1
|
Simchick G, Allen TJ, Hernando D. Reproducibility of intravoxel incoherent motion quantification in the liver across field strengths and gradient hardware. Magn Reson Med 2024; 92:2652-2669. [PMID: 39119838 PMCID: PMC11436311 DOI: 10.1002/mrm.30237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/19/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE To evaluate reproducibility and interlobar agreement of intravoxel incoherent motion (IVIM) quantification in the liver across field strengths and MR scanners with different gradient hardware. METHODS Cramer-Rao lower bound optimization was performed to determine optimized monopolar and motion-robust 2D (b-value and first-order motion moment [M1]) IVIM-DWI acquisitions. Eleven healthy volunteers underwent diffusion MRI of the liver, where each optimized acquisition was obtained five times across three MRI scanners. For each data set, IVIM estimates (diffusion coefficient (D), pseudo-diffusion coefficients (d 1 * $$ {d}_1^{\ast } $$ andd 2 * $$ {d}_2^{\ast } $$ ), blood velocity SDs (Vb1 and Vb2), and perfusion fractions [f1 and f2]) were obtained in the right and left liver lobes using two signal models (pseudo-diffusion and M1-dependent physical) with and without T2 correction (fc1 and fc2) and three fitting techniques (tri-exponential region of interest-based full and segmented fitting and blood velocity SD distribution fitting). Reproducibility and interlobar agreement were compared across methods using within-subject and pairwise coefficients of variation (CVw and CVp), paired sample t-tests, and Bland-Altman analysis. RESULTS Using a combination of motion-robust 2D (b-M1) data acquisition, M1-dependent physical signal modeling with T2 correction, and blood velocity SD distribution fitting, multiscanner reproducibility with median CVw = 5.09%, 11.3%, 9.20%, 14.2%, and 12.6% for D, Vb1, Vb2, fc1, and fc2, respectively, and interlobar agreement with CVp = 8.14%, 11.9%, 8.50%, 49.9%, and 42.0%, respectively, was achieved. CONCLUSION Recently proposed advanced IVIM acquisition, signal modeling, and fitting techniques may facilitate reproducible IVIM quantification in the liver, as needed for establishment of IVIM-based quantitative biomarkers for detection, staging, and treatment monitoring of diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Allen
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Loh M, Führes T, Stuprich C, Benkert T, Bickelhaupt S, Uder M, Laun FB. Effect of simultaneous multislice imaging, slice properties, and repetition time on the measured magnetic resonance biexponential intravoxel incoherent motion in the liver. PLoS One 2024; 19:e0306996. [PMID: 39121035 PMCID: PMC11315316 DOI: 10.1371/journal.pone.0306996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 08/11/2024] Open
Abstract
OBJECTIVES This study aims to investigate the previously reported dependency of intravoxel incoherent motion (IVIM) parameters on simultaneous multislice (SMS) acquisition and repetition time (TR). This includes the influence of slice thickness, slice gaps, and slice order on measured IVIM parameters. MATERIALS AND METHODS Diffusion-weighted imaging (DWI) of the liver was performed on 10 healthy volunteers (aged 20-30 years) at 3T with a slice thickness of 5 mm, a slice gap of 5 mm, and a linear slice order. Diffusion-weighted images were acquired with 19 b-values (0-800 s/mm2) using both conventional slice excitation with an acceleration factor of one (AF1) and SMS excitation with an acceleration factor of three (AF3). Each of these measurements were carried out with two repetition times (TRs)- 1,300 ms (prefix s) and 4,500 ms (prefix l)-resulting in four different combinations: sAF1, sAF3, lAF1, and lAF3. Five volunteers underwent additional measurements using a 10 mm slice thickness and with AF1. Median signal values in the liver were used to determine the biexponential IVIM parameters. Statistical significances were assessed using the Kruskal-Wallis test, Wilcoxon signed-rank test, and Student's t-test. In-silico investigations were also used to interpret the data. RESULTS There were no significant differences between the biexponential IVIM parameters acquired from sAF1, sAF3, lAF1, and lAF3. Median values of the perfusion fraction f were as follows: 29.9% (sAF1), 26.9% (sAF3), 28.1% (lAF1), and 27.5% (lAF3). In the 10 mm-thick slices, f decreased from 31.3% (lAF1) to 27.4% (sAF1) (p = 0.141). CONCLUSION The slice excitation mode did not appear to have any significant influence on the biexponential IVIM parameters. However, our simulations, as well as values reported from previous publications, show that slice thickness, slice gaps, and slice order are relevant and should thus be reported in IVIM studies.
Collapse
Affiliation(s)
- Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Sebastian Bickelhaupt
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
3
|
Bäuchle TA, Stuprich CM, Loh M, Nagel AM, Uder M, Laun FB. Influence of Magnetic Field Strength on Intravoxel Incoherent Motion Parameters in Diffusion MRI of the Calf. Tomography 2024; 10:773-788. [PMID: 38787019 PMCID: PMC11126135 DOI: 10.3390/tomography10050059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Background: The purpose of this study was to investigate the dependence of Intravoxel Incoherent Motion (IVIM) parameters measured in the human calf on B0. Methods: Diffusion-weighted image data of eight healthy volunteers were acquired using five b-values (0-600 s/mm2) at rest and after muscle activation at 0.55 and 7 T. The musculus gastrocnemius mediale (GM, activated) was assessed. The perfusion fraction f and diffusion coefficient D were determined using segmented fits. The dependence on field strength was assessed using Student's t-test for paired samples and the Wilcoxon signed-rank test. A biophysical model built on the three non-exchanging compartments of muscle, venous blood, and arterial blood was used to interpret the data using literature relaxation times. Results: The measured perfusion fraction of the GM was significantly lower at 7 T, both for the baseline measurement and after muscle activation. For 0.55 and 7 T, the mean f values were 7.59% and 3.63% at rest, and 14.03% and 6.92% after activation, respectively. The biophysical model estimations for the mean proton-density-weighted perfusion fraction were 3.37% and 6.50% for the non-activated and activated states, respectively. Conclusions: B0 may have a significant effect on the measured IVIM parameters. The blood relaxation times suggest that 7 T IVIM may be arterial-weighted whereas 0.55 T IVIM may exhibit an approximately equal weighting of arterial and venous blood.
Collapse
Affiliation(s)
- Tamara Alice Bäuchle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christoph Martin Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
4
|
Sample C, Wu J, Clark H. Image denoising and model-independent parameterization for IVIM MRI. Phys Med Biol 2024; 69:105001. [PMID: 38604177 DOI: 10.1088/1361-6560/ad3db8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. To improve intravoxel incoherent motion imaging (IVIM) magnetic resonance Imaging quality using a new image denoising technique and model-independent parameterization of the signal versusb-value curve.Approach. IVIM images were acquired for 13 head-and-neck patients prior to radiotherapy. Post-radiotherapy scans were also acquired for five of these patients. Images were denoised prior to parameter fitting using neural blind deconvolution, a method of solving the ill-posed mathematical problem of blind deconvolution using neural networks. The signal decay curve was then quantified in terms of several area under the curve (AUC) parameters. Improvements in image quality were assessed using blind image quality metrics, total variation (TV), and the correlations between parameter changes in parotid glands with radiotherapy dose levels. The validity of blur kernel predictions was assessed by the testing the method's ability to recover artificial 'pseudokernels'. AUC parameters were compared with monoexponential, biexponential, and triexponential model parameters in terms of their correlations with dose, contrast-to-noise (CNR) around parotid glands, and relative importance via principal component analysis.Main results. Image denoising improved blind image quality metrics, smoothed the signal versusb-value curve, and strengthened correlations between IVIM parameters and dose levels. Image TV was reduced and parameter CNRs generally increased following denoising.AUCparameters were more correlated with dose and had higher relative importance than exponential model parameters.Significance. IVIM parameters have high variability in the literature and perfusion-related parameters are difficult to interpret. Describing the signal versusb-value curve with model-independent parameters like theAUCand preprocessing images with denoising techniques could potentially benefit IVIM image parameterization in terms of reproducibility and functional utility.
Collapse
Affiliation(s)
- Caleb Sample
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, CA, Canada
- Department of Medical Physics, BC Cancer, Surrey, BC, CA, Canada
| | - Jonn Wu
- Department of Radiation Oncology, BC Cancer, Vancouver, BC, CA, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, CA, Canada
| | - Haley Clark
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, CA, Canada
- Department of Medical Physics, BC Cancer, Surrey, BC, CA, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, CA, Canada
| |
Collapse
|
5
|
Li XM, Ma FZ, Quan XY, Zhang XC, Xiao BH, Wáng YXJ. Repeatability and reproducibility comparisons of liver IVIM imaging with free-breathing or respiratory-triggered sequences. NMR IN BIOMEDICINE 2024; 37:e5080. [PMID: 38113878 DOI: 10.1002/nbm.5080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
For liver intravoxel incoherent motion (IVIM) data acquisition, respiratory-triggering (RT) MRI is commonly used, and there are strong motivations to shorten the scan duration. For the same scan duration, more b values or higher numbers of excitations can be allowed for free-breathing (FB) imaging than for RT. We studied whether FB can be used to replace RT when careful IVIM image acquisition and image processing are conducted. MRI data of 22 healthy participants were acquired using a 3.0 T scanner. Diffusion imaging was based on a single-shot spin-echo-type echo-planar sequence and 16 b values of 0, 2, 4, 7, 10, 15, 20, 30, 46, 60, 72, 100, 150, 200, 400, and 600 s/mm2 . Each subject attended two scan sessions with an interval of 10-20 days. For each scan session, a subject was scanned twice, first with RT and then with FB. The mean image acquisition time was 5.4 min for FB and 10.8 min for RT. IVIM parameters were calculated with bi-exponential model segmented fitting with a threshold b value of 60 s/mm2 , and fitting started from b = 2 s/mm2 . There was no statistically significant difference between IVIM parameters measured with FB imaging or RT imaging. Perfusion fraction ICC (intraclass correlation coefficient) for FB imaging and RT imaging in the same scan session was 0.824. For perfusion fraction, wSD (within-subject standard deviation), BA (Bland-Altman) difference, BA 95% limit, and ICC were 0.022, 0.0001, -0.0635~0.0637, and 0.687 for FB and 0.031, 0.0122, -0.0723~0.0967, and 0.611 for RT. For Dslow (×10-3 s/mm2 ), wSD, BA difference, BA 95% limit, and ICC were 0.057, 0.0268, -0.1258~0.1793, and 0.471 for FB and 0.073, -0.0078, -0.2170-0.2014, and <0.4 for RT. The Dfast coefficient of variation was 0.20 for FB imaging and 0.28 for RT imaging. All reproducibility indicators slightly favored FB imaging.
Collapse
Affiliation(s)
- Xin-Ming Li
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fu-Zhao Ma
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xian-Yue Quan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xu-Chang Zhang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ben-Heng Xiao
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Lu T, Wang YXJ. Editorial for "Two-Compartment Perfusion MR IVIM Model to Investigate Normal and Pathological Placental Tissue". J Magn Reson Imaging 2024; 59:892-893. [PMID: 37326131 DOI: 10.1002/jmri.28860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Tao Lu
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Xiang J Wang
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Zhang Y, Sheng R, Yang C, Dai Y, Zeng M. The Feasibility of Using Tri-Exponential Intra-Voxel Incoherent Motion DWI for Identifying the Microvascular Invasion in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1659-1671. [PMID: 37799828 PMCID: PMC10547827 DOI: 10.2147/jhc.s433948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose To assess the effectiveness of tri-exponential Intra-Voxel Incoherent Motion (tri-IVIM) MRI in preoperatively identifying microvascular invasion (MVI) in hepatocellular carcinoma (HCC). Patients and Methods In this prospective study, 67 patients with HCC were included. Metrics from bi-exponential IVIM (bi-IVIM) and tri-IVIM were calculated. Subgroup comparisons were analyzed using the independent Student's t-test or Mann-Whitney U-test. Logistic regression was performed to explore clinical risk factors. Diagnostic performance was assessed using receiver operating characteristic (ROC) curves, calibration curves and decision curve analysis. Results MVI-positive HCCs exhibited significantly lower true diffusion coefficient (Dt) from bi-IVIM, as well as fast-diffusion coefficients (Df) and slow-diffusion coefficients (Ds) from tri-IVIM, compared to MVI-negative HCCs (p < 0.05). Tumor size and alpha-fetoprotein (AFP) were identified as risk factors. The combination of tri-IVIM-derived metrics (Ds and Df) yielded higher diagnostic accuracy (AUC = 0.808) compared to bi-IVIM (AUC = 0.741). A predictive model based on a nomogram was constructed using Ds, Df, tumor size, and AFP, resulting in the highest diagnostic accuracy (AUC = 0.859). Decision curve analysis indicated that the constructed model, provided the highest net benefit by accurately stratifying the risk of MVI, followed by tri-IVIM and bi-IVIM. Conclusion Tri-IVIM can provide information on perfusion and diffusion for evaluating MVI in HCC. Additionally, tri-IVIM outperformed bi-IVIM in identifying MVI-positive HCC. By integrating clinical risk factors and metrics from tri-IVIM, a predictive nomogram exhibited the highest diagnostic accuracy, potentially aiding in the noninvasive and preoperative assessment of MVI.
Collapse
Affiliation(s)
- Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Ruofan Sheng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 200032, People’s Republic of China
| | - Mengsu Zeng
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, 200032, People’s Republic of China
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
8
|
Loh M, Führes T, Stuprich C, Uder M, Saake M, Laun FB. Influence of saturation effects on biexponential liver intravoxel incoherent motion. Magn Reson Med 2023; 90:270-279. [PMID: 36861449 DOI: 10.1002/mrm.29622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/20/2023] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Studies on intravoxel incoherent motion (IVIM) imaging in the liver have been carried out with different acquisition protocols. The number of acquired slices and the distances between slices can influence IVIM measurements due to saturation effects, but these effects have often been disregarded. This study investigated differences in biexponential IVIM parameters between two slice settings. METHODS Fifteen healthy volunteers (21-30 years) were examined at a field strength of 3 T. Diffusion-weighted images of the abdomen were acquired with 16 b values (0-800 s/mm2 ), with four slices for the few slices setting and 24-27 slices for the many slices setting. Regions of interest were manually drawn in the liver. The data were fitted with a monoexponential signal curve and a biexponential IVIM curve, and biexponential IVIM parameters were determined. The dependence on the slice setting was assessed with Student's t test for paired samples (normally distributed IVIM parameters) and the Wilcoxon signed-rank test (non-normally distributed parameters). RESULTS None of the parameters were significantly different between the settings. For few slices and many slices, respectively, the mean values (SDs) for D $$ D $$ were 1.21 μm 2 / ms $$ 1.21{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.19 μm 2 / ms $$ 0.19\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ) and 1.20 μm 2 / ms $$ 1.20{\upmu \mathrm{m}}^2/\mathrm{ms} $$ ( 0.11 μm 2 / ms $$ 0.11\kern0.3em {\upmu \mathrm{m}}^2/\mathrm{ms} $$ ); for f $$ f $$ they were 29.7% (6.2%) and 27.7% (3.6%); and for D * $$ {D}^{\ast } $$ they were 8.76 ⋅ 10 - 2 mm 2 / s $$ 8.76\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.54 ⋅ 10 - 2 mm 2 / s $$ 4.54\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ) and 8.71 ⋅ 10 - 2 mm 2 / s $$ 8.71\cdot {10}^{-2}{\mathrm{mm}}^2/\mathrm{s} $$ ( 4.06 ⋅ 10 - 2 mm 2 / s $$ 4.06\cdot {10}^{-2}\kern0.3em {\mathrm{mm}}^2/\mathrm{s} $$ ). CONCLUSION Biexponential IVIM parameters in the liver are comparable among IVIM studies that use different slice settings, with mostly negligible saturation effects. However, this may not hold for studies that use much shorter TR.
Collapse
Affiliation(s)
- Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Stuprich
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
9
|
Simchick G, Hernando D. Precision of region of interest-based tri-exponential intravoxel incoherent motion quantification and the role of the Intervoxel spatial distribution of flow velocities. Magn Reson Med 2022; 88:2662-2678. [PMID: 35968580 PMCID: PMC9529845 DOI: 10.1002/mrm.29406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE The purpose of this work was to obtain precise tri-exponential intravoxel incoherent motion (IVIM) quantification in the liver using 2D (b-value and first-order motion moment [M1 ]) IVIM-DWI acquisitions and region of interest (ROI)-based fitting techniques. METHODS Diffusion MRI of the liver was performed in 10 healthy volunteers using three IVIM-DWI acquisitions: conventional monopolar, optimized monopolar, and optimized 2D (b-M1 ). For each acquisition, bi-exponential and tri-exponential full, segmented, and over-segmented ROI-based fitting and a newly proposed blood velocity SDdistribution (BVD) fitting technique were performed to obtain IVIM estimates in the right and left liver lobes. Fitting quality was evaluated using corrected Akaike information criterion. Precision metrics (test-retest repeatability, inter-reader reproducibility, and inter-lobar agreement) were evaluated using Bland-Altman analysis, repeatability/reproducibility coefficients (RPCs), and paired sample t-tests. Precision was compared across acquisitions and fitting methods. RESULTS High repeatability and reproducibility was observed in the estimations of the diffusion coefficient (Dtri = [1.03 ± 0.11] × 10-3 mm2 /s; RPCs ≤ 1.34 × 10-4 mm2 /s), perfusion fractions (F1 = 3.19 ± 1.89% and F2 = 16.4 ± 2.07%; RPCs ≤ 2.51%), and blood velocity SDs (Vb,1 = 1.44 ± 0.14 mm/s and Vb,2 = 3.62 ± 0.13 mm/s; RPCs ≤ 0.41 mm/s) in the right liver lobe using the 2D (b-M1 ) acquisition in conjunction with BVD fitting. Using these methods, significantly larger (p < 0.01) estimates of Dtri and F1 were observed in the left lobe in comparison to the right lobe, while estimates of Vb,1 and Vb,2 demonstrated high interlobar agreement (RPCs ≤ 0.45 mm/s). CONCLUSIONS The 2D (b-M1 ) IVIM-DWI data acquisition in conjunction with BVD fitting enables highly precise tri-exponential IVIM quantification in the right liver lobe.
Collapse
Affiliation(s)
- Gregory Simchick
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Troelstra MA, Van Dijk AM, Witjes JJ, Mak AL, Zwirs D, Runge JH, Verheij J, Beuers UH, Nieuwdorp M, Holleboom AG, Nederveen AJ, Gurney-Champion OJ. Self-supervised neural network improves tri-exponential intravoxel incoherent motion model fitting compared to least-squares fitting in non-alcoholic fatty liver disease. Front Physiol 2022; 13:942495. [PMID: 36148303 PMCID: PMC9485997 DOI: 10.3389/fphys.2022.942495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Recent literature suggests that tri-exponential models may provide additional information and fit liver intravoxel incoherent motion (IVIM) data more accurately than conventional bi-exponential models. However, voxel-wise fitting of IVIM results in noisy and unreliable parameter maps. For bi-exponential IVIM, neural networks (NN) were able to produce superior parameter maps than conventional least-squares (LSQ) generated images. Hence, to improve parameter map quality of tri-exponential IVIM, we developed an unsupervised physics-informed deep neural network (IVIM3-NET). We assessed its performance in simulations and in patients with non-alcoholic fatty liver disease (NAFLD) and compared outcomes with bi-exponential LSQ and NN fits and tri-exponential LSQ fits. Scanning was performed using a 3.0T free-breathing multi-slice diffusion-weighted single-shot echo-planar imaging sequence with 18 b-values. Images were analysed for visual quality, comparing the bi- and tri-exponential IVIM models for LSQ fits and NN fits using parameter-map signal-to-noise ratios (SNR) and adjusted R2. IVIM parameters were compared to histological fibrosis, disease activity and steatosis grades. Parameter map quality improved with bi- and tri-exponential NN approaches, with a significant increase in average parameter-map SNR from 3.38 to 5.59 and 2.45 to 4.01 for bi- and tri-exponential LSQ and NN models respectively. In 33 out of 36 patients, the tri-exponential model exhibited higher adjusted R2 values than the bi-exponential model. Correlating IVIM data to liver histology showed that the bi- and tri-exponential NN outperformed both LSQ models for the majority of IVIM parameters (10 out of 15 significant correlations). Overall, our results support the use of a tri-exponential IVIM model in NAFLD. We show that the IVIM3-NET can be used to improve image quality compared to a tri-exponential LSQ fit and provides promising correlations with histopathology similar to the bi-exponential neural network fit, while generating potentially complementary additional parameters.
Collapse
Affiliation(s)
- Marian A. Troelstra
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
- *Correspondence: Marian A. Troelstra,
| | | | - Julia J. Witjes
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Diona Zwirs
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Jurgen H. Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, Amsterdam, Netherlands
| | - Ulrich H. Beuers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Aart J. Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | | |
Collapse
|
11
|
Simchick G, Geng R, Zhang Y, Hernando D. b value and first-order motion moment optimized data acquisition for repeatable quantitative intravoxel incoherent motion DWI. Magn Reson Med 2022; 87:2724-2740. [PMID: 35092092 PMCID: PMC9275352 DOI: 10.1002/mrm.29165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To design a b value and first-order motion moment (M1 ) optimized data acquisition for repeatable intravoxel incoherent motion (IVIM) quantification in the liver. METHODS Cramer-Rao lower bound optimization was performed to determine optimal monopolar and optimal 2D samplings of the b-M1 space based on noise performance. Monte Carlo simulations were used to evaluate the bias and variability in estimates obtained using the proposed optimal samplings and conventional monopolar sampling. Diffusion MRI of the liver was performed in 10 volunteers using 3 IVIM acquisitions: conventional monopolar, optimized monopolar, and b-M1 -optimized gradient waveforms (designed based on the optimal 2D sampling). IVIM parameter maps of diffusion coefficient, perfusion fraction, and blood velocity SD were obtained using nonlinear least squares fitting. Noise performance (SDs), stability (outlier percentage), and test-retest or scan-rescan repeatability (intraclass correlation coefficients) were evaluated and compared across acquisitions. RESULTS Cramer-Rao lower bound and Monte Carlo simulations demonstrated improved noise performance of the optimal 2D sampling in comparison to monopolar samplings. Evaluating the designed b-M1 -optimized waveforms in healthy volunteers, significant decreases (p < 0.05) in the SDs and outlier percentages were observed for measurements of diffusion coefficient, perfusion fraction, and blood velocity SD in comparison to measurements obtained using monopolar samplings. Good-to-excellent repeatability (intraclass correlation coefficients ≥ 0.77) was observed for all 3 parameters in both the right and left liver lobes using the b-M1 -optimized waveforms. CONCLUSIONS 2D b-M1 -optimized data acquisition enables repeatable IVIM quantification with improved noise performance. 2D acquisitions may advance the establishment of IVIM quantitative biomarkers for liver diseases.
Collapse
Affiliation(s)
- Gregory Simchick
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ruiqi Geng
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yuxin Zhang
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Diego Hernando
- Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Radiology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
12
|
Zheng CJ, Xiao BH, Huang H, Zhou N, Yan TY, Wáng YXJ. Bi-exponential fitting excluding b=0 data improves the scan-rescan stability of liver IVIM parameter measures and particularly so for the perfusion fraction. Quant Imaging Med Surg 2022; 12:3288-3299. [PMID: 35655827 PMCID: PMC9131351 DOI: 10.21037/qims-2022-02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND A prerequisite to translating intravoxel incoherent motion (IVIM) imaging into meaningful clinical applications is sufficient scan-rescan reproducibility. This study aims to confirm the hypothesis that IVIM data fitting by not using b=0 images will improve the stability of liver IVIM measurement. METHODS Healthy volunteers' liver IVIM images were prospectively acquired using a 1.5-T magnet or a 3.0 T with 16 b-values. Repeatability study subjects were scanned twice during the same session, resulted in 35 paired scans for 35 subjects (11 men, mean age: 41.82 years, range: 32-60 years; 24 women, mean age: 42.67 years, range: 20-71 years). IVIM analysis was performed with full-fitting and segmented-fitting with a threshold b-value of 60 s/mm2, and fitting started from b=0 s/mm2 or from b=2 s/mm2. Reproducibility study subjects were scanned and then rescanned with an interval of 5-18 days, resulted in 20 paired scans for 11 subjects (4 men, mean age: 26.25 years, range: 25-27 years; 7 women, mean age: 25.57 years, range: 24-27 years). IVIM analysis was performed with segmented-fitting with a threshold b-value of 50 s/mm2, and fitting started from b=0 s/mm2 or from b=3 s/mm2. RESULTS Fitting without b=0 data generally improved the repeatability and reproducibility for both PF and Dslow, and particularly so for PF. For with b=0 data segmented fitting repeatability, PF had within-subject standard deviation of 0.019, bland-Atman 75% agreement limit of -31.52% to 28.35%, and ICC of 0.647, while these values were 0.009, -20.78% to 16.86%, and 0.837 for without b=0 analysis. Though the repeatability and reproducibility for Dfast generally also improved, they remained suboptimal. Measurement stability was better for repeatability than for reproducibility. CONCLUSIONS Scan-rescan repeatability and reproducibility of liver IVIM parameters can be improved by fitting without b=0 data, which is particularly so for PF.
Collapse
Affiliation(s)
- Cun-Jing Zheng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ben-Heng Xiao
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hua Huang
- Department of Radiology, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Nan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Tai-Yu Yan
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yì Xiáng J. Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Pu J, Liang Y, He Q, Shao JW, Zhou MJ, Xiang ST, Li YW, Li JB, Ji SJ. Correlation Between IVIM-DWI Parameters and Pathological Classification of Idiopathic Orbital Inflammatory Pseudotumors: A Preliminary Study. Front Oncol 2022; 12:809430. [PMID: 35359367 PMCID: PMC8963367 DOI: 10.3389/fonc.2022.809430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the correlation between intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and the pathological classification of idiopathic orbital inflammatory pseudotumors (IOIPs). Methods Nineteen patients who were diagnosed with IOIPs (a total of 24 affected eyes) between November 2018 and December 2020 were included in the study. All the patients underwent magnetic resonance imaging orbital plain scans and IVIM-DWI multiparameter scans before an operation. The true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) values were obtained. Based on histopathology, the lesions were divided into three types: lymphocytic infiltration, fibrosclerotic, and mixed. The correlation between IVIM-DWI parameters and pathological classification was tested with the histopathological results as the gold standard. The data were analyzed using SPSS version 17.0, with P < 0.05 defined as significant. Results Among the 19 patients (24 eyes) affected by IOIP, there were no significant differences between IOIP pathological classification and gender or age (P > 0.05). There were statistically significant differences between the D and f values for different pathological types of IOIP and IVIM parameters (P < 0.05), and there was no significant difference in D* value between the different pathological types (P > 0.05). Conclusion The D and f values showed correlation with different types of IOIP, and the sensitivity of the D value was higher than that of the f value. The D* value showed no significant distinction between pathological types of IOIP.
Collapse
Affiliation(s)
- Jian Pu
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Yi Liang
- Radiology Department, Shaanxi Province Tumor Hospital, Xi’an, China
| | - Qian He
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
- *Correspondence: Qian He,
| | - Ju-Wei Shao
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Min-Jie Zhou
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Shu-Tian Xiang
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Ying-Wen Li
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Jian-Bo Li
- Radiology Department, Affiliated Hospital of Yunnan University, Kunming, China
| | - Shun-Jun Ji
- Medical Imaging, Kunming Medical University, Kunming, China
| |
Collapse
|
14
|
Zhou X, Wang X, Liu E, Zhang L, Zhang H, Zhang X, Zhu Y, Kuai Z. An Unsupervised Deep Learning Approach for
Dynamic‐Exponential
Intravoxel Incoherent Motion
MRI
Modeling and Parameter Estimation in the Liver. J Magn Reson Imaging 2022; 56:848-859. [PMID: 35064945 DOI: 10.1002/jmri.28074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xin‐Xiang Zhou
- Imaging Center Harbin Medical University Cancer Hospital Harbin China
| | - Xin‐Yu Wang
- Imaging Center Harbin Medical University Cancer Hospital Harbin China
| | - En‐Hui Liu
- Imaging Center Harbin Medical University Cancer Hospital Harbin China
| | - Lan Zhang
- Imaging Center Harbin Medical University Cancer Hospital Harbin China
| | - Hong‐Xia Zhang
- Imaging Center Harbin Medical University Cancer Hospital Harbin China
| | - Xiu‐Shi Zhang
- Imaging Center Harbin Medical University Cancer Hospital Harbin China
| | - Yue‐Min Zhu
- CREATIS CNRS UMR 5220‐INSERM U1206‐University Lyon 1‐INSA Lyon‐University Jean Monnet Saint‐Etienne Lyon France
| | - Zi‐Xiang Kuai
- Imaging Center Harbin Medical University Cancer Hospital Harbin China
| |
Collapse
|
15
|
Slator PJ, Palombo M, Miller KL, Westin C, Laun F, Kim D, Haldar JP, Benjamini D, Lemberskiy G, de Almeida Martins JP, Hutter J. Combined diffusion-relaxometry microstructure imaging: Current status and future prospects. Magn Reson Med 2021; 86:2987-3011. [PMID: 34411331 PMCID: PMC8568657 DOI: 10.1002/mrm.28963] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T 1 , T 2 , and T 2 ∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.
Collapse
Affiliation(s)
- Paddy J. Slator
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Marco Palombo
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Carl‐Fredrik Westin
- Department of RadiologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Frederik Laun
- Institute of RadiologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Daeun Kim
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Dan Benjamini
- The Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMDUSA
- The Center for Neuroscience and Regenerative MedicineUniformed Service University of the Health SciencesBethesdaMDUSA
| | | | - Joao P. de Almeida Martins
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Department of Radiology and Nuclear MedicineSt. Olav’s University HospitalTrondheimNorway
| | - Jana Hutter
- Centre for Biomedical EngineeringSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
- Centre for the Developing BrainSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
| |
Collapse
|
16
|
Saake M, Seuß H, Riexinger A, Bickelhaupt S, Hammon M, Uder M, Laun FB. Image Quality and Detection of Small Focal Liver Lesions in Diffusion-Weighted Imaging: Comparison of Navigator Tracking and Free-Breathing Acquisition. Invest Radiol 2021; 56:579-590. [PMID: 33813572 DOI: 10.1097/rli.0000000000000776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of this study was to compare intraindividual diffusion-weighted imaging (DWI) of the liver acquired with free breathing (FB) versus navigator triggering (NT) for assessing small focal liver lesions (FLLs) in noncirrhotic patients. MATERIALS AND METHODS Patients with known or suspected multiple FLLs were prospectively included, and spin-echo echo-planar DWI with NT and FB acquisition was performed (b-values, 50 and 800 s/mm2 [b50 and b800]). NT and FB DWI sequences with similar acquisitions times were used. Liver and lesion signal-to-noise ratios were measured at b800. The DWI scans were analyzed independently by 2 readers. Liver edge delineation, presence of stair-step artifacts, vessel sharpness, severity of cardiac motion artifacts, overall image quality, and lesion conspicuity were rated with 5-point Likert scales. Small and large FLLs (ie, <1 cm or ≥1 cm) were rated separately for lesion conspicuity. The FLL detectability was estimated by comparing the number of lesions visible with FB to those visible with NT. RESULTS Forty-three patients were included in the study. The FB acquisition performed better in terms of severity of cardiac motion artifacts. The NT performed better in terms of liver edge delineation and vessel sharpness. Little difference was found for stair-step artifact, overall image quality, and conspicuity of large FLL, whereas the conspicuity of small FLL was better for NT. For small FLL, both readers found more lesions with NT in 11 cases at b800. For large FLL, this effect was much less pronounced (1 case at b800 reported by 1 of the readers). The mean liver and lesion signal-to-noise ratios were 16.8/41.5 and 19.8/38.4 for NT/FB, respectively. CONCLUSIONS Small FLL detection is better with NT. Large FLL detection by FB and NT is similarly good. We conclude that NT should be used.
Collapse
Affiliation(s)
- Marc Saake
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | | | - Andreas Riexinger
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | - Sebastian Bickelhaupt
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | - Matthias Hammon
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | - Michael Uder
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | - Frederik B Laun
- From the Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| |
Collapse
|
17
|
Führes T, Riexinger AJ, Loh M, Martin J, Wetscherek A, Kuder TA, Uder M, Hensel B, Laun FB. Echo time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver. Magn Reson Med 2021; 87:859-871. [PMID: 34453445 DOI: 10.1002/mrm.28996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE Intravoxel incoherent motion (IVIM) studies are performed with different acquisition protocols. Comparing them requires knowledge of echo time (TE) dependencies. The TE-dependence of the biexponential perfusion fraction f is well-documented, unlike that of its triexponential counterparts f1 and f2 and the biexponential and triexponential pseudodiffusion coefficients D* , D 1 ∗ , and D 2 ∗ . The purpose was to investigate the TE-dependence of these parameters and to check whether the triexponential pseudodiffusion compartments are associated with arterial and venous blood. METHODS Fifteen healthy volunteers (19-58 y; mean: 24.7 y) underwent diffusion-weighted imaging of the abdomen with 24 b-values (0.2-800 s/mm2 ) at TEs of 45, 60, 75, and 90 ms. Regions of interest (ROIs) were manually drawn in the liver. One set of bi- and triexponential IVIM parameters per volunteer and TE was determined. The TE-dependence was assessed with the Kruskal-Wallis test. RESULTS TE-dependence was observed for f (P < .001), f1 (P = .001), and f2 (P < .001). Their median values at the four measured TEs were: f: 0.198/0.240/0.274/0.359, f1 : 0.113/0.139/0.146/0.205, f2 : 0.115/0.155/0.182/0.194. D, D* , D 1 ∗ , and D 2 ∗ showed no significant TE-dependence. Their values were: diffusion coefficient D (10-4 mm2 /s): 9.45/9.63/9.75/9.41, biexponential D* (10-2 mm2 /s): 5.26/5.52/6.13/5.82, triexponential D 1 ∗ (10-2 mm2 /s): 1.73/2.91/2.25/2.51, triexponential D 2 ∗ (mm2 /s): 0.478/1.385/0.616/0.846. CONCLUSION f1 and f2 show similar TE-dependence as f, ie, increase with rising TE; an effect that must be accounted for when comparing different studies. The diffusion and pseudodiffusion coefficients might be compared without TE correction. Because of the similar TE-dependence of f1 and f2 , the triexponential pseudodiffusion compartments are most probably not associated to venous and arterial blood.
Collapse
Affiliation(s)
- Tobit Führes
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Julian Riexinger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Loh
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tristan Anselm Kuder
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik Bernd Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
18
|
Scott LA, Dickie BR, Rawson SD, Coutts G, Burnett TL, Allan SM, Parker GJ, Parkes LM. Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI. J Cereb Blood Flow Metab 2021; 41:1939-1953. [PMID: 33325766 PMCID: PMC8323340 DOI: 10.1177/0271678x20978523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multi-diffusion-time diffusion-weighted MRI can probe tissue microstructure, but the method has not been widely applied to the microvasculature. At long diffusion-times, blood flow in capillaries is in the diffusive regime, and signal attenuation is dependent on blood velocity (v) and capillary segment length (l). It is described by the pseudo-diffusion coefficient (D*=vl/6) of intravoxel incoherent motion (IVIM). At shorter diffusion-times, blood flow is in the ballistic regime, and signal attenuation depends on v, and not l. In theory, l could be estimated using D* and v. In this study, we compare the accuracy and repeatability of three approaches to estimating v, and therefore l: the IVIM ballistic model, the velocity autocorrelation model, and the ballistic approximation to the velocity autocorrelation model. Twenty-nine rat datasets from two strains were acquired at 7 T, with b-values between 0 and 1000 smm-2 and diffusion times between 11.6 and 50 ms. Five rats were scanned twice to assess scan-rescan repeatability. Measurements of l were validated using corrosion casting and micro-CT imaging. The ballistic approximation of the velocity autocorrelation model had lowest bias relative to corrosion cast estimates of l, and had highest repeatability.
Collapse
Affiliation(s)
- Lauren A Scott
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Ben R Dickie
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Shelley D Rawson
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Graham Coutts
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Timothy L Burnett
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| | - Geoff Jm Parker
- The Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, UK.,Bioxydyn Limited, Manchester, UK
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Xiao BH, Wáng YXJ. Different tissue types display different signal intensities on b = 0 images and the implications of this for intravoxel incoherent motion analysis: Examples from liver MRI. NMR IN BIOMEDICINE 2021; 34:e4522. [PMID: 33851487 DOI: 10.1002/nbm.4522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Ben-Heng Xiao
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| | - Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR
| |
Collapse
|
20
|
Wáng YXJ. Mutual constraining of slow component and fast component measures: some observations in liver IVIM imaging. Quant Imaging Med Surg 2021; 11:2879-2887. [PMID: 34079748 DOI: 10.21037/qims-21-187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Huang H, Zheng CJ, Wang LF, Che-Nordin N, Wáng YXJ. Age and gender dependence of liver diffusion parameters and the possibility that intravoxel incoherent motion modeling of the perfusion component is constrained by the diffusion component. NMR IN BIOMEDICINE 2021; 34:e4449. [PMID: 33354829 DOI: 10.1002/nbm.4449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to establish reference values for middle-aged subjects and to investigate the age and gender dependence of liver diffusion MRI parameters. The IVIM type of liver diffusion scan was based on a single-shot spin-echo-type echo-planar sequence using a 1.5 T magnet with 16 b-values. Diffusion-derived vessel density (DDVD)(b0b2) or DDVD(b0b10) was the signal difference between b = 0 and b = 2 (or b = 10) s/mm2 images after removing visible vessels. IVIM analysis was performed with full fitting and segmented fitting, and with a threshold b-value of 60 or 200 s/mm2 , and fitting started from b = 2 s/mm2 . Thirty-one men (age range: 25-71 years) and 26 men (age: 22-69 years) had DDVD and IVIM analysis, respectively, while 37 women (age: 20-71 years) and 36 women (age: 20-71 years) had DDVD and IVIM analysis, respectively. DDVD results showed a significant age-related reduction for women. IVIM results for full fitting showed excellent agreement with those for segmented fitting using a threshold b of 60 s/mm2 , but this was less good for results with a threshold b of 200 s/mm2 . As age increased, female subjects' Dslow measure showed a significant reduction, while their PF and Dfast measures showed a significant increase. For the age group of 40-55 years, DDVD(b0b2), DDVD(b0b10), Dslow , PF and Dfast were 12.26 ± 3.90 au/pixel, 16.95 ± 5.45 au/pixel, 1.072 ± 0.067 (10-3 mm2 /s), 0.141 ± 0.025 and 61.0 ± 14.0 (10-3 mm2 /s) for men, and 13.35 ± 3.6 au/pixel, 17.20 ± 3.62 au/pixel, 1.069 ± 0.074 (10-3 mm2 /s), 0.119 ± 0.014 and 57.1 ± 13.2 (10-3 mm2 /s) for women, respectively. DDVD measure of this study suggest that aging is associated with a reduction in liver perfusion. There is a possibility that a lower Dslow measure is associated with artificially higher PF and Dfast measures, and that IVIM modeling of the perfusion component is constrained by the diffusion component.
Collapse
Affiliation(s)
- Hua Huang
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong Province, China
| | - Cun-Jing Zheng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Li-Fei Wang
- Department of Radiology, The Third People's Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong Province, China
| | - Nazmi Che-Nordin
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
22
|
Chevallier O, Wáng YXJ, Guillen K, Pellegrinelli J, Cercueil JP, Loffroy R. Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11020379. [PMID: 33672277 PMCID: PMC7926368 DOI: 10.3390/diagnostics11020379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 12/11/2022] Open
Abstract
Diffusion weighted imaging (DWI) and intravoxel incoherent motion (IVIM) have been explored to assess liver tumors and diffused liver diseases. IVIM reflects the microscopic translational motions that occur in voxels in magnetic resonance (MR) DWI. In biologic tissues, molecular diffusion of water and microcirculation of blood in the capillary network can be assessed using IVIM DWI. The most commonly applied model to describe the DWI signal is a bi-exponential model, with a slow compartment of diffusion linked to pure molecular diffusion (represented by the coefficient Dslow), and a fast compartment of diffusion, related to microperfusion (represented by the coefficient Dfast). However, high variance in Dfast estimates has been consistently shown in literature for liver IVIM, restricting its application in clinical practice. This variation could be explained by the presence of another very fast compartment of diffusion in the liver. Therefore, a tri-exponential model would be more suitable to describe the DWI signal. This article reviews the published evidence of the existence of this additional very fast diffusion compartment and discusses the performance and limitations of the tri-exponential model for liver IVIM in current clinical settings.
Collapse
Affiliation(s)
- Olivier Chevallier
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (O.C.); (K.G.); (J.P.); (J.-P.C.)
| | - Yì Xiáng J. Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China;
| | - Kévin Guillen
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (O.C.); (K.G.); (J.P.); (J.-P.C.)
| | - Julie Pellegrinelli
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (O.C.); (K.G.); (J.P.); (J.-P.C.)
| | - Jean-Pierre Cercueil
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (O.C.); (K.G.); (J.P.); (J.-P.C.)
| | - Romaric Loffroy
- Image-Guided Therapy Center, Department of Vascular and Interventional Radiology, François-Mitterrand University Hospital, 14 Rue Paul Gaffarel, BP 77908, 21079 Dijon, France; (O.C.); (K.G.); (J.P.); (J.-P.C.)
- Correspondence: ; Tel.: +33-380-293-677
| |
Collapse
|
23
|
Riexinger A, Martin J, Wetscherek A, Kuder TA, Uder M, Hensel B, Laun FB. An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver. Magn Reson Med 2020; 85:2095-2108. [PMID: 33201549 DOI: 10.1002/mrm.28582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To find an optimized b-value distribution for reproducible triexponential intravoxel incoherent motion (IVIM) exams in the liver. METHODS A numeric optimization of b-value distributions was performed using the triexponential IVIM equation and 27 different IVIM parameter sets. Starting with an initially optimized distribution of 6 b-values, the number of b-values was increased stepwise. Each new b-value was chosen from a set of 64 predefined b-values based on the computed summed relative mean error of the fitted triexponential IVIM parameters. This process was repeated for up to 100 b-values. In simulations and in vivo measurements, optimized b-value distributions were compared to 4 representative distributions found in literature. RESULTS The first 16 optimized b-values were 0, 0.3, 0.3, 70, 200, 800, 70, 1, 3.5, 5, 70, 1.2, 6, 45, 1.5, and 60 in units of s/mm2 . Low b-values were much more frequent than high b-values. The optimized b-value distribution resulted in a higher fit stability compared to distributions used in literature in both, simulation and in vivo measurements. Using more than 6 b-values, ideally 16 or more, increased the fit stability considerably. CONCLUSION Using optimized b-values, the fit uncertainty in triexponential IVIM can be largely reduced. Ideally, 16 or more b-values should be acquired.
Collapse
Affiliation(s)
- Andreas Riexinger
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Jan Martin
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tristan Anselm Kuder
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | |
Collapse
|
24
|
Ye Z, Wei Y, Chen J, Yao S, Song B. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis. World J Gastroenterol 2020; 26:3304-3317. [PMID: 32684744 PMCID: PMC7336331 DOI: 10.3748/wjg.v26.i23.3304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis (LF) is a common pathological feature of all chronic liver diseases. With the accumulation of extracellular matrix in the fibrotic liver, true molecular water diffusion and perfusion-related diffusion are restricted. Intravoxel incoherent motion (IVIM) can capture the information on tissue diffusivity and microcapillary perfusion separately and reflect the fibrotic severity with diffusion coefficients.
AIM To investigate the diagnostic performance of IVIM in detecting and staging LF with histology as a reference standard.
METHODS A comprehensive literature search was conducted to identify studies on the diagnostic accuracy of IVIM for assessment of histologically proven LF. The stages of LF were classified as F0 (no fibrosis), F1 (portal fibrosis without septa), F2 (periportal fibrosis with few septa), F3 (septal fibrosis), and F4 (cirrhosis) according to histopathological findings. Data were extracted to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio, as well as the area under the summary receiver operating characteristic curve (AUC) in each group.
RESULTS A total of 12 studies with 923 subjects were included in this meta-analysis with 5 studies (n = 465) for LF ≥ F1, 9 studies (n = 757) for LF ≥ F2, 4 studies (n = 413) for LF ≥ F3, and 6 studies (n = 562) for LF = F4. The pooled sensitivity and specificity were estimated to be 0.78 (95% confidence interval: 0.73-0.82) and 0.81 (0.74-0.86) for LF ≥ F1 detection with IVIM; 0.82 (0.79-0.86) and 0.80 (0.75-0.84) for staging F2 fibrosis; 0.85 (0.79-0.90) and 0.83 (0.77-0.87) for staging F3 fibrosis, and 0.90 (0.84-0.94) and 0.75 (0.70-0.79) for detecting F4 cirrhosis, respectively. The AUCs for LF ≥ F1, F2, F3, F4 detection were 0.862 (0.811-0.914), 0.883 (0.856-0.909), 0.886 (0.865-0.907), and 0.899 (0.866-0.932), respectively. Moderate to substantial heterogeneity was observed with inconsistency index (I2) ranging from 0% to 77.9%. No publication bias was detected.
CONCLUSION IVIM is a noninvasive tool with good diagnostic performance in detecting and staging LF. Optimized and standardized IVIM protocols are needed to further improve its diagnostic accuracy in clinical practice.
Collapse
Affiliation(s)
- Zheng Ye
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Wei
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jie Chen
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shan Yao
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
25
|
Gurney‐Champion OJ, Rauh SS, Harrington K, Oelfke U, Laun FB, Wetscherek A. Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol. Magn Reson Med 2020; 83:1003-1015. [PMID: 31566262 PMCID: PMC6899942 DOI: 10.1002/mrm.27990] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time. METHODS Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys. RESULTS Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively. CONCLUSIONS We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min).
Collapse
Affiliation(s)
- Oliver J. Gurney‐Champion
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Susanne S. Rauh
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
- Institute of RadiologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Kevin Harrington
- Targeted Therapy teamThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Uwe Oelfke
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Frederik B. Laun
- Institute of RadiologyUniversity Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Andreas Wetscherek
- Joint Department of PhysicsThe Institute of Cancer Research and The Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| |
Collapse
|
26
|
Rauh SS, Riexinger AJ, Ohlmeyer S, Hammon M, Saake M, Stemmer A, Uder M, Hensel B, Laun FB. A mixed waveform protocol for reduction of the cardiac motion artifact in black-blood diffusion-weighted imaging of the liver. Magn Reson Imaging 2020; 67:59-68. [PMID: 31923466 DOI: 10.1016/j.mri.2019.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/11/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Diffusion-weighted imaging (DWI) in the liver suffers from signal loss due to the cardiac motion artifact, especially in the left liver lobe. The purpose of this work was to improve the image quality of liver DWI in terms of cardiac motion artifact reduction and achievement of black-blood images in low b-value images. MATERIAL AND METHODS Ten healthy volunteers (age 20-31 years) underwent MRI examinations at 1.5 T with a prototype DWI sequence provided by the vendor. Two diffusion encodings (i.e. waveforms), monopolar and flow-compensated, and the b-values 0, 20, 50, 100, 150, 600 and 800 s/mm2 were used. Two Likert scales describing the severity of the pulsation artifact and the quality of the black-blood state were defined and evaluated by two experienced radiologists. Regions of interest (ROIs) were manually drawn in the right and left liver lobe in each slice and combined to a volume of interest (VOI). The mean and coefficient of variation were calculated for each normalized VOI-averaged signal to assess the severity of the cardiac motion artifact. The ADC was calculated using two b-values once for the monopolar data and once with mixed data, using the monopolar data for the small and the flow-compensated data for the high b-value. A Wilcoxon rank sum test was used to compare the Likert scores obtained for monopolar and flow-compensated data. RESULTS At b-values from 20 to 150 s/mm2, unlike the flow-compensated diffusion encoding, the monopolar encoding yielded black blood in all images with a negligible signal loss due to the cardiac motion artifact. At the b-values 600 and 800 s/mm2, the flow-compensated encoding resulted in a significantly reduced cardiac motion artifact, especially in the left liver lobe, and in a black-blood state. The ADC calculated with monopolar data was significantly higher in the left than in the right liver lobe. CONCLUSION It is recommendable to use the following mixed waveform protocol: Monopolar diffusion encodings at small b-values and flow-compensated diffusion encodings at high b-values.
Collapse
Affiliation(s)
- Susanne S Rauh
- Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Andreas J Riexinger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Hammon
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-, Nürnberg, (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|