1
|
de Buck MHS, Hess AT, Jezzard P. Simulation-based optimization and experimental comparison of intracranial T2-weighted DANTE-SPACE vessel wall imaging at 3T and 7T. Magn Reson Med 2024; 92:2112-2126. [PMID: 38970460 DOI: 10.1002/mrm.30203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE T2-weighted DANTE-SPACE (Delay Alternating with Nutation for Tailored Excitation - Sampling Perfection with Application optimized Contrasts using different flip angle Evolution) sequences facilitate non-invasive intracranial vessel wall imaging at 7T through simultaneous suppression of blood and CSF. However, the achieved vessel wall delineation depends closely on the selected sequence parameters, and little information is available about the performance of the sequence using more widely available 3T MRI. Therefore, in this paper a comprehensive DANTE-SPACE simulation framework is used for the optimization and quantitative comparison of T2-weighted DANTE-SPACE at both 7T and 3T. METHODS Simulations are used to propose optimized sequence parameters at both 3T and 7T. At 7T, an additional protocol which uses a parallel transmission (pTx) shim during the DANTE preparation for improved suppression of inflowing blood is also proposed. Data at both field strengths using optimized and literature protocols are acquired and quantitatively compared in six healthy volunteers. RESULTS At 7T, more vessel wall signal can be retained while still achieving sufficient CSF suppression by using fewer DANTE pulses than described in previous implementations. The use of a pTx shim during DANTE at 7T provides a modest further improvement to the inner vessel wall delineation. At 3T, aggressive DANTE preparation is required to achieve CSF suppression, resulting in reduced vessel wall signal. As a result, the achievable vessel wall definition at 3T is around half that of 7T. CONCLUSION Simulation-based optimization of DANTE parameters facilitates improved T2-weighted DANTE-SPACE contrasts at 7T. The improved vessel definition of T2-weighted DANTE-SPACE at 7T makes DANTE preparation more suitable for T2-weighted VWI at 7T than at 3T.
Collapse
Affiliation(s)
- Matthijs H S de Buck
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Spinoza Centre for Neuroimaging, Netherlands Institute for Neuroscience, Royal Netherlands Academy for Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Aaron T Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
de Buck MHS, Jezzard P, Hess AT. An extended phase graph-based framework for DANTE-SPACE simulations including physiological, temporal, and spatial variations. Magn Reson Med 2024; 92:332-345. [PMID: 38469983 DOI: 10.1002/mrm.30071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE The delay alternating with nutation for tailored excitation (DANTE)-sampling perfection with application-optimized contrasts (SPACE) sequence facilitates 3D intracranial vessel wall imaging with simultaneous suppression of blood and CSF. However, the achieved image contrast depends closely on the selected sequence parameters, and the clinical use of the sequence is limited in vivo by observed signal variations in the vessel wall, CSF, and blood. This paper introduces a comprehensive DANTE-SPACE simulation framework, with the aim of providing a better understanding of the underlying contrast mechanisms and facilitating improved parameter selection and contrast optimization. METHODS An extended phase graph formalism was developed for efficient spin ensemble simulation of the DANTE-SPACE sequence. Physiological processes such as pulsatile flow velocity variation, varying flow directions, intravoxel velocity variation, diffusion, andB 1 + $$ {\mathrm{B}}_1^{+} $$ effects were included in the framework to represent the mechanisms behind the achieved signal levels accurately. RESULTS Intravoxel velocity variation improved temporal stability and robustness against small velocity changes. Time-varying pulsatile velocity variation affected CSF simulations, introducing periods of near-zero velocity and partial rephasing. Inclusion of diffusion effects was found to substantially reduce the CSF signal. Blood flow trajectory variations had minor effects, butB 1 + $$ {\mathrm{B}}_1^{+} $$ differences along the trajectory reduced DANTE efficiency in low-B 1 + $$ {\mathrm{B}}_1^{+} $$ areas. Introducing low-velocity pulsatility of both CSF and vessel wall helped explain the in vivo observed signal heterogeneity in both tissue types. CONCLUSION The presented simulation framework facilitates a more comprehensive optimization of DANTE-SPACE sequence parameters. Furthermore, the simulation framework helps to explain observed contrasts in acquired data.
Collapse
Affiliation(s)
- Matthijs H S de Buck
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Aaron T Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Pierobon Mays G, Hett K, Eisma J, McKnight CD, Elenberger J, Song AK, Considine C, Richerson WT, Han C, Stark A, Claassen DO, Donahue MJ. Reduced cerebrospinal fluid motion in patients with Parkinson's disease revealed by magnetic resonance imaging with low b-value diffusion weighted imaging. Fluids Barriers CNS 2024; 21:40. [PMID: 38725029 PMCID: PMC11080257 DOI: 10.1186/s12987-024-00542-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation of α-synuclein protofibrils. New diagnostic methods assess α-synuclein aggregation characteristics from cerebrospinal fluid (CSF) and recent pathophysiologic mechanisms suggest that CSF circulation disruptions may precipitate α-synuclein retention. Here, diffusion-weighted MRI with low-to-intermediate diffusion-weightings was applied to test the hypothesis that CSF motion is reduced in Parkinson's disease relative to healthy participants. METHODS Multi-shell diffusion weighted MRI (spatial resolution = 1.8 × 1.8 × 4.0 mm) with low-to-intermediate diffusion weightings (b-values = 0, 50, 100, 200, 300, 700, and 1000 s/mm2) was applied over the approximate kinetic range of suprasellar cistern fluid motion at 3 Tesla in Parkinson's disease (n = 27; age = 66 ± 6.7 years) and non-Parkinson's control (n = 32; age = 68 ± 8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the noise floor-corrected decay rate of CSF signal as a function of b-value, which reflects increasing fluid motion, is reduced within the suprasellar cistern of persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted MRI (significance-criteria: p < 0.05). RESULTS Consistent with the primary hypothesis, CSF decay rates were higher in healthy (D = 0.00673 ± 0.00213 mm2/s) relative to Parkinson's disease (D = 0.00517 ± 0.00110 mm2/s) participants. This finding was preserved after controlling for age and sex and was observed in the posterior region of the suprasellar cistern (p < 0.001). An inverse correlation between choroid plexus perfusion and decay rate in the voxels within the suprasellar cistern (Spearman's-r=-0.312; p = 0.019) was observed. CONCLUSIONS Multi-shell diffusion MRI was applied to identify reduced CSF motion at the level of the suprasellar cistern in adults with versus without Parkinson's disease; the strengths and limitations of this methodology are discussed in the context of the growing literature on CSF flow.
Collapse
Affiliation(s)
| | - Kilian Hett
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jarrod Eisma
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason Elenberger
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander K Song
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciaran Considine
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wesley T Richerson
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caleb Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam Stark
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Tagawa H, Fushimi Y, Funaki T, Nakajima S, Sakata A, Okuchi S, Hinoda T, Grinstead J, Ahn S, Hidaka Y, Yoshida K, Miyamoto S, Nakamoto Y. Vessel wall MRI in moyamoya disease: arterial wall enhancement varies depending on age, arteries, and disease progression. Eur Radiol 2024; 34:2183-2194. [PMID: 37798407 PMCID: PMC11322227 DOI: 10.1007/s00330-023-10251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/19/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To investigate the relationship of followings for patients with moyamoya disease (MMD): arterial wall enhancement on vessel wall MRI (VW-MRI), cross-sectional area (CSA), time-of-flight MR angiography (MRA), age, locations from intracranial internal carotid artery (ICA) to proximal middle cerebral artery (MCA), disease progression, and transient ischemic attack (TIA). METHODS Patients who underwent VW-MRI between October 2018 and December 2020 were enrolled in this retrospective study. We measured arterial wall enhancement (enhancement ratio, ER) and CSA at five sections of ICA and MCA. Also, we scored MRA findings. Multiple linear regression (MLR) analysis was performed to explore the associations between ER, age, MRA score, CSA, history of TIA, and surgical revascularization. RESULTS We investigated 102 sides of 51 patients with MMD (35 women, 16 men, mean age 31 years ± 18 [standard deviation]). ER for MRA score 2 (signal discontinuity) was higher than ER for other scores in sections D (end of ICA) and E (proximal MCA) on MLR analysis. ER in section E was significantly higher in patients for MRA score 2 with TIA history than without. ER significantly increased as CSA increased in section E, which suggests ER becomes less in decreased CSA due to negative remodeling. CONCLUSION Arterial wall enhancement in MMD varies by age, location, and disease progression. Arterial wall enhancement may be stronger in the progressive stage of MMD. Arterial wall enhancement increases with history of TIA at proximal MCA, which may indicate the progression of the disease. CLINICAL RELEVANCE STATEMENT Arterial wall enhancement in moyamoya disease varies by age, location of arteries, and disease progression, and arterial wall enhancement may be used as an imaging biomarker of moyamoya disease. KEY POINTS It has not been clarified what arterial wall enhancement in moyamoya disease represents. Arterial wall enhancement in moyamoya disease varies by age, location of arteries, and disease progression. Arterial wall enhancement in moyamoya disease increases as the disease progresses.
Collapse
Affiliation(s)
- Hiroshi Tagawa
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | - Sinyeob Ahn
- Siemens Healthineers, San Francisco, CA, USA
| | - Yu Hidaka
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Gomyo M, Tsuchiya K, Yokoyama K. Vessel Wall Imaging of Intracranial Arteries: Fundamentals and Clinical Applications. Magn Reson Med Sci 2023; 22:447-458. [PMID: 36328569 PMCID: PMC10552670 DOI: 10.2463/mrms.rev.2021-0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/11/2022] [Indexed: 10/03/2023] Open
Abstract
With the increasing use of 3-tesla MRI scanners and the development of applicable sequences, it has become possible to achieve high-resolution, good contrast imaging, which has enabled the imaging of the walls of small-diameter intracranial arteries. In recent years, the usefulness of vessel wall imaging has been reported for numerous intracranial arterial diseases, such as for the detection of vulnerable plaque in atherosclerosis, diagnosis of cerebral arterial dissection, prediction of the rupture of cerebral aneurysms, and status of moyamoya disease and cerebral vasculitis. In this review, we introduce the histological characteristics of the intracranial artery, discuss intracranial vessel wall imaging methods, and review the findings of vessel wall imaging for various major intracranial arterial diseases.
Collapse
Affiliation(s)
- Miho Gomyo
- Department of Radiology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| | | | - Kenichi Yokoyama
- Department of Radiology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo, Japan
| |
Collapse
|
6
|
Mays GP, Hett K, Eisma J, McKnight CD, Elenberger J, Song AK, Considine C, Han C, Stark A, Claassen DO, Donahue MJ. Reduced suprasellar cistern cerebrospinal fluid motion in patients with Parkinson's disease revealed by magnetic resonance imaging with dynamic cycling of diffusion weightings. RESEARCH SQUARE 2023:rs.3.rs-3311121. [PMID: 37720044 PMCID: PMC10503842 DOI: 10.21203/rs.3.rs-3311121/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation and accumulation of a-synuclein protofibrils. New diagnostic methods assess a-synuclein aggregation characteristics from cerebrospinal fluid and recent pathophysiologic mechanisms suggest that cerebrospinal fluid circulation disruptions may precipitate a-synuclein retention. Here, we test the hypothesis that cerebrospinal fluid motion at the level of the suprasellar cistern is reduced in Parkinson's disease relative to healthy participants and this reduction relates to choroid plexus perfusion. METHODS Diffusion weighted imaging (spatial resolution=1.8×1.8×4 mm) magnetic resonance imaging with cycling of diffusion weightings (b-values=0, 50, 100, 200, 300, 700, and 1000 s/mm2) over the approximate kinetic range of suprasellar cistern neurofluid motion was applied at 3-Tesla in Parkinson's disease (n=27; age=66±6.7 years) and healthy (n=32; age=68±8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the decay rate of cerebrospinal fluid signal as a function of b-value, which reflects increasing fluid motion, is reduced in persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted magnetic resonance imaging (Spearman rank-order correlation; significance-criteria: p<0.05). RESULTS Consistent with the primary hypothesis, decay rates were higher in healthy (D=0.00328±0.00123mm2/s) relative to Parkinson's disease (D=0.00256±0.0094mm2/s) participants (p=0.016). This finding was preserved after controlling for age and sex. An inverse correlation between choroid plexus perfusion and decay rate (p=0.011) was observed in Parkinson's disease participants. CONCLUSIONS Cerebrospinal fluid motion at the level of the suprasellar cistern is often reduced in adults with versus without Parkinson's disease and this reduction correlates on average with choroid plexus perfusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Caleb Han
- Vanderbilt University Medical Center
| | | | | | | |
Collapse
|
7
|
Assessment of the degree of arterial stenosis in intracranial atherosclerosis using 3D high-resolution MRI: comparison with time-of-flight MRA, contrast-enhanced MRA, and DSA. Clin Radiol 2023; 78:e63-e70. [PMID: 36307233 DOI: 10.1016/j.crad.2022.08.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
AIM To compare the accuracy of three-dimensional (3D) high-resolution (HR) magnetic resonance imaging (MRI), time-of-flight magnetic resonance angiography (TOF-MRA), contrast-enhanced magnetic resonance angiography (CE-MRA), and digital subtraction angiography (DSA) in measuring the degree of stenosis in intracranial atherosclerosis. MATERIALS AND METHODS All patients with intracranial artery ischaemic events underwent HR-MRI, TOF-MRA, and CE-MRA analysis, and some of these patients underwent DSA examination. The correlation between different methods for measuring the degree of lumen stenosis was analysed. The accuracy of HR-MRI, TOF-MRA, and CE-MRA was evaluated and compared with that of DSA. RESULTS A total of 189 arterial stenoses were identified in 93 patients. Of these, 72 patients with 142 arterial stenoses underwent DSA examination. A very strong correlation between HR-MRI and CE-MRA measurements was shown (r=0.839, p<0.0001). The correlation between HR-MRI and TOF-MRA measurements was strong (r=0.720, p<0.0001). A very strong correlation between HR-MRI and DSA measurements was found (r=0.864, p<0.0001), and a similar correlation was observed between CE-MRA, and DSA measurements (r=0.843, p<0.0001). The correlation between TOF-MRA and DSA measurements was strong (r=0.686, p<0.0001). There was substantial agreement between HR-MRI and DSA measurements (K = 0.772) and between CE-MRA, and DSA measurements (K = 0.734) that was slightly higher than the agreement between TOF-MRA and DSA measurements (K = 0.636). CONCLUSION HR-MRI can accurately measure stenosis (especially for moderate and severe stenosis) in intracranial atherosclerosis by direct visualisation of the vessel lumen and steno-occlusive plaque.
Collapse
|
8
|
Kim DJ, Lee HJ, Baik J, Hwang MJ, Miyoshi M, Kang Y. Improved Blood Suppression of Motion-Sensitized Driven Equilibrium in High-Resolution Whole-Brain Vessel Wall Imaging: Comparison of Contrast-Enhanced 3D T1-Weighted FSE with Motion-Sensitized Driven Equilibrium and Delay Alternating with Nutation for Tailored Excitation. AJNR Am J Neuroradiol 2022; 43:1713-1718. [PMID: 36265890 DOI: 10.3174/ajnr.a7678] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE High-resolution vessel wall MR imaging is prone to slow-flow artifacts, particularly when gadolinium shortens the T1 relaxation time of blood. This study aimed to determine the optimal preparation pulses for contrast-enhanced high-resolution vessel wall MR imaging. MATERIALS AND METHODS Fifty patients who underwent both motion-sensitized driven equilibrium and delay alternating with nutation for tailored excitation (DANTE) preparation pulses with contrast-enhanced 3D-T1-FSE were retrospectively included. Qualitative analysis was performed using a 4-grade visual scoring system for black-blood performance in the small-sized intracranial vessels, overall image quality, severity of artifacts, and the degree of blood suppression in all cortical veins as well as transverse sinuses. Quantitative analysis of the M1 segment of the MCA was also performed. RESULTS The qualitative analysis revealed that motion-sensitized driven equilibrium demonstrated a significantly higher black-blood score than DANTE in contrast-enhanced 3D-T1-FSE of the A3 segment (3.90 versus 3.58, P < .001); M3 (3.72 versus 3.26, P = .004); P2 to P3 (3.86 versus 3.64, P = .017); the internal cerebral vein (3.72 versus 2.32, P < .001); and overall cortical veins (3.30 versus 2.74, P < .001); and transverse sinuses (2.82 versus 2.38, P < .001). SNRlumen, contrast-to noise ratiowall-lumen, and SNRwall in the M1 vessel were not significantly different between the 2 preparation pulses (all, P > .05). CONCLUSIONS Motion-sensitized driven equilibrium demonstrated improved blood suppression on contrast-enhanced 3D-T1-FSE in the small intracranial arteries and veins compared with DANTE. Motion-sensitized driven equilibrium is a useful preparation pulse for high-resolution vessel wall MR imaging to decrease venous contamination and suppress slow-flow artifacts when using contrast enhancement.
Collapse
Affiliation(s)
- D J Kim
- From the Department of Radiology (D.J.K., H.-J.L., J.B., Y.K.), Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - H-J Lee
- From the Department of Radiology (D.J.K., H.-J.L., J.B., Y.K.), Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - J Baik
- From the Department of Radiology (D.J.K., H.-J.L., J.B., Y.K.), Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea.,Department of Radiology (J.B.), Good Gang-An Hospital, Busan, South Korea
| | - M J Hwang
- GE Healthcare Korea (M.J.H.), Seoul, South Korea
| | - M Miyoshi
- GE Healthcare Japan (M.M.), Tokyo, Japan
| | - Y Kang
- From the Department of Radiology (D.J.K., H.-J.L., J.B., Y.K.), Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
9
|
Abstract
Vessel wall MR imaging (VW-MRI) has been introduced into clinical practice and applied to a variety of diseases, and its usefulness has been reported. High-resolution VW-MRI is essential in the diagnostic workup and provides more information than other routine MR imaging protocols. VW-MRI is useful in assessing lesion location, morphology, and severity. Additional information, such as vessel wall enhancement, which is useful in the differential diagnosis of atherosclerotic disease and vasculitis could be assessed by this special imaging technique. This review describes the VW-MRI technique and its clinical applications in arterial disease, venous disease, vasculitis, and leptomeningeal disease.
Collapse
|
10
|
Mattay RR, Saucedo JF, Lehman VT, Xiao J, Obusez EC, Raymond SB, Fan Z, Song JW. Current Clinical Applications of Intracranial Vessel Wall MR Imaging. Semin Ultrasound CT MR 2021; 42:463-473. [PMID: 34537115 DOI: 10.1053/j.sult.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracranial vessel wall MR imaging (VWI) is increasingly being used as a valuable adjunct to conventional angiographic imaging techniques. This article will provide an updated review on intracranial VWI protocols and image interpretation. We review VWI technical considerations, describe common VWI imaging features of different intracranial vasculopathies and show illustrative cases. We review the role of VWI for differentiating among steno-occlusive vasculopathies, such as intracranial atherosclerotic plaque, dissections and Moyamoya disease. We also highlight how VWI may be used for the diagnostic work-up and surveillance of patients with vasculitis of the central nervous system and cerebral aneurysms.
Collapse
Affiliation(s)
- Raghav R Mattay
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Jose F Saucedo
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Jiayu Xiao
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Scott B Raymond
- Department of Radiology, University of Vermont Medical Center, Burlington, VT
| | - Zhaoyang Fan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jae W Song
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
11
|
Coolen BF, Schoormans J, Gilbert G, Kooreman ES, de Winter N, Viessmann O, Zwanenburg JJM, Majoie CBLM, Strijkers GJ, Nederveen AJ, Siero JCW. Double delay alternating with nutation for tailored excitation facilitates banding-free isotropic high-resolution intracranial vessel wall imaging. NMR IN BIOMEDICINE 2021; 34:e4567. [PMID: 34076305 PMCID: PMC8459252 DOI: 10.1002/nbm.4567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/26/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
The purpose of this study was to evaluate the use of a double delay alternating with nutation for tailored excitation (D-DANTE)-prepared sequence for banding-free isotropic high-resolution intracranial vessel wall imaging (IC-VWI) and to compare its performance with regular DANTE in terms of signal-to-noise ratio (SNR) as well as cerebrospinal fluid (CSF) and blood suppression efficiency. To this end, a D-DANTE-prepared 3D turbo spin echo sequence was implemented by interleaving two separate DANTE pulse trains with different RF phase-cycling schemes, but keeping all other DANTE parameters unchanged, including the total number of pulses and total preparation time. This achieved a reduction of the banding distance compared with regular DANTE enabling banding-free imaging up to higher resolutions. Bloch simulations assuming static vessel wall and flowing CSF spins were performed to compare DANTE and D-DANTE in terms of SNR and vessel wall/CSF contrast. Similar image quality measures were assessed from measurements on 13 healthy middle-aged volunteers. Both simulation and in vivo results showed that D-DANTE had only slightly lower vessel wall/CSF and vessel wall/blood contrast-to-noise ratio values compared with regular DANTE, which originated from a 10%-15% reduction in vessel wall SNR but not from reduced CSF or blood suppression efficiency. As anticipated, IC-VWI acquisitions showed that D-DANTE can successfully remove banding artifacts compared with regular DANTE with equal scan time or DANTE preparation length. Moreover, application was demonstrated in a patient with an intracranial aneurysm, indicating improved robustness to slow flow artifacts compared with clinically available 3D turbo spin echo scans. In conclusion, D-DANTE provides banding artifact-free IC-VWI up to higher isotropic resolutions compared with regular DANTE. This allows for a more flexible choice of DANTE preparation parameters in high-resolution IC-VWI protocols.
Collapse
Affiliation(s)
- Bram F. Coolen
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | - Jasper Schoormans
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | | | - Ernst S. Kooreman
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
- Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Naomi de Winter
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | - Olivia Viessmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical SchoolMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Jaco J. M. Zwanenburg
- Department of Radiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Gustav J. Strijkers
- Department of Biomedical Engineering & PhysicsAmsterdam UMCAmsterdamThe Netherlands
| | - Aart J. Nederveen
- Department of Radiology & Nuclear MedicineAmsterdam UMCAmsterdamThe Netherlands
| | - Jeroen C. W. Siero
- Department of Radiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Spinoza Centre for NeuroimagingAmsterdamThe Netherlands
| |
Collapse
|
12
|
Yuan S, Jordan LC, Davis LT, Cogswell PM, Lee CA, Patel NJ, Waddle SL, Juttukonda M, Sky Jones R, Griffin A, Donahue MJ. A cross-sectional, case-control study of intracranial arterial wall thickness and complete blood count measures in sickle cell disease. Br J Haematol 2020; 192:769-777. [PMID: 33326595 DOI: 10.1111/bjh.17262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
In sickle cell disease (SCD), cerebral oxygen delivery is dependent on the cerebral vasculature's ability to increase blood flow and volume through relaxation of the smooth muscle that lines intracranial arteries. We hypothesised that anaemia extent and/or circulating markers of inflammation lead to concentric macrovascular arterial wall thickening, visible on intracranial vessel wall magnetic resonance imaging (VW-MRI). Adult and pediatric SCD (n = 69; age = 19.9 ± 8.6 years) participants and age- and sex-matched control participants (n = 38; age = 22.2 ± 8.9 years) underwent 3-Tesla VW-MRI; two raters measured basilar and bilateral supraclinoid internal carotid artery (ICA) wall thickness independently. Mean wall thickness was compared with demographic, cerebrovascular and haematological variables. Mean vessel wall thickness was elevated (P < 0·001) in SCD (1·07 ± 0·19 mm) compared to controls (0·97 ± 0·07 mm) after controlling for age and sex. Vessel wall thickness was higher in participants on chronic transfusions (P = 0·013). No significant relationship between vessel wall thickness and flow velocity, haematocrit, white blood cell count or platelet count was observed; however, trends (P < 0·10) for wall thickness increasing with decreasing haematocrit and increasing white blood cell count were noted. Findings are discussed in the context of how anaemia and circulating inflammatory markers may impact arterial wall morphology.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori C Jordan
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry T Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Petrice M Cogswell
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Chelsea A Lee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niral J Patel
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Spencer L Waddle
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meher Juttukonda
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Sky Jones
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Allison Griffin
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Lehman VT, Cogswell PM, Rinaldo L, Brinjikji W, Huston J, Klaas JP, Lanzino G. Contemporary and emerging magnetic resonance imaging methods for evaluation of moyamoya disease. Neurosurg Focus 2020; 47:E6. [PMID: 31786551 DOI: 10.3171/2019.9.focus19616] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/06/2019] [Indexed: 11/06/2022]
Abstract
Numerous recent technological advances offer the potential to substantially enhance the MRI evaluation of moyamoya disease (MMD). These include high-resolution volumetric imaging, high-resolution vessel wall characterization, improved cerebral angiographic and perfusion techniques, high-field imaging, fast scanning methods, and artificial intelligence. This review discusses the current state-of-the-art MRI applications in these realms, emphasizing key imaging findings, clinical utility, and areas that will benefit from further investigation. Although these techniques may apply to imaging of a wide array of neurovascular or other neurological conditions, consideration of their application to MMD is useful given the comprehensive multidimensional MRI assessment used to evaluate MMD. These MRI techniques span from basic cross-sectional to advanced functional sequences, both qualitative and quantitative.The aim of this review was to provide a comprehensive summary and analysis of current key relevant literature of advanced MRI techniques for the evaluation of MMD with image-rich case examples. These imaging methods can aid clinical characterization, help direct treatment, assist in the evaluation of treatment response, and potentially improve the understanding of the pathophysiology of MMD.
Collapse
Affiliation(s)
| | | | | | | | | | - James P Klaas
- 3Neurology, Mayo Clinic College of Graduate Medical Education, Rochester, Minnesota
| | | |
Collapse
|
14
|
Song JW, Wasserman BA. Vessel wall MR imaging of intracranial atherosclerosis. Cardiovasc Diagn Ther 2020; 10:982-993. [PMID: 32968655 DOI: 10.21037/cdt-20-470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intracranial atherosclerotic disease (ICAD) is one of the most common causes of ischemic stroke worldwide. Along with high recurrent stroke risk from ICAD, its association with cognitive decline and dementia leads to a substantial decrease in quality of life and a high economic burden. Atherosclerotic lesions can range from slight wall thickening with plaques that are angiographically occult to severely stenotic lesions. Recent advances in intracranial high resolution vessel wall MR (VW-MR) imaging have enabled imaging beyond the lumen to characterize the vessel wall and its pathology. This technique has opened new avenues of research for identifying vulnerable plaque in the setting of acute ischemic stroke as well as assessing ICAD burden and its associations with its sequela, such as dementia. We now understand more about the intracranial arterial wall, its ability to remodel with disease and how we can use VW-MR to identify angiographically occult lesions and assess medical treatment responses, for example, to statin therapy. Our growing understanding of ICAD with intracranial VW-MR imaging can profoundly impact diagnosis, therapy, and prognosis for ischemic stroke with the possibility of lesion-based risk models to tailor and personalize treatment. In this review, we discuss the advantages of intracranial VW-MR imaging for ICAD, the potential of bioimaging markers to identify vulnerable intracranial plaque, and future directions of artificial intelligence and its utility for lesion scoring and assessment.
Collapse
Affiliation(s)
- Jae W Song
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
15
|
Song JW, Moon BF, Burke MP, Kamesh Iyer S, Elliott MA, Shou H, Messé SR, Kasner SE, Loevner LA, Schnall MD, Kirsch JE, Witschey WR, Fan Z. MR Intracranial Vessel Wall Imaging: A Systematic Review. J Neuroimaging 2020; 30:428-442. [PMID: 32391979 DOI: 10.1111/jon.12719] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of this systematic review is to identify trends and extent of variability in intracranial vessel wall MR imaging (VWI) techniques and protocols. Although variability in selection of protocol design and pulse sequence type is known, data on what and how protocols vary are unknown. Three databases were searched to identify publications using intracranial VWI. Publications were screened by predetermined inclusion/exclusion criteria. Technical development publications were scored for completeness of reporting using a modified Nature Reporting Summary Guideline to assess reproducibility. From 2,431 articles, 122 met the inclusion criteria. Trends over the last 23 years (1995-2018) show increased use of 3-Tesla MR (P < .001) and 3D volumetric T1-weighted acquisitions (P < .001). Most (65%) clinical VWI publications report achieving a noninterpolated in-plane spatial resolution of ≤.55 mm. In the last decade, an increasing number of technical development (n = 20) and 7 Tesla (n = 12) publications have been published, focused on pulse sequence development, improving cerebrospinal fluid suppression, scan efficiency, and imaging ex vivo specimen for histologic validation. Mean Reporting Summary Score for the technical development publications was high (.87, range: .63-1.0) indicating strong scientific technical reproducibility. Innovative work continues to emerge to address implementation challenges. Gradual adoption into the research and scientific community was suggested by a shift in the name in the literature from "high-resolution MR" to "vessel wall imaging," specifying diagnostic intent. Insight into current practices and identifying the extent of technical variability in the literature will help to direct future clinical and technical efforts to address needs for implementation.
Collapse
Affiliation(s)
- Jae W Song
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Brianna F Moon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Morgan P Burke
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Mark A Elliott
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Haochang Shou
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Steven R Messé
- Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Scott E Kasner
- Department of Neurology, Hospital of University of Pennsylvania, Philadelphia, PA.,Department of Emergency Medicine, Hospital of University of Pennsylvania, Philadelphia, PA
| | - Laurie A Loevner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA.,Department of Otolaryngology, Hospital of University of Pennsylvania, Philadelphia, PA
| | | | - John E Kirsch
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Walter R Witschey
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Zhaoyang Fan
- Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
16
|
Cogswell PM, Lants SK, Davis LT, Donahue MJ. Vessel wall and lumen characteristics with age in healthy participants using 3T intracranial vessel wall magnetic resonance imaging. J Magn Reson Imaging 2019; 50:1452-1460. [PMID: 30994958 PMCID: PMC6800748 DOI: 10.1002/jmri.26750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/02/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Intracranial vessel wall imaging (VWI) at a clinical field strength of 3T has become more widely available. However, how vessel measurements change with age and sex, over an age range spanning a typical lifespan, are needed. PURPOSE/HYPOTHESIS To assess for identifiable changes in arterial wall thickness, outer vessel wall diameter, and lumen diameter with age cross-sectionally in healthy controls without cerebrovascular disease risk factors at the spatial resolution afforded by currently recommended 3T VWI approaches. STUDY TYPE Prospective. POPULATION/SUBJECTS Healthy subjects (n = 82; age = 8-79 years). FIELD STRENGTH/SEQUENCE 3T intracranial VWI, angiography, and T1 -weighted anatomical imaging. ASSESSMENT Two readers measured lumen and outer wall diameters of the supraclinoid internal carotid artery (ICA) and distal basilar artery. Wall thickness and intraclass correlation coefficients (ICCs) were calculated. STATISTICAL TESTS Separate linear regressions were performed to understand the relationship between wall measurements (lumen diameter, outer vessel wall diameter, and wall thickness) and age, gender, side (left or right); significance: two-sided P < 0.05. RESULTS Readers showed excellent agreement for lumen and outer wall diameters (ICC 0.83-094). Linear regression of supraclinoid ICA wall measurements showed a statistically significant increase in wall thickness (P = 0.00051) and outer vessel wall diameter (P = 0.030) with age. ICA lumen and outer vessel wall diameters were statistically greater in males vs. females (lumen diameter 3.69 ± 0.41 vs. 3.54 ± 0.35 mm, P = 0.026; outer wall diameter 5.78 ± 0.52 vs. 5.56 ± 0.44 mm, P = 0.0089) with a trend toward increase in wall thickness (1.05 ± 0.12 vs. 1.01 ± 0.10 mm, P = 0.055). No significant difference was found in basilar artery wall thickness (P = 0.45, P = 0.72), lumen diameter (P = 0.15, P = 0.42), or outer vessel wall diameter (P = 0.34, P = 0.41) with age or gender, respectively. DATA CONCLUSION Intracranial vessel wall measurements were shown to be consistent between readers. At the available spatial resolution of 3T intracranial VWI sequences, supraclinoid ICA vessel wall thickness and outer vessel wall diameter appear to mildly increase with age. There was no detectable change in basilar artery vessel wall characteristics with age. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1452-1460.
Collapse
Affiliation(s)
| | - Sarah K. Lants
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - L. Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J. Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Donahue MJ, Dlamini N, Bhatia A, Jordan LC. Neuroimaging Advances in Pediatric Stroke. Stroke 2019; 50:240-248. [PMID: 30661496 PMCID: PMC6450544 DOI: 10.1161/strokeaha.118.020478] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
Affiliation(s)
| | - Nomazulu Dlamini
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aashim Bhatia
- Radiology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Lori C. Jordan
- Pediatrics–Division of Pediatric Neurology, Vanderbilt Medical Center, Nashville, TN, USA
| |
Collapse
|
18
|
Alexander MD, de Havenon A, Kim SE, Parker DL, McNally JS. Assessment of quantitative methods for enhancement measurement on vessel wall magnetic resonance imaging evaluation of intracranial atherosclerosis. Neuroradiology 2019; 61:643-650. [PMID: 30675639 DOI: 10.1007/s00234-019-02167-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Quantitative measures of vessel wall magnetic resonance imaging (vwMRI) for the evaluation of intracranial atherosclerotic disease (ICAD) offers standardization not available with previously used qualitative approaches that may be difficult to replicate. METHODS vwMRI studies performed to evaluate ICAD that had caused a stroke were analyzed. Two blinded reviewers qualitatively rated culprit lesions for the presence of enhancement on T1 delay alternating with nutation for tailored excitation (DANTE) SPACE images. At least 3 months later, quantitative analysis was performed of the same images, comparing lesion enhancement to reference structures. Cohen's kappa and intraclass correlation coefficients were calculated to assess agreement. Ratios of enhancement of lesions to references were compared to qualitative ratings. RESULTS Studies from 54 patients met inclusion criteria. A mean of 49 (90.7%) lesions were qualitatively rated as enhancing, with good inter-rater agreement (κ = 0.783). Among reference structure candidates, low infundibulum demonstrated the highest inter-rater agreement on pre- and post-contrast imaging. The ratio of percentage increase in plaque signal following contrast to the same measure in low infundibulum demonstrated the highest agreement with qualitative assessment, with highest agreement seen with a ratio of 0.8 set as a threshold (κ = 0.675). CONCLUSION Quantitative metrics can yield objective data to better standardize techniques and acceptance of vwMRI evaluation of ICAD. The low infundibulum had the highest inter-rater agreement on both pre- and post-contrast images and is best suited as a normally enhancing reference structure. Such quantitative techniques should be implemented in future research of vwMRI for the evaluation of ICAD.
Collapse
Affiliation(s)
- Matthew D Alexander
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA. .,Department of Neurosurgery, University of Utah, 30 North 1900 East, Room 1A071, Salt Lake City, UT, 84132, USA.
| | - Adam de Havenon
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Seong-Eun Kim
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Joseph S McNally
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|