1
|
Liu D, Yin M, Chen J, Fu C, Schneider M, Nickel D, Yao X. Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes. NMR IN BIOMEDICINE 2025; 38:e5290. [PMID: 39511916 DOI: 10.1002/nbm.5290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (Fmufa) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (Fsfa) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, Fmufa and Fsfa of visceral fat were independent factors for T2DM. Furthermore, Fsfa-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, Fmufa-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.
Collapse
Affiliation(s)
- Dingxia Liu
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Minyan Yin
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Jiejun Chen
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Caixia Fu
- Application Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Manuel Schneider
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Xiuzhong Yao
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Honecker J, Prokopchuk O, Seeliger C, Hauner H, Junker D, Karampinos DC, Ruschke S. Feasibility of omega-3 fatty acid fraction mapping using chemical shift encoding-based imaging at 3 T. NMR IN BIOMEDICINE 2024; 37:e5181. [PMID: 38830747 DOI: 10.1002/nbm.5181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE The aim of this work is to develop an ω-3 fatty acid fraction mapping method at 3 T based on a chemical shift encoding model, to assess its performance in a phantom and in vitro study, and to further demonstrate its feasibility in vivo. METHODS A signal model was heuristically derived based on spectral appearance and theoretical considerations of the corresponding molecular structures to differentiate between ω-3 and non-ω-3 fatty acid substituents in triacylglycerols in addition to the number of double bonds (ndb), the number of methylene-interrupted double bonds (nmidb), and the mean fatty acid chain length (CL). First, the signal model was validated using single-voxel spectroscopy and a time-interleaved multi-echo gradient-echo (TIMGRE) sequence in gas chromatography-mass spectrometry (GC-MS)-calibrated oil phantoms. Second, the TIMGRE-based method was validated in vitro in 21 adipose tissue samples with corresponding GC-MS measurements. Third, an in vivo feasibility study was performed for the TIMGRE-based method in the gluteal region of two healthy volunteers. Phantom and in vitro data was analyzed using a Bland-Altman analysis. RESULTS Compared with GC-MS, MRS showed in the phantom study significant correlations in estimating the ω-3 fraction (p < 0.001), ndb (p < 0.001), nmidb (p < 0.001), and CL (p = 0.001); MRI showed in the phantom study significant correlations (all p < 0.001) for the ω-3 fraction, ndb, and nmidb, but no correlation for CL. Also in the in vitro study, significant correlations (all p < 0.001) between MRI and GC-MS were observed for the ω-3 fraction, ndb, and nmidb, but not for CL. An exemplary ROI measurement in vivo in the gluteal subcutaneous adipose tissue yielded (mean ± standard deviation) 0.8% ± 1.9% ω-3 fraction. CONCLUSION The present study demonstrated strong correlations between gradient-echo imaging-based ω-3 fatty acid fraction mapping and GC-MS in the phantom and in vitro study. Furthermore, feasibility was demonstrated for characterizing adipose tissue in vivo.
Collapse
Affiliation(s)
- Julius Honecker
- Else Kröner Fresenius Center for Nutritional Medicine, ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Claudine Seeliger
- Else Kröner Fresenius Center for Nutritional Medicine, ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, ZIEL-Institute for Food and Health, Technical University of Munich, Freising, Germany
- Institute of Nutritional Medicine, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
3
|
Thanaj M, Basty N, Whitcher B, Bell JD, Thomas EL. MRI assessment of adipose tissue fatty acid composition in the UK Biobank and its association with diet and disease. Obesity (Silver Spring) 2024; 32:1699-1708. [PMID: 39051177 DOI: 10.1002/oby.24108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE This study aimed to assess the fatty acid (FA) composition of abdominal subcutaneous and visceral adipose tissue (ASAT and VAT, respectively) in the UK Biobank imaging cohort (N = 33,823) using magnetic resonance imaging (MRI). METHODS We measured the fractions of saturated, monounsaturated, and polyunsaturated FA (fSFA, fMUFA, and fPUFA, respectively) in ASAT and VAT from multiecho MRI scans. We selected a subcohort of participants who followed a vegan and an omnivore diet (N = 36) to validate the effect of diet on adipose tissue. In the wider imaging cohort, we examined the relationships between adipose tissue FA composition and various traits related to disease and body size. RESULTS We measured adipose tissue FA composition for over 33,000 participants, revealing higher fSFA and fPUFA and lower fMUFA in VAT (p < 0.00016). fMUFA and fPUFA were higher in ASAT and lower in VAT for women (p < 0.00016). Vegan participants exhibited lower fSFA in both ASAT and VAT (p < 0.00016). VAT fSFA and fMUFA showed significant associations with disease, as well as anthropometric variables. CONCLUSIONS This extensive analysis revealed the relationships between adipose tissue FA composition and a range of factors in a diverse population, highlighting the importance of studying body adipose tissue beyond its quantity.
Collapse
Affiliation(s)
- Marjola Thanaj
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Nicolas Basty
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Brandon Whitcher
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - Jimmy D Bell
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| | - E Louise Thomas
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
| |
Collapse
|
4
|
Gjela M, Askeland A, Mellergaard M, Drewes AM, Handberg A, Frøkjær JB. Intra-pancreatic fat deposition and its relation to obesity: a magnetic resonance imaging study. Scand J Gastroenterol 2024; 59:742-748. [PMID: 38557425 DOI: 10.1080/00365521.2024.2333365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Intra-pancreatic fat deposition (IPFD) is suspected to be associated with various medical conditions. This study aimed to assess pancreatic fat content in lean and obese individuals, characterize obese individuals with and without IPFD, and explore the underlying mechanisms. MATERIALS AND METHODS Sixty-two obese individuals without diabetes and 35 lean controls underwent magnetic resonance imaging (MRI) using proton density fat fraction (PDFF) maps to evaluate pancreatic and hepatic fat content, and visceral adipose tissue (VAT) content. Pancreatic fibrosis was explored by T1 relaxation time and MR elastography (MRE) measurements. Associations between pancreatic fat, measures of obesity and metabolic syndrome were examined using uni- and multivariate regression analyses. RESULTS Pancreatic PDFF was higher in obese than in lean controls (median 8.0%, interquartile range (6.1;13.3) % vs 2.6(1.7;3.9)%, p < 0.001). Obese individuals with IPFD (PDFF ≥6.2%) had higher waist circumference (114.0 ± 12.5 cm vs 105.2 ± 8.7 cm, p = 0.007) and VAT (224.9(142.1; 316.1) cm2 vs 168.2(103.4; 195.3) cm2, p < 0.001) than those without. In univariate analysis, pancreatic PDFF in obese individuals correlated with BMI (r = 0.27, p = 0.03), waist circumference (r = 0.44, p < 0.001), VAT (r = 0.37, p = 0.004), hepatic PDFF (r = 0.25, p = 0.046) and diastolic blood pressure (r = 0.32, p = 0.01). However, in multivariate analysis, only VAT was associated to pancreatic fat content. MRI measures of pancreatic fibrosis indicated no evident fibrosis in relation to increased pancreatic fat content. CONCLUSIONS Pancreatic fat content was increased in obese individuals compared with lean controls and predominantly correlated with the amount of visceral adipose tissue. Pancreatic fat content was not clearly linked to measures of pancreatic fibrosis.
Collapse
Affiliation(s)
- Mimoza Gjela
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Askeland
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Willis SA, Malaikah S, Parry S, Bawden S, Ennequin G, Sargeant JA, Yates T, Webb DR, Davies MJ, Stensel DJ, Aithal GP, King JA. The effect of acute and chronic exercise on hepatic lipid composition. Scand J Med Sci Sports 2023; 33:550-568. [PMID: 36610000 DOI: 10.1111/sms.14310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Exercise is recommended for those with, or at risk of nonalcoholic fatty liver disease (NAFLD), owing to beneficial effects on hepatic steatosis and cardiometabolic risk. Whilst exercise training reduces total intrahepatic lipid in people with NAFLD, accumulating evidence indicates that exercise may also modulate hepatic lipid composition. This metabolic influence is important as the profile of saturated (SFA), monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) dramatically affect the metabolic consequences of hepatic lipid accumulation; with SFA being especially lipotoxic. Relatedly, obesity and NAFLD are associated with hepatic PUFA depletion and elevated SFA. This review summarizes the acute (single bout) and chronic (exercise training) effects of exercise on hepatic lipid composition in rodents (acute studies: n = 3, chronic studies: n = 13) and humans (acute studies: n = 1, chronic studies: n = 3). An increased proportion of hepatic PUFA after acute and chronic exercise is the most consistent finding of this review. Mechanistically, this may relate to an enhanced uptake of adipose-derived PUFA (reflecting habitual diet), particularly in rodents. A relative decrease in the proportion of hepatic MUFA after chronic exercise is also documented repeatedly, particularly in rodent models with elevated hepatic MUFA. This outcome is related to decreased hepatic stearoyl-CoA desaturase-1 activity in some studies. Findings regarding hepatic SFA are less consistent and limited by the absence of metabolic challenge in rodent models. These findings require confirmation in well-controlled interventions in people with NAFLD. These studies will be facilitated by recently validated magnetic resonance spectroscopy techniques, able to precisely quantify hepatic lipid composition in vivo.
Collapse
Affiliation(s)
- Scott A Willis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Sundus Malaikah
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| | - Siôn Parry
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Stephen Bawden
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Gaël Ennequin
- Laboratory of Metabolic Adaptations to Exercise Under Physiological and Pathological Conditions (AME2P), Université of Clermont Auvergne, Clermont-Ferrand, France
| | - Jack A Sargeant
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Thomas Yates
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David R Webb
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - Melanie J Davies
- NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Diabetes Research Centre, University of Leicester, Leicester, UK
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - James A King
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and the University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Trinh L, Stenkula KG, Olsson LE, Svensson J, Peterson P, Bennet L, Månsson S. Favorable fatty acid composition in adipose tissue in healthy Iraqi- compared to Swedish-born men - a pilot study using MRI assessment. Adipocyte 2022; 11:153-163. [PMID: 35291924 PMCID: PMC8928862 DOI: 10.1080/21623945.2022.2042963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Middle Eastern immigrants are at high-risk for insulin resistance. Fatty acid composition (FAC) plays an important role in the development of insulin resistance but has not been investigated in people of Middle Eastern ancestry. Here, the aim was to assess the FAC in visceral and subcutaneous adipose tissue (VAT and SAT) in healthy Iraqi- and Swedish-born men using a magnetic resonance imaging (MRI) method.This case-control study included 23 Iraqi- and 15 Swedish-born middle-aged men, without cardiometabolic disease. Using multi-echo MRI of the abdomen, the fractions of saturated, monounsaturated, and polyunsaturated fatty acids (fSFA, fMUFA, and fPUFA) were estimated in VAT and SAT. SAT was further analyzed in deep and superficial compartments (dSAT and sSAT). In all depots, fPUFA was significantly higher and fSFA significantly lower in Iraqi men, independently of age and BMI. In both Iraqi- and Swedish-born men, higher fPUFA and lower fMUFA were found in sSAT vs. dSAT. Among Iraqi men only, higher fPUFA and lower fMUFA were found in SAT vs. VAT.Iraqi-born men presented a more favorable abdominal FAC compared to Swedish-born men. This MRI method also revealed different FACs in different abdominal depots. Our results may reflect a beneficial FAC in Middle Eastern immigrants.
Collapse
Affiliation(s)
- Lena Trinh
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Lars E Olsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Hematology, Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| | - Jonas Svensson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Pernilla Peterson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Louise Bennet
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Clinical Research and Trial Centre, Lund University Hospital, Lund, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Department of Translational Medicine, Lund University, Malmö, Sweden
- Hematology, Oncology and Radiation Physics, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
7
|
Martel D, Saxena A, Belmont HM, Honig S, Chang G. Fatty Acid Composition of Proximal Femur Bone Marrow Adipose Tissue in Subjects With Systemic Lupus Erythematous Using 3 T Magnetic Resonance Spectroscopy. J Magn Reson Imaging 2022; 56:618-624. [PMID: 34964533 PMCID: PMC10023192 DOI: 10.1002/jmri.28038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic, inflammatory disease with common musculoskeletal manifestations, notably reductions in bone quality. Bone marrow adipose tissue composition and quantity has been previously linked to bone quality and may play a role in SLE pathophysiology but has not been thoroughly studied. PURPOSE To use magnetic resonance spectroscopy (MRS) to investigate bone marrow adipose tissue quantity and composition in proximal femur subregions of untreated SLE patients compared to controls and treated patients. STUDY TYPE Prospective. SUBJECTS A total of 64 female subjects: 28 SLE, 15 glucocorticoid (GC)-treated SLE and 21 matched controls. FIELD STRENGTH/SEQUENCE Stimulated echo acquisition mode (STEAM) sequence at 3 T. ASSESSMENT MRS was performed at multiple echo times in the femoral neck and trochanter regions and fatty acids (FA) composition was computed. STATISTICAL TESTS Intergroup comparisons were carried out using ANOVA. A P value < 0.05 was considered statistically significant. RESULTS SLE patients had significantly higher saturated FA compared to controls in both the femoral neck (+0.12) and trochanter (+0.11), significantly lower monounsaturated FA in the trochanter compared to controls (-0.05), and significantly lower polyunsaturated FA in the femoral neck compared to both controls (-0.07) and SLE patients on GC therapy (-0.05). DATA CONCLUSION SLE patients have altered proximal femur marrow fat metabolism, which may reflect a manifestation of, or play a role in, the altered inflammatory response of these patients. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Dimitri Martel
- New York Langone Health, Department of Radiology, New York, New York, USA
| | - Amit Saxena
- New York Langone Health, Division of Rheumatology, Hospital for Joint Diseases, New York, New York, USA
| | - Howard Michael Belmont
- New York Langone Health, Division of Rheumatology, Hospital for Joint Diseases, New York, New York, USA
| | - Stephen Honig
- New York Langone Health, Osteoporosis Center, Hospital for Joint Diseases, New York, New York, USA
| | - Gregory Chang
- New York Langone Health, Department of Radiology, New York, New York, USA
| |
Collapse
|
8
|
Shah SA, Echols JT, Sun C, Wolf MJ, Epstein FH. Accelerated fatty acid composition MRI of epicardial adipose tissue: Development and application to eplerenone treatment in a mouse model of obesity-induced coronary microvascular disease. Magn Reson Med 2022; 88:1734-1747. [PMID: 35726367 PMCID: PMC9339514 DOI: 10.1002/mrm.29348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023]
Abstract
Purpose To develop an accelerated MRI method to quantify the epicardial adipose tissue (EAT) fatty acid composition (FAC) and test the hypothesis that eplerenone (EPL) shifts the EAT FAC toward unsaturation in obese mice. Methods Undersampled multi‐echo gradient echo imaging employing a dictionary‐based compressed‐sensing reconstruction and iterative decomposition with echo asymmetry and least‐squares–based mapping (IDEAL) was developed, validated, and used to study EAT in obese mice scanned at 7T. Fully sampled and rate 2, 2.5, 3, and 3.5 undersampled image data were acquired, reconstructed, and assessed using RMSE and structural similarity (SSIM). Two groups of mice were studied: untreated (control, n = 10) and EPL‐treated (n = 10) mice fed a high‐fat high‐sucrose diet. MRI included imaging of EAT FAC, EAT volume, and myocardial perfusion reserve. Results Rate 3 acceleration provided RMSE <5% and structural similarity >0.85 for FAC MRI. After 6 weeks of diet, EPL‐treated compared to untreated mice had a reduced EAT saturated fatty acid fraction (0.27 ± 0.09 vs. 0.39 ± 0.07, P < 0.05) and increased EAT unsaturation degree (4.37 ± 0.32 vs. 3.69 ± 0.58, P < 0.05). Also, EAT volume in EPL‐treated compared to untreated mice was reduced (8.1 ± 0.6 mg vs. 11.4 ± 0.7 mg, P < 0.01), and myocardial perfusion reserve was improved (1.83 ± 0.15 vs. 1.61 ± 0.17, P < 0.05). Conclusion Rate 3 accelerated FAC MRI enabled accurate quantification of EAT FAC in mice. EPL treatment shifted the EAT FAC toward increased unsaturation and was associated with improvement of coronary microvascular function. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Soham A Shah
- Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - John T Echols
- Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Changyu Sun
- Biomedical Engineering, University of Virginia, Charlottesville, VA.,Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, MO.,Radiolgy, University of Missouri, Columbia, MO
| | - Matthew J Wolf
- Cardiovascular Medicine, University of Virginia, Charlottesville, VA
| | - Frederick H Epstein
- Biomedical Engineering, University of Virginia, Charlottesville, VA.,Radiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
9
|
Segrestin B, Delage P, Nemeth A, Seyssel K, Disse E, Nazare JA, Lambert-Porcheron S, Meiller L, Sauvinet V, Chanon S, Simon C, Ratiney H, Beuf O, Pralong F, Yassin NAH, Boizot A, Gachet M, Burton-Pimentel KJ, Vidal H, Meugnier E, Vionnet N, Laville M. Polyphenol Supplementation Did Not Affect Insulin Sensitivity and Fat Deposition During One-Month Overfeeding in Randomized Placebo-Controlled Trials in Men and in Women. Front Nutr 2022; 9:854255. [PMID: 35614978 PMCID: PMC9125251 DOI: 10.3389/fnut.2022.854255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
Two randomized placebo-controlled double-blind paralleled trials (42 men in Lyon, 19 women in Lausanne) were designed to test 2 g/day of a grape polyphenol extract during 31 days of high calorie-high fructose overfeeding. Hyperinsulinemic-euglycemic clamps and test meals with [1,1,1-13C3]-triolein were performed before and at the end of the intervention. Changes in body composition were assessed by dual-energy X-ray absorptiometry (DEXA). Fat volumes of the abdominal region and liver fat content were determined in men only, using 3D-magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) at 3T. Adipocyte's size was measured in subcutaneous fat biopsies. Bodyweight and fat mass increased during overfeeding, in men and in women. While whole body insulin sensitivity did not change, homeostasis model assessment of insulin resistance (HOMA-IR) and the hepatic insulin resistance index (HIR) increased during overfeeding. Liver fat increased in men. However, grape polyphenol supplementation did not modify the metabolic and anthropometric parameters or counteract the changes during overfeeding, neither in men nor in women. Polyphenol intake was associated with a reduction in adipocyte size in women femoral fat. Grape polyphenol supplementation did not counteract the moderated metabolic alterations induced by one month of high calorie-high fructose overfeeding in men and women. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov and available at https://clinicaltrials.gov/ct2/show/NCT02145780 and https://clinicaltrials.gov/ct2/show/NCT02225457.
Collapse
Affiliation(s)
- Bérénice Segrestin
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Pauline Delage
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Angéline Nemeth
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Kevin Seyssel
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuel Disse
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| | - Julie-Anne Nazare
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | | | - Laure Meiller
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Valerie Sauvinet
- CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Stéphanie Chanon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Chantal Simon
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Hélène Ratiney
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - Olivier Beuf
- CNRS, INSERM, CREATIS, Université de Lyon, INSA-Lyon, Claude Bernard Lyon 1 University, UJM-Saint Etienne, Lyon, France
| | - François Pralong
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Naba-Al-Huda Yassin
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexia Boizot
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Mélanie Gachet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Kathryn J Burton-Pimentel
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Hubert Vidal
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuelle Meugnier
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France
| | - Nathalie Vionnet
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Martine Laville
- INSERM, INRAe, CarMeN Laboratory, Claude Bernard Lyon 1 University, Lyon, France.,CRNH-RA, INSERM, INRAe, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France.,Centre Hospitalier Lyon-Sud Service d'Endocrinologie Diabète Nutrition Lyon, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
10
|
Sun J, Lv H, Li M, Zhao L, Liu Y, Zeng N, Wei X, Chen Q, Ren P, Liu Y, Zhang P, Yang Z, Zhang Z, Wang Z. How much abdominal fat do obese patients lose short term after laparoscopic sleeve gastrectomy? A quantitative study evaluated with MRI. Quant Imaging Med Surg 2021; 11:4569-4582. [PMID: 34737924 DOI: 10.21037/qims-20-1380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/28/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to elucidate the changes in the amount of abdominal adipose tissue after laparoscopic sleeve gastrectomy in obese Chinese patients over a relatively short follow-up period and to analyze the differences in the effects of surgery between genders. Methods Ninety-one patients were enrolled in the study, including 18 males and 73 females. These patients underwent laparoscopic sleeve gastrectomy between November 2017 and November 2019. Before and short term after surgery, the areas of subcutaneous/visceral adipose tissue and the liver proton density fat fraction were calculated with upper abdominal magnetic resonance (MR) examinations. Results Approximately 100 days after surgery, the median values of weight loss and body mass index reduction were 23.1 kg and 8.1 kg/m2, respectively. The patients achieved a greater absolute loss of subcutaneous adipose tissue index than of visceral adipose tissue index (3.2×10-3 vs. 1.6×10-3, P<0.001). The amount of weight loss, body mass index loss and absolute/relative reduction in visceral adipose tissue index were much greater in males than in females (31.7 vs. 21.7 kg, P<0.001; 9.8 vs. 7.9 kg/m2, P=0.016; 2.5×10-3 vs. 1.3×10-3, P=0.007; 28.2% vs. 20.9%, P=0.029). There was a correlation between decreased amounts in subcutaneous and visceral adipose tissue in sum and weight loss (r=0.282, P=0.032). The absolute/relative reduction in visceral adipose tissue index was also correlated with absolute/relative reduction in liver proton density fat fraction (r=0.283, P=0.013; r=0.372, P=0.001). Conclusions The reductions in body weight and visceral fat were more significant in male patients. The sum of absolute reduction in subcutaneous and visceral fat deposits was correlated with weight loss, in all patients enrolled. For severely obese patients, an upper abdominal MR examination could assess the body tissue composition and how it changes after bariatric surgery.
Collapse
Affiliation(s)
- Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mengyi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yawen Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Na Zeng
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Peng Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Pasanta D, Htun KT, Pan J, Tungjai M, Kaewjaeng S, Kim H, Kaewkhao J, Kothan S. Magnetic Resonance Spectroscopy of Hepatic Fat from Fundamental to Clinical Applications. Diagnostics (Basel) 2021; 11:842. [PMID: 34067193 PMCID: PMC8151733 DOI: 10.3390/diagnostics11050842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
The number of individuals suffering from fatty liver is increasing worldwide, leading to interest in the noninvasive study of liver fat. Magnetic resonance spectroscopy (MRS) is a powerful tool that allows direct quantification of metabolites in tissue or areas of interest. MRS has been applied in both research and clinical studies to assess liver fat noninvasively in vivo. MRS has also demonstrated excellent performance in liver fat assessment with high sensitivity and specificity compared to biopsy and other imaging modalities. Because of these qualities, MRS has been generally accepted as the reference standard for the noninvasive measurement of liver steatosis. MRS is an evolving technique with high potential as a diagnostic tool in the clinical setting. This review aims to provide a brief overview of the MRS principle for liver fat assessment and its application, and to summarize the current state of MRS study in comparison to other techniques.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Jie Pan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Montree Tungjai
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Siriprapa Kaewjaeng
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| | - Hongjoo Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea;
| | - Jakrapong Kaewkhao
- Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand;
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (D.P.); (K.T.H.); (J.P.); (M.T.); (S.K.)
| |
Collapse
|
12
|
Sun J, Lv H, Zhang M, Li M, Zhao L, Zeng N, Liu Y, Wei X, Chen Q, Ren P, Liu Y, Zhang P, Yang Z, Zhang Z, Wang Z. The Appropriateness Criteria of Abdominal Fat Measurement at the Level of the L1-L2 Intervertebral Disc in Patients With Obesity. Front Endocrinol (Lausanne) 2021; 12:784056. [PMID: 34970225 PMCID: PMC8712928 DOI: 10.3389/fendo.2021.784056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In this study, we proposed to use MR images at L1-L2 (lumbar) intervertebral disc level to measure abdominal fat area in patients with obesity. The quantitative results would provide evidence for the individualized assessment of the severity of obesity. METHODS All patients in the IRB-approved database of Beijing Friendship Hospital who underwent bariatric surgery between November 2017 and November 2019 were recruited. We retrospectively reviewed upper abdominal magnetic resonance (MR) data before surgery. We analyzed the correlation and consistency of the area of abdominal subcutaneous adipose tissue (ASAT) and visceral adipose tissue (VAT) measured at the L1-L2 and L2-L3 levels on MR images. We randomly distributed the cases into prediction model training data and testing data at a ratio of 7:3. RESULTS Two hundred and forty-five subjects were included. The ASAT and VAT results within the L1-L2 and L2-L3 levels were very similar and highly correlated (maleASAT: r=0.98, femaleASAT: r=0.93; maleVAT: r=0.91, femaleVAT: r=0.88). There was no substantial systematic deviation among the results at the two levels, except for the ASAT results in males. The intraclass correlation coefficients (ICCs) were 0.91 and 0.93 for maleASAT and femaleASAT, and 0.88 and 0.87 for maleVAT and femaleVAT, respectively. The ASAT/VAT area at the L2-L3 level was well predicted. The coefficient β of linear regression that predicted L2-L3 ASAT from L1-L2 ASAT was 1.11 for males and 0.99 for females. The R-squares were 0.97 and 0.91, respectively. For VAT prediction, the coefficient β was 1.02 for males and 0.96 for females. The R-squares were 0.82 and 0.77, respectively. CONCLUSION For patients with obesity, the L1-L2 intervertebral disc level can be used as the substitution of L2-L3 level in abdominal fat measurement.
Collapse
Affiliation(s)
- Jing Sun
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhenchang Wang, ; Han Lv,
| | - Meng Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Mengyi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Na Zeng
- National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yawen Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Peng Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhenchang Wang, ; Han Lv,
| |
Collapse
|
13
|
Peterson P, Trinh L, Månsson S. Quantitative 1 H MRI and MRS of fatty acid composition. Magn Reson Med 2020; 85:49-67. [PMID: 32844500 DOI: 10.1002/mrm.28471] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Adipose tissue as well as other depots of fat (triglycerides) are increasingly being recognized as active contributors to the human function and metabolism. In addition to the fat concentration, also the fatty acid chemical composition (FAC) of the triglyceride molecules may play an important part in diseases such as obesity, insulin resistance, hepatic steatosis, osteoporosis, and cancer. MR spectroscopy and chemical-shift-encoded imaging (CSE-MRI) are established methods for non-invasive quantification of fat concentration in tissue. More recently, similar techniques have been developed for assessment also of the FAC in terms of the number of double bonds, the fraction of saturated, monounsaturated, and polyunsaturated fatty acids, or semi-quantitative unsaturation indices. The number of papers focusing on especially CSE-MRI-based techniques has steadily increased during the past few years, introducing a range of acquisition protocols and reconstruction algorithms. However, a number of potential sources of bias have also been identified. Furthermore, the measures used to characterize the FAC using both MRI and MRS differ, making comparisons between different techniques difficult. The aim of this paper is to review MRS- and MRI-based methods for in vivo quantification of the FAC. We describe the chemical composition of triglycerides and discuss various potential FAC measures. Furthermore, we review acquisition and reconstruction methodology and finally, some existing and potential applications are summarized. We conclude that both MRI and MRS provide feasible non-invasive alternatives to the gold standard gas chromatography for in vivo measurements of the FAC. Although both are associated with gas chromatography, future studies are warranted.
Collapse
Affiliation(s)
- Pernilla Peterson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.,Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Lena Trinh
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sven Månsson
- Medical Radiation Physics, Malmö, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
14
|
Hamilton G, Schlein AN, Wolfson T, Cunha GM, Fowler KJ, Middleton MS, Loomba R, Sirlin CB. The relationship between liver triglyceride composition and proton density fat fraction as assessed by 1 H MRS. NMR IN BIOMEDICINE 2020; 33:e4286. [PMID: 32128921 PMCID: PMC7211117 DOI: 10.1002/nbm.4286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
The aim of this study was to estimate parameters determining liver triglyceride composition (TC) using 1 H MRS and to assess how TC estimability is affected by proton density fat fraction (PDFF) in adults with nonalcoholic fatty liver disease (NAFLD). In this prospective single-site study, 199 adults with known or suspected NAFLD in whom other causes of liver disease were excluded underwent two 1 H MRS STimulated Echo Acquisition Method (STEAM) sequences at 3 T. A respiratory-gated water-suppressed free breathing sequence (TE 10 ms, 16 signal averages) was used to assess TC in terms of the number of double bonds (ndb) and methylene-interrupted double bonds (nmidb), and a single breath-hold-long TR, multi-TE sequence (TR 3500 ms), which acquired five single average spectra over TE 10-30 ms, was used to estimate liver PDFF. Ndb and nmidb estimability was qualitatively assessed for each case and summarized descriptively. The consistency of ndb and nmidb estimation was examined using ROC analysis. The relationship between ndb and nmidb values and PDFF was presented graphically. Quality-of-fit of ndb and nmidb versus PDFF was evaluated by Pearson-r correlation. A significance level of 0.05 was used. In 263 1 H MRS examinations performed on 199 adult participants, ndb and nmidb were successfully estimated in 7/53 (13.2%) examinations with PDFF < 4%, 13/30 (43.3%) examinations with PDFF between 4% and 7%, 33/41 (80.5%) examinations with PDFF between 7% and 10%, and 124/139 (89.2%) examinations with PDFF > 10% (maximum PDFF 38.1%). Liver TC could be estimated consistently for PDFF > 6.7%. Both ndb and nmidb decreased with increasing PDFF (ndb = 2.83-0.0160·PDFF, r = -0.449, P < 0.0001); nmidb = 0.75-0.0088·PDFF, r = -0.350, P < 0.0001). In a cohort of adults with known or suspected NAFLD, liver TC becomes more saturated as PDFF increases.
Collapse
Affiliation(s)
- Gavin Hamilton
- Liver Imaging Group, Department of Radiology, University of
California San Diego, La Jolla, California, USA
| | - Alex N. Schlein
- Liver Imaging Group, Department of Radiology, University of
California San Diego, La Jolla, California, USA
| | - Tanya Wolfson
- Computational and Applied Statistic Laboratory, San Diego
Supercomputing Center, University of California San Diego, San Diego, California,
USA
| | - Guilherme M. Cunha
- Liver Imaging Group, Department of Radiology, University of
California San Diego, La Jolla, California, USA
| | - Kathryn J. Fowler
- Liver Imaging Group, Department of Radiology, University of
California San Diego, La Jolla, California, USA
| | - Michael S. Middleton
- Liver Imaging Group, Department of Radiology, University of
California San Diego, La Jolla, California, USA
| | - Rohit Loomba
- Division of Epidemiology, Department of Family Medicine and
Public Health, University of California San Diego, La Jolla, California, USA
- NAFLD Research Center, Division of Gastroenterology,
Department of Medicine, University of California San Diego, La Jolla, California,
USA
| | - Claude B. Sirlin
- Liver Imaging Group, Department of Radiology, University of
California San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Trinh L, Peterson P, Leander P, Brorson H, Månsson S. In vivo comparison of MRI‐based and MRS‐based quantification of adipose tissue fatty acid composition against gas chromatography. Magn Reson Med 2020; 84:2484-2494. [DOI: 10.1002/mrm.28300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Lena Trinh
- Medical Radiation Physics Department of Translational Medicine Lund University Skåne University Hospital Malmö Sweden
| | - Pernilla Peterson
- Medical Radiation Physics Department of Translational Medicine Lund University Skåne University Hospital Malmö Sweden
- Medical Imaging and Physiology Skåne University Hospital Lund Sweden
| | - Peter Leander
- Diagnostic Radiology Department of Translational Medicine Lund University Skåne University Hospital Malmö Sweden
| | - Håkan Brorson
- Department of Clinical Sciences Lund University Malmö Sweden
- Department of Plastic and Reconstructive Surgery Skåne University Hospital Malmö Sweden
| | - Sven Månsson
- Medical Radiation Physics Department of Translational Medicine Lund University Skåne University Hospital Malmö Sweden
| |
Collapse
|
16
|
Analysis of muscle, hip, and subcutaneous fat in osteoporosis patients with varying degrees of fracture risk using 3T Chemical Shift Encoded MRI. Bone Rep 2020; 12:100259. [PMID: 32322608 PMCID: PMC7163287 DOI: 10.1016/j.bonr.2020.100259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023] Open
Abstract
Osteoporosis (OP) is a major disease that affects 200 million people worldwide. Fatty acid metabolism plays an important role in bone health and plays an important role in bone quality and remodeling. Increased bone marrow fat quantity has been shown to be associated with a decrease in bone mineral density (BMD), which is used to predict fracture risk. Chemical-Shift Encoded magnetic resonance imaging (CSE-MRI) allows noninvasive and quantitative assessment of adipose tissues (AT). The aim of our study was to assess hip or proximal femoral bone marrow adipose tissue (BMAT), thigh muscle (MUS), and subcutaneous adipose tissue (SAT) in 128 OP subjects matched for age, BMD, weight and height with different degrees of fracture risk assessed through the FRAX score (low, moderate and high). Our results showed an increase in BMAT and in MUS in high compared to low fracture risk patients. We also assessed the relationship between fracture risk as assessed by FRAX and AT quantities. Overall, the results of this study suggest that assessment of adipose tissue via 3T CSE-MRI provides insight into the pathophysiology fracture risk by showing differences in the bone marrow and muscle fat content in subjects with similarly osteoporotic BMD as assessed by DXA, but with varying degrees of fracture risk as assessed by FRAX.
Collapse
|
17
|
Viallon M, Leporq B, Drinda S, Wilhelmi de Toledo F, Galusca B, Ratiney H, Croisille P. Chemical-Shift-Encoded Magnetic Resonance Imaging and Spectroscopy to Reveal Immediate and Long-Term Multi-Organs Composition Changes of a 14-Days Periodic Fasting Intervention: A Technological and Case Report. Front Nutr 2019; 6:5. [PMID: 30881957 PMCID: PMC6407435 DOI: 10.3389/fnut.2019.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Objectives: The aim of this study was to investigate the feasibility of measuring the effects of a 14-day Periodic Fasting (PF) intervention (<200 cal) on multi-organs of primary interest (liver, visceral/subcutaneous/bone marrow fat, muscle) using non-invasive advanced magnetic resonance spectroscopic (MRS) and imaging (MRI) methods. Methods: One subject participated in a 14-day PF under daily supervision of nurses and specialized physicians, ingesting a highly reduced intake: 200 Kcal/day coupled with active walking and drinking at least 3 L of liquids/day. The fasting was preceded by a 7-day pre-fasting vegetarian period and followed by 14 days of stepwise reintroduction of food. The longitudinal study collected imaging and biological data before the fast, at peak fasting, and 7 days, 1 month, and 4 months after re-feeding. Body fat mass in the trunk, abdomen, and thigh, liver and muscle mass, were respectively computed using advanced MRI and MRS signal modeling. Fat fraction, MRI relativity index T2* and susceptibility (Chi), as well as Fatty acid composition, were calculated at all-time points. Results: A decrease in body weight (BW: −9.5%), quadriceps muscle volume (−3.2%), Subcutaneous and Visceral Adipose Tissue (SAT −34.4%; VAT −20.8%), liver fat fraction (PDFF = 1.4 vs. 2.6 % at baseline) but increase in Spine Bone Marrow adipose tissue (BMAT) associated with a 10% increase in global adiposity fraction (PDFF: 54.4 vs. 50.9%) was observed. Femoral BMAT showed minimal changes compared to spinal level, with a slight decrease (−3.1%). Interestingly, fatty acid (FA) pattern changes differed depending on the AT locations. In muscle, all lipids increased after fasting, with a greater increase of intramyocellular lipid (IMCL: from 2.7 to 6.3 mmol/kg) after fasting compared to extramyocellular lipid (EMCL: from 6.2 to 9.5 mmol/kg) as well as Carnosine (6.9 to 8.1 mmol/kg). Heterogenous and reverse changes were also observed after re-feeding depending on the organ. Conclusion: These results suggest that investigating the effects of a 14-day PF intervention using advanced MRI and MRS is feasible. Quantitative MR indexes are a crucial adjunct to further understanding the effective changes in multiple crucial organs especially liver, spin, and muscle, differences between adipose tissue composition and the interplay that occurs during periodic fasting.
Collapse
Affiliation(s)
- Magalie Viallon
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Benjamin Leporq
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Stephan Drinda
- Klinik St. Katharinental, Diessenhofen, Switzerland.,Buchinger Wilhelmi Clinic, Uberlingen, Germany
| | | | - Bogdan Galusca
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Eating Disorders, Addictions & Extreme Bodyweight Research Group (TAPE) EA, Saint-Étienne, France
| | - Helene Ratiney
- Université de Lyon, Lyon, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| | - Pierre Croisille
- Université de Lyon, Lyon, France.,Centre Hospitalier Universitaire de Saint-Étienne, Saint-Étienne, France.,Université Jean Monnet, Saint-Étienne, France.,CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Étienne, France.,Institut National des Sciences Appliquées de Lyon, Villeurbanne, France
| |
Collapse
|
18
|
Martel D, Leporq B, Saxena A, Belmont HM, Turyan G, Honig S, Regatte RR, Chang G. 3T chemical shift-encoded MRI: Detection of altered proximal femur marrow adipose tissue composition in glucocorticoid users and validation with magnetic resonance spectroscopy. J Magn Reson Imaging 2018; 50:490-496. [PMID: 30548522 DOI: 10.1002/jmri.26586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) results in weak bone and can ultimately lead to fracture. Drugs such as glucocorticoids can also induce OP (glucocorticoid-induced osteoporosis [GIO]). Bone marrow adipose tissue composition and quantity may play a role in OP pathophysiology, but has not been thoroughly studied in GIO compared to primary OP. PURPOSE/HYPOTHESIS Chemical shift-encoded (CSE) MRI allows detection of subregional differences in bone marrow adipose tissue composition and quantity in the proximal femur of GIO compared to OP subjects and has high agreement with the reference standard of magnetic resonance spectroscopy (MRS). STUDY TYPE Prospective. SUBJECTS In all, 18 OP and 13 GIO subjects. FIELDS STRENGTH 3T. SEQUENCE Multiple gradient-echo, stimulated echo acquisition mode (STEAM). ASSESSMENT Subjects underwent CSE-MRI in the proximal femurs, and for each parametric map regions of interest (ROIs) were assessed in the femoral head (fHEAD), femoral neck (fNECK), Ward's triangle (fTRIANGLE), and the greater trochanter (GTROCH). In addition, we compared CSE-MRI against the reference standard of MRS performed in the femoral neck and Ward's triangle. STATISTICAL TESTS Differences between OP/GIO were investigated using the Mann-Whitney nonparametric test. Bland-Altman methodology was used to assess measurement agreement between CSE-MRI and MRS. RESULTS GIO compared with OP subjects demonstrated: decreased monounsaturated fat fraction (MUFA) (-2.1%, P < 0.05) in fHEAD; decreased MUFA (-3.8%, P < 0.05), increased saturated fat fraction (SFA) (5.5%, P < 0.05), and decreased T 2 * (-3.8 msec, P < 0.05) in fNECK; decreased proton density fat fraction (PDFF) (-15.1%, P < 0.05), MUFA (-9.8%, P < 0.05), polyunsaturated fat fraction (PUFA) (-1.8%, P < 0.01), increased SFA (11.6%, P < 0.05), and decreased T 2 * (-5.4 msec, P < 0.05) in fTRIANGLE; and decreased T 2 * (-1.5 msec, P < 0.05) in GTROCH. There was high measurement agreement between MRI and MRS using the Bland-Altman test. DATA CONCLUSION 3T CSE-MRI may allow reliable assessment of subregional bone marrow adipose tissue (bMAT) quantity and composition in the proximal femur in a clinically reasonable scan time. Glucocorticoids may alter the lipid profile of bMAT and potentially result in reduced bone quality. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:490-496.
Collapse
Affiliation(s)
- Dimitri Martel
- New York Langone Health, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Benjamin Leporq
- Université de Lyon, CREATIS CNRS UMR 5220, Inserm U1206, INSA-Lyon, UCBL Lyon 1, Lyon, France
| | - Amit Saxena
- New York Langone Health, Division of Rheumatology, Hospital for Joint Diseases, New York, New York, USA
| | - H Michael Belmont
- New York Langone Health, Division of Rheumatology, Hospital for Joint Diseases, New York, New York, USA
| | - Gabrielle Turyan
- New York Langone Health, Osteoporosis Center, Hospital for Joint Diseases, New York, New York, USA
| | - Stephen Honig
- New York Langone Health, Osteoporosis Center, Hospital for Joint Diseases, New York, New York, USA
| | - Ravinder R Regatte
- New York Langone Health, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Gregory Chang
- New York Langone Health, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|