UTE sequences yield proton density-weighted images of the lungs that are similar in quality, and both techniques are suitable for functional image analysis.Supplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Corona Metz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Lenon Mendes Pereira
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Thomas Benkert
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Josef Pfeuffer
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| | - Andreas M Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.)
| |
Collapse
|
39
|
Torres ER, Tumey TA, Dean DC, Kassahun-Yimer W, Lopez-Lambert ED, Hitchcock ME. Non-pharmacological strategies to obtain usable magnetic resonance images in non-sedated infants: Systematic review and meta-analysis. Int J Nurs Stud 2020; 106:103551. [PMID: 32294563 DOI: 10.1016/j.ijnurstu.2020.103551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although the use of sedation is commonly practiced to keep infants still while receiving magnetic resonance imaging, non-pharmacological strategies are a potential alternative. OBJECTIVES The purpose of this study was to determine the success rate of obtaining usable magnetic resonance images in infants with the sole use of non-pharmacological strategies. DESIGN Systematic literature review and meta-analysis SETTING: A search was conducted in PubMed, CINAHL and Cochrane Library. PARTICIPANTS Human infants from birth to 24 months of age who did not receive any sedation or anesthesia during magnetic resonance imaging METHOD: Articles that reported the success rate of obtaining usable images were included. RESULTS Of the 521 non-duplicate articles found, 58 articles were included in the systematic review with sample sizes ranging from 2-457, an average success rate of 87.8%, and an average scan time of 30 min. The most common non-pharmacological technique included feeding and swaddling infants before imaging to encourage infants to sleep during the scan. Meta-analysis performed on 53 articles comprising 3,410 infants found a success rate of 87%, but significant heterogeneity was found (I2 = 98.30%). It was more difficult to obtain usable images solely with non-pharmacological techniques if infants were critically ill or a structural magnetic resonance imaging of the brain was required. CONCLUSION Non-pharmacological techniques are effective for obtaining usable magnetic resonance imaging scans in most but not all infants. Tweetable abstract: Non-pharmacological techniques are effective for obtaining usable magnetic resonance imaging scans in most infants.
Collapse
Affiliation(s)
- Elisa R Torres
- School of Nursing, University of Mississippi Medical Center, 2500 North State Street, Jackson 39216, MS, United States.
| | - Tyler A Tumey
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr Las Cruces, NM 88001, United States.
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison WI 53705, United States.
| | - Wondwosen Kassahun-Yimer
- Department of Data Science, University of Mississippi Medical Center, School of Population Health,2500 North State Street, Jackson, MS 39216, United States.
| | - Eloise D Lopez-Lambert
- School of Nursing, University of Mississippi Medical Center, 2500 North State Street, Jackson 39216, MS, United States
| | - Mary E Hitchcock
- Ebling Library, University of Wisconsin-Madison, 750 Highland Ave, Madison WI 53705, United States.
| |
Collapse
|
40
|
Three-dimensional Ultrashort Echotime Magnetic Resonance Imaging for Combined Morphologic and Ventilation Imaging in Pediatric Patients With Pulmonary Disease. J Thorac Imaging 2020; 36:43-51. [PMID: 32453280 DOI: 10.1097/rti.0000000000000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Ultrashort echotime (UTE) sequences aim to improve the signal yield in pulmonary magnetic resonance imaging (MRI). We demonstrate the initial results of spiral 3-dimensional (3D) UTE-MRI for combined morphologic and functional imaging in pediatric patients. METHODS Seven pediatric patients with pulmonary abnormalities were included in this observational, prospective, single-center study, with the patients having the following conditions: cystic fibrosis (CF) with middle lobe atelectasis, CF with allergic bronchopulmonary aspergillosis, primary ciliary dyskinesia, air trapping, congenital lobar overinflation, congenital pulmonary airway malformation, and pulmonary hamartoma.Patients were scanned during breath-hold in 5 breathing states on a 3-Tesla system using a prototypical 3D stack-of-spirals UTE sequence. Ventilation maps and signal intensity maps were calculated. Morphologic images, ventilation-weighted maps, and signal intensity maps of the lungs of each patient were assessed intraindividually and compared with reference examinations. RESULTS With a scan time of ∼15 seconds per breathing state, 3D UTE-MRI allowed for sufficient imaging of both "plus" pathologies (atelectasis, inflammatory consolidation, and pulmonary hamartoma) and "minus" pathologies (congenital lobar overinflation, congenital pulmonary airway malformation, and air trapping). Color-coded maps of normalized signal intensity and ventilation increased diagnostic confidence, particularly with regard to "minus" pathologies. UTE-MRI detected new atelectasis in an asymptomatic CF patient, allowing for rapid and successful therapy initiation, and it was able to reproduce atelectasis and hamartoma known from multidetector computed tomography and to monitor a patient with allergic bronchopulmonary aspergillosis. CONCLUSION 3D UTE-MRI using a stack-of-spirals trajectory enables combined morphologic and functional imaging of the lungs within ~115 second acquisition time and might be suitable for monitoring a wide spectrum of pulmonary diseases.
Collapse
|
41
|
Heidenreich JF, Weng AM, Metz C, Benkert T, Pfeuffer J, Hebestreit H, Bley TA, Köstler H, Veldhoen S. Three-dimensional Ultrashort Echo Time MRI for Functional Lung Imaging in Cystic Fibrosis. Radiology 2020; 296:191-199. [PMID: 32343212 DOI: 10.1148/radiol.2020192251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background In cystic fibrosis (CF), recurrent imaging and pulmonary function tests (PFTs) are needed for the assessment of lung function during disease management. Purpose To assess the clinical feasibility of pulmonary three-dimensional ultrashort echo time (UTE) MRI at breath holding for quantitative image analysis of ventilation inhomogeneity and hyperinflation in CF compared with PFT. Materials and Methods In this prospective study from May 2018 to June 2019, participants with CF and healthy control participants underwent PFTs and functional lung MRI by using a prototypical single breath-hold three-dimensional UTE sequence. Fractional ventilation (FV) was calculated from acquired data in normal inspiration and normal expiration. FV of each voxel was normalized to the whole lung mean (FVN), and interquartile range of normalized ventilation (IQRN; as a measure of ventilation heterogeneity) was calculated. UTE signal intensity (SI) was assessed in full expiration (SIN, normalized to aortic blood). Obtained metrics were compared between participants with CF and control participants. For participants with CF, MRI metrics were correlated with the standard lung clearance index (LCI) and PFT. Mann-Whitney U tests and Spearman correlation were used for statistical analysis. Results Twenty participants with CF (mean age, 17 years ± 9 [standard deviation]; 12 men) and 10 healthy control participants (24 years ± 8; five men) were included. IQRN was higher for participants with CF than for control participants (mean, 0.66 ± 0.16 vs 0.50 ± 0.04, respectively; P = .007). In the 20 participants with CF, IQRN correlated with obstruction markers forced expiratory volume in 1 second-to-forced vital capacity ratio (r = -0.70; 95% confidence interval [CI]: -0.92, -0.28; P < .001), mean expiratory flow 25% (r = 0.78; 95% CI: -0.95, -0.39; P < .001), and with the ventilation inhomogeneity parameter LCI (r = 0.90; 95% CI: 0.69, 0.96; P < .001). Mean SIN in full expiration was lower in participants with CF than in control participants (0.34 ± 0.08 vs 0.39 ± 0.03, respectively; P = .03). Conclusion Three-dimensional ultrashort echo time MRI in the lungs allowed for functional imaging of ventilation inhomogeneity within a few breath holds in patients with cystic fibrosis. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Wielpütz in this issue.
Collapse
Affiliation(s)
- Julius F Heidenreich
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Andreas M Weng
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Corona Metz
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Thomas Benkert
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Josef Pfeuffer
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Helge Hebestreit
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Thorsten A Bley
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Herbert Köstler
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| | - Simon Veldhoen
- From the Department of Diagnostic and Interventional Radiology (J.F.H., A.M.W., C.M., T.A.B., H.K., S.V.) and Department of Pediatrics (H.H.), University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany; and Department of Application Development, Siemens Healthcare GmbH, Erlangen, Germany (T.B., J.P.)
| |
Collapse
|
42
|
Higano NS, Thomen RP, Quirk JD, Huyck HL, Hahn AD, Fain SB, Pryhuber GS, Woods JC. Alveolar Airspace Size in Healthy and Diseased Infant Lungs Measured via Hyperpolarized 3He Gas Diffusion Magnetic Resonance Imaging. Neonatology 2020; 117:704-712. [PMID: 33176330 PMCID: PMC7878286 DOI: 10.1159/000511084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alveolar development and lung parenchymal simplification are not well characterized in vivo in neonatal patients with respiratory morbidities, such as bronchopulmonary dysplasia (BPD). Hyperpolarized (HP) gas diffusion magnetic resonance imaging (MRI) is a sensitive, safe, nonionizing, and noninvasive biomarker for measuring airspace size in vivo but has not yet been implemented in young infants. OBJECTIVE This work quantified alveolar airspace size via HP gas diffusion MRI in healthy and diseased explanted infant lung specimens, with comparison to histological morphometry. METHODS Lung specimens from 8 infants were obtained: 7 healthy left upper lobes (0-16 months, post-autopsy) and 1 left lung with filamin-A mutation, closely representing BPD lung disease (11 months, post-transplantation). Specimens were imaged using HP 3He diffusion MRI to generate apparent diffusion coefficients (ADCs) as biomarkers of alveolar airspace size, with comparison to mean linear intercept (Lm) via quantitative histology. RESULTS Mean ADC and Lm were significantly increased throughout the diseased specimen (ADC = 0.26 ± 0.06 cm2/s, Lm = 587 ± 212 µm) compared with healthy specimens (ADC = 0.14 ± 0.03 cm2/s, Lm = 133 ± 37 µm; p < 1 × 10-7); increased values reflect enlarged airspaces. Mean ADCs in healthy specimens were significantly correlated to Lm (r = 0.69, p = 0.041). CONCLUSIONS HP gas diffusion MRI is sensitive to healthy and diseased regional alveolar airspace size in infant lungs, with good comparison to quantitative histology in ex vivo specimens. This work demonstrates the translational potential of gas MRI techniques for in vivo assessment of normal and abnormal alveolar development in neonates with pulmonary disease.
Collapse
Affiliation(s)
- Nara S Higano
- Division of Pulmonary Medicine and Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio, USA,
| | - Robert P Thomen
- Department of Radiology and Bioengineering, University of Missouri, Columbia, Missouri, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Heidie L Huyck
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Andrew D Hahn
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, New York, USA
| | - Jason C Woods
- Division of Pulmonary Medicine and Department of Radiology, Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
43
|
Critser PJ, Higano NS, Tkach JA, Olson ES, Spielberg DR, Kingma PS, Fleck RJ, Lang SM, Moore RA, Taylor MD, Woods JC. Cardiac Magnetic Resonance Imaging Evaluation of Neonatal Bronchopulmonary Dysplasia-associated Pulmonary Hypertension. Am J Respir Crit Care Med 2020; 201:73-82. [PMID: 31539272 PMCID: PMC6938152 DOI: 10.1164/rccm.201904-0826oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
Rationale: Patients with bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH) have increased morbidity and mortality. Noninvasive assessment relies on echocardiograms (echos), which are technically challenging in this population. Improved assessment could augment decisions regarding PH therapies.Objectives: We hypothesized that neonatal cardiac magnetic resonance imaging (MRI) will correlate with BPD severity and predict short-term clinical outcomes, including need for PH therapies for infants with BPD.Methods: A total of 52 infants (31 severe BPD, 9 moderate BPD, and 12 with either mild or no BPD) were imaged between 39 and 47 weeks postmenstrual age on a neonatal-sized, neonatal ICU-sited 1.5-T magnetic resonance (MR) scanner. MR left ventricular eccentricity index (EI), main pulmonary artery-to-aorta (PA/AO) diameter ratio, and pulmonary arterial blood flow were determined. Echos obtained for clinical indications were reviewed. MRI and echo indices were compared with BPD severity and clinical outcomes, including length of stay (LOS), duration of respiratory support, respiratory support at discharge, and PH therapy.Measurements and Main Results: PA/AO ratio increased with BPD severity. Increased PA/AO ratio, MR-EI, and echo-EIs were associated with increased LOS and duration of respiratory support. No correlation was seen between pulmonary arterial blood flow and BPD outcomes. Controlling for gestational age, birth weight, and BPD severity, MR-EI was associated with LOS and duration of respiratory support. Increased PA/AO ratio and MR-EI were associated with PH therapy during hospitalization and at discharge.Conclusions: MRI can provide important image-based measures of cardiac morphology that relate to disease severity and clinical outcomes in neonates with BPD.
Collapse
Affiliation(s)
| | - Nara S. Higano
- Center for Pulmonary Imaging Research
- Division of Pulmonary Medicine
| | | | - Emilia S. Olson
- Center for Pulmonary Imaging Research
- Department of Radiology, and
| | - David R. Spielberg
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Pulmonary Medicine Service, Texas Children’s Hospital, Houston, Texas; and
| | - Paul S. Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert J. Fleck
- Department of Radiology, and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Sean M. Lang
- Division of Cardiology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ryan A. Moore
- Division of Cardiology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael D. Taylor
- Division of Cardiology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jason C. Woods
- Center for Pulmonary Imaging Research
- Division of Pulmonary Medicine
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
44
|
Hahn AD, Malkus A, Kammerman J, Higano N, Walkup L, Woods J, Fain SB. Characterization of R 2 ∗ and tissue density in the human lung: Application to neonatal imaging in the intensive care unit. Magn Reson Med 2019; 84:920-927. [PMID: 31855294 DOI: 10.1002/mrm.28137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Novel demonstration of R 2 ∗ and tissue density estimation in infant lungs using 3D ultrashort echo time MRI. Differences between adult and neonates with no clinical indication of lung pathology is explored, as well as relationships between parameter estimates and gravitationally dependent position and lung inflation state. This provides a tool for probing physiologic processes that may be relevant to pulmonary disease and progression in newborns. METHODS R 2 ∗ and tissue density were estimated in a phantom consisting of standards allowing for ground truth comparisons and in human subjects (N = 5 infants, N = 4 adults, no clinical indication of lung dysfunction) using a 3D radial multiecho ultrashort echo time MRI sequence. Whole lung averages were compared between infants and adults. Dependence of the metrics on anterior-posterior position as well as between end-tidal inspiration and expiration were explored, in addition to the general relationship between R 2 ∗ and tissue density. RESULTS Estimates in the phantom did not differ significantly from ground truth. Neonates had significantly lower mean R 2 ∗ (P = .006) and higher mean tissue density (P = 1.5e-5) than adults. Tissue density and R 2 ∗ were both significantly dependent on anterior-posterior position and lung inflation state (P < .005). An overall inverse relationship was found between R 2 ∗ and tissue density, which was similar in both neonates and adults. CONCLUSION Estimation of tissue density and R 2 ∗ in free breathing, nonsedated, neonatal patients is feasible using multiecho ultrashort echo time MRI. R 2 ∗ was no different between infants and adults when matched for tissue density, although density of lung parenchyma was, on average, lower in adults than neonates.
Collapse
Affiliation(s)
- Andrew D Hahn
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Annelise Malkus
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Jeffery Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Nara Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Laura Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Radiology, University of Wisconsin, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
45
|
Adaikalam SA, Higano NS, Tkach JA, Yen Lim F, Haberman B, Woods JC, Kingma PS. Neonatal lung growth in congenital diaphragmatic hernia: evaluation of lung density and mass by pulmonary MRI. Pediatr Res 2019; 86:635-640. [PMID: 31238333 DOI: 10.1038/s41390-019-0480-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Outcomes of infants with congenital diaphragmatic hernia (CDH) are primarily dependent on the severity of pulmonary hypoplasia. It is previously unknown whether postnatal lung growth in infants with CDH represents true parenchymal lung growth or merely an expansion in volume of the existing tissue. We hypothesized that lung volume growth in CDH infants will be accompanied by an increase in lung mass and that CDH infants will demonstrate accelerated catch-up growth of the more hypoplastic lung. METHODS We used fetal and post-CDH repair MRI of 12 infants to measure lung volume and density, which was used to calculate lung mass. RESULTS The average increase in right lung mass was 1.1 ± 1.1 g/week (p = 0.003) and the average increase in left lung mass was 1.8 ± 0.7 g/week (p < 0.001). When the ratio of left-to-right lung mass of the prenatal MRI was compared to post-repair MRI, the ratio significantly increased in all infants with average prenatal and post-repair ratios of 0.30 and 0.73, respectively (p = 0.002). CONCLUSION Lung growth in infants with CDH is indeed growth in lung mass (i.e. parenchyma), and the lungs demonstrate catch-up growth (i.e., increased rate of growth in the more hypoplastic ipsilateral lung).
Collapse
Affiliation(s)
- Stephanie A Adaikalam
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jean A Tkach
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Foong Yen Lim
- Divisions of Pediatric General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Beth Haberman
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Kingma
- The Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Cincinnati Fetal Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
46
|
Willmering MM, Robison RK, Wang H, Pipe JG, Woods JC. Implementation of the FLORET UTE sequence for lung imaging. Magn Reson Med 2019; 82:1091-1100. [PMID: 31081961 PMCID: PMC6559861 DOI: 10.1002/mrm.27800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Magnetic resonance imaging of lungs is inherently challenging, but it has become more common with the use of UTE sequences and their relative insensitivity to motion. Spiral UTE sequences have been touted recently as having greater k-space sampling efficiencies than radial UTE, but few are designed for the shorter T2 * of the lung. In this study, FLORET (Fermat looped, orthogonally encoded trajectories), a recently developed spiral 3D-UTE sequence designed for the short T2 * species, was implemented in human lungs for the first time and the images were compared with traditional radial UTE images. METHODS The FLORET sequence was implemented with parameters optimized for lung imaging on healthy and diseased (cystic fibrosis) subjects. On healthy subjects, radial UTE images (3D-radial and 2D-radial with phase encoding) were acquired for comparison to FLORET. Various metrics including SNR, vasculature contrast, diaphragm sharpness, and parenchymal density ratios were acquired and compared among the separate UTE sequences. RESULTS The FLORET sequence performed similarly to traditional radial UTE methods with a much shorter total scan time for fully sampled images (FLORET: 1 minute 55 seconds, 3D-radial: 3 minutes 25 seconds, 2D-radial with phase encoding: 7 minutes 22 seconds). Additionally, the FLORET image obtained on the cystic fibrosis subject resulted in the observation of cystic fibrosis lung pathology similar or superior to that of the other UTE-MRI techniques. CONCLUSION The FLORET sequence allows for faster acquisition of high diagnostic-quality lung images and its short T2 * components without sacrificing SNR, image quality, or tissue/disease quantification.
Collapse
Affiliation(s)
- Matthew M. Willmering
- Center for Pulmonary Imaging Research, Divisions of Pulmonary Medicine and Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ryan K. Robison
- Department of Radiology, Phoenix Children’s Hospital, Phoenix, AZ, 85016, USA
| | - Hui Wang
- Center for Pulmonary Imaging Research, Divisions of Pulmonary Medicine and Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Clinical Science, Philips Healthcare, Gainesville, FL, 32608, USA
| | - James G. Pipe
- Imaging Research, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jason C. Woods
- Center for Pulmonary Imaging Research, Divisions of Pulmonary Medicine and Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Departments of Pediatrics, Radiology, and Physics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| |
Collapse
|
47
|
Yoder LM, Higano NS, Schapiro AH, Fleck RJ, Hysinger EB, Bates AJ, Kingma PS, Merhar SL, Fain SB, Woods JC. Elevated lung volumes in neonates with bronchopulmonary dysplasia measured via MRI. Pediatr Pulmonol 2019; 54:1311-1318. [PMID: 31134768 DOI: 10.1002/ppul.24378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/11/2019] [Accepted: 05/01/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity defined by requirement for respiratory support at 36 weeks postmenstrual age (PMA), but structural sequelae like lung hyperinflation are often not quantified. Quiet-breathing, nonsedated magnetic resonance imaging (MRI) allows tomographic quantification of lung volumes and densities. We hypothesized that functional residual capacity (FRC) and intrapleural volume (IV) are increased in BPD and correlate with qualitative radiological scoring of hyperinflation. METHODS Ultrashort echo time (UTE) MRI of 17 neonates (acquired at ~39 weeks PMA) were reconstructed at end-expiration and end-inspiration via the time course of the k0 point in k-space. Images were segmented to determine total lung, tidal, parenchymal tissue, and vascular tissue volumes. FRC was calculated by subtracting parenchymal and vascular tissue volumes from IV. Respiratory rate (RR) was calculated via the UTE respiratory waveform, yielding estimates of minute ventilation when combined with tidal volumes (TVs). Two radiologists scored hyperinflation on the MR images. RESULTS IV at FRC increased in BPD: for control, mild, and severe (patients the median volumes were 32.8, 33.5, and 50.9 mL/kg, respectively. TV (medians: 2.21, 3.64, and 4.84 mL/kg) and minute ventilation (medians: 493, 750, and 991 mL/min) increased with increasing severity of BPD (despite decreasing RR, medians: 75.6, 63.0, and 56.1 breaths/min). FRC increased with increasing severity of BPD (39.3, 38.3, and 56.0 mL, respectively). Findings were consistent with increased hyperinflation scored by radiologists. CONCLUSIONS This study demonstrates that UTE MRI can quantify hyperinflation in neonatal BPD and that lung volumes significantly increase with disease severity.
Collapse
Affiliation(s)
- Lauren M Yoder
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andrew H Schapiro
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Robert J Fleck
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Erik B Hysinger
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Alister J Bates
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Paul S Kingma
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio.,Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephanie L Merhar
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Sean B Fain
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Medical Physics, University of Wisconsin, Madison, Wisconsin.,Department of Radiology, University of Wisconsin, Madison, Wisconsin
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
48
|
Zucker EJ. Cross-sectional imaging of congenital pulmonary artery anomalies. Int J Cardiovasc Imaging 2019; 35:1535-1548. [PMID: 31175525 DOI: 10.1007/s10554-019-01643-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Congenital pulmonary artery (PA) anomalies comprise a rare and heterogeneous spectrum of disease, ranging from abnormal origins to complete atresia. They may present in early infancy or more insidiously in adulthood, often in association with congenital heart disease such as tetralogy of Fallot or other syndromes. In recent years, cross-sectional imaging, including computed tomography (CT) and magnetic resonance imaging (MRI), has become widely utilized for the noninvasive assessment of congenital PA diseases, supplementing echocardiography and at times supplanting invasive angiography. In this article, modern CT and MRI techniques for imaging congenital PA disorders are summarized. The key clinical features, cross-sectional imaging findings, and treatment options for the most commonly encountered entities are then reviewed. Emphasis is placed on the ever-growing role of cross-sectional imaging options in facilitating early and accurate diagnosis and tailored treatment.
Collapse
Affiliation(s)
- Evan J Zucker
- Department of Radiology, Stanford University School of Medicine, 725 Welch Road, Stanford, CA, 94305, USA.
| |
Collapse
|
49
|
Klimeš F, Voskrebenzev A, Gutberlet M, Kern A, Behrendt L, Kaireit TF, Czerner C, Renne J, Wacker F, Vogel-Claussen J. Free-breathing quantification of regional ventilation derived by phase-resolved functional lung (PREFUL) MRI. NMR IN BIOMEDICINE 2019; 32:e4088. [PMID: 30908743 DOI: 10.1002/nbm.4088] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE To test the feasibility of regional fully quantitative ventilation measurement in free breathing derived by phase-resolved functional lung (PREFUL) MRI in the supine and prone positions. In addition, the influence of T2 * relaxation time on ventilation quantification is assessed. METHODS Twelve healthy volunteers underwent functional MRI at 1.5 T using a 2D triple-echo spoiled gradient echo sequence allowing for quantitative measurement of T2 * relaxation time. Minute ventilation (ΔV) was quantified by conventional fractional ventilation (FV) and the newly introduced regional ventilation (VR), which corrects volume errors due to image registration. ΔVFV versus ΔVVR and ΔVVR versus ΔVVR with T2 * correction were compared using Bland-Altman plots and correlation analysis. The repeatability and physiological plausibility of all measurements were tested in the supine and prone positions. RESULTS On global and regional scales a strong correlation was observed between ΔVFV versus ΔVVR and ΔVVR versus ΔVVRT2* (r > 0.93); however, regional Bland-Altman analysis showed systematic differences (p < 0.0001). Unlike ΔVVRT2* , ΔVVR and ΔVFV showed expected physiologic anterior-posterior gradients, which decreased in the supine but not in the prone position at second measurement during 3 min in the same position. For all quantification methods a moderate repeatability (coefficient of variation <20%) of ventilation was found. CONCLUSION A fully quantified regional ventilation measurement using ΔVVR in free breathing is feasible and shows physiologically plausible results. In contrast to conventional ΔVFV, volume errors due to image registration are eliminated with the ΔVVR approach. However, correction for the T2 * effect remains challenging.
Collapse
Affiliation(s)
- F Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - A Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - M Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - A Kern
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - L Behrendt
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - T F Kaireit
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - C Czerner
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - J Renne
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - F Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| | - J Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hanover, Germany
| |
Collapse
|
50
|
Bates AJ, Higano NS, Hysinger EB, Fleck RJ, Hahn AD, Fain SB, Kingma PS, Woods JC. Quantitative Assessment of Regional Dynamic Airway Collapse in Neonates via Retrospectively Respiratory-Gated 1 H Ultrashort Echo Time MRI. J Magn Reson Imaging 2019; 49:659-667. [PMID: 30252988 PMCID: PMC6375762 DOI: 10.1002/jmri.26296] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Neonatal dynamic tracheal collapse (tracheomalacia, TM) is a common and serious comorbidity in infants, particularly those with chronic lung disease of prematurity (bronchopulmonary dysplasia, BPD) or congenital airway or lung-related conditions such as congenital diaphragmatic hernia (CDH), but the underlying pathology, impact on clinical outcomes, and response to therapy are not well understood. There is a pressing clinical need for an accurate, objective, and safe assessment of neonatal TM. PURPOSE To use retrospectively respiratory-gated ultrashort echo-time (UTE) MRI to noninvasively analyze moving tracheal anatomy for regional, quantitative evaluation of dynamic airway collapse in quiet-breathing, nonsedated neonates. STUDY TYPE Prospective. POPULATION/SUBJECTS Twenty-seven neonatal subjects with varying respiratory morbidities (control, BPD, CDH, abnormal polysomnogram). FIELD STRENGTH/SEQUENCE High-resolution 3D radial UTE MRI (0.7 mm isotropic) on 1.5T scanner sited in the neonatal intensive care unit. ASSESSMENT Images were retrospectively respiratory-gated using the motion-modulated time-course of the k-space center. Tracheal surfaces were generated from segmentations of end-expiration/inspiration images and analyzed geometrically along the tracheal length to calculate percent-change in luminal cross-sectional area (A % ) and ratio of minor-to-major diameters at end-expiration (r D,exp ). Geometric results were compared to clinically available bronchoscopic findings (n = 14). STATISTICAL TESTS Two-sample t-test. RESULTS Maximum A % significantly identified subjects with/without a bronchoscopic TM diagnosis (with: 46.9 ± 10.0%; without: 27.0 ± 5.8%; P < 0.001), as did minimum r D,exp (with: 0.346 ± 0.146; without: 0.671 ± 0.218; P = 0.008). Subjects with severe BPD exhibited a far larger range of minimum r D,exp than subjects with mild/moderate BPD or controls (0.631 ± 0.222, 0.782 ± 0.075, and 0.776 ± 0.030, respectively), while minimum r D,exp was reduced in CDH subjects (0.331 ± 0.171) compared with controls (P < 0.001). DATA CONCLUSION Respiratory-gated UTE MRI can quantitatively and safely evaluate neonatal dynamic tracheal collapse, as validated with the clinical standard of bronchoscopy, without requiring invasive procedures, anesthesia, or ionizing radiation. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;49:659-667.
Collapse
Affiliation(s)
- Alister J Bates
- Upper Airway Center, Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Erik B Hysinger
- Upper Airway Center, Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Robert J Fleck
- Upper Airway Center, Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Andrew D Hahn
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin - Madison, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Paul S Kingma
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Jason C Woods
- Upper Airway Center, Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
- Departments of Radiology and Physics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|