1
|
Zhang CY, Cleri M, Woodgate T, Ramirez Gilliland P, Bansal S, Aviles Verdera J, Uus AU, Kyriakopoulou V, St Clair K, Story L, Hall M, Pushparajah K, Hajnal JV, Lloyd D, Rutherford MA, Hutter J, Payette K. Structural and functional fetal cardiac imaging using low field (0.55 T) MRI. Front Pediatr 2024; 12:1418645. [PMID: 39318614 PMCID: PMC11421172 DOI: 10.3389/fped.2024.1418645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose This study aims to investigate the feasibility of using a commercially available clinical 0.55 T MRI scanner for comprehensive structural and functional fetal cardiac imaging. Methods Balanced steady-state free precession (bSSFP) and phase contrast (PC) sequences were optimized by in utero studies consisting of 14 subjects for bSSFP optimization and 9 subjects for PC optimization. The signal-to-noise ratio (SNR) of the optimized sequences were investigated. Flow measurements were performed in three vessels, umbilical vein (UV), descending aorta (DAo), and superior vena cava (SVC) using the PC sequences and retrospective gating. The optimized bSSFP, PC and half-Fourier single shot turbo spin-echo (HASTE) sequences were acquired in a cohort of 21 late gestation-age fetuses (>36 weeks) to demonstrate the feasibility of a fetal cardiac exam at 0.55 T. The HASTE stacks were reconstructed to create an isotropic reconstruction of the fetal thorax, followed by automatic great vessel segmentations. The intra-abdominal UV blood flow measurements acquired with MRI were compared to ultrasound UV free-loop flow measurements. Results Using the parameters from 1.5 T as a starting point, the bSSFP sequences were optimized at 0.55 T, resulting in a 1.6-fold SNR increase and improved image contrast compared to starting parameters, as well as good visibility of most cardiac structures as rated by two experienced fetal cardiologists. The PC sequence resulted in increased SNR and reduced scan time, subsequent retrospective gating enabled successful blood flow measurements. The reconstructions and automatic great vessel segmentations showed good quality, with 18/21 segmentations requiring no or minor refinements. Blood flow measurements were within the expected range. A comparison of the UV measurements performed with ultrasound and MRI showed agreement between the two sets of measurements, with better correlation observed at lower flows. Conclusion We demonstrated the feasibility of low-field (0.55 T) MRI for fetal cardiac imaging. The reduced SNR at low field strength can be effectively compensated for by strategically optimizing sequence parameters. Major fetal cardiac structures and vessels were consistently visualized, and flow measurements were successfully obtained. The late gestation study demonstrated the robustness and reproducibility at low field strength. MRI performed at 0.55 T is a viable option for fetal cardiac examination.
Collapse
Affiliation(s)
- Charlie Yuli Zhang
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Michela Cleri
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- London Collaborative Ultra High Field Systems (LoCUS), King’s College London, London, United Kingdom
| | - Tomas Woodgate
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Paula Ramirez Gilliland
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Simi Bansal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alena U. Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Vanessa Kyriakopoulou
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Kamilah St Clair
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Kuberan Pushparajah
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Joseph V. Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - David Lloyd
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Mary A. Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| | - Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Renik-Jankowska W, Buczyńska A, Sidorkiewicz I, Kosiński P, Zbucka-Krętowska M. Exploring new perspectives on congenital diaphragmatic hernia: A comprehensive review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167105. [PMID: 38428682 DOI: 10.1016/j.bbadis.2024.167105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Congenital diaphragmatic hernia (CDH) represents a developmental anomaly that profoundly impacts the embryonic development of both the respiratory and cardiovascular systems. Understanding the influences of developmental defects, their origins, and clinical consequences is of paramount importance for further research and the advancement of therapeutic strategies for this condition. In recent years, groundbreaking studies in the fields of metabolomics and genomics have significantly expanded our knowledge regarding the pathogenic mechanisms of CDH. These investigations introduce novel diagnostic and therapeutic avenues. CDH implies a scarcity of available information within this domain. Consequently, a comprehensive literature review has been undertaken to synthesize existing data, providing invaluable insights into this rare disease. Improved comprehension of the molecular underpinnings of CDH has the potential to refine diagnostic precision and therapeutic interventions, thus potentially enhancing clinical outcomes for CDH patients. The identification of potential biomarkers assumes paramount significance for early disease detection and risk assessment in CDH, facilitating prompt recognition and the implementation of appropriate interventions. The process of translating research findings into clinical practice is significantly facilitated by an exhaustive literature review. It serves as a pivotal step, enabling the integration of novel, more effective diagnostic and therapeutic modalities into the management of CDH patients.
Collapse
Affiliation(s)
- Weronika Renik-Jankowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Przemysław Kosiński
- Department of Obstetrics, Perinatology, and Gynecology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091 Warszawa, Poland.
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
3
|
Shima T, Kinjo T, Park S, Sonoda M. Perinatal clinical course of Vici syndrome associated with novel EPG5 variants: unique cardiac changes and difficulty with foetal diagnosis. BMJ Case Rep 2024; 17:e255847. [PMID: 38182173 PMCID: PMC10773411 DOI: 10.1136/bcr-2023-255847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Vici syndrome is a genetic disorder involving autophagy dysfunction caused by biallelic pathogenic variants in ectopic P-granules 5 autophagy tethering factor (EPG5). We report the perinatal clinical course of a neonate with Vici syndrome with a unique cardiac presentation. Foetal ultrasonography (US) detected right ventricular hypertrophy, hypoplastic left ventricle and narrowing of the foramen ovale, which were alleviated after birth. Agenesis of the corpus callosum and cerebellar hypoplasia were missed antenatally. After delivery, the patient was clinically diagnosed with Vici syndrome and two novel pathogenic mutations were detected in EPG5 The T-cell receptor repertoire was selectively skewed in the Vβ2 family. Immunological prophylaxis and tube feeding were introduced. Early diagnosis helps parents accept their child's prognosis and decide on a care plan. However, US has limited potential to detect clinical phenotypes associated with Vici syndrome. Foetal MRI may detect the characteristic abnormalities and contribute to antenatal diagnosis.
Collapse
Affiliation(s)
- Takashi Shima
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Tadamune Kinjo
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Sungyeon Park
- Department of Hematology, Infection, and Immunology, Fukuoka Children's Hospital, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Science, Kyushu University Hospital, Fukuoka, Japan
| | - Motoshi Sonoda
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Science, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
4
|
Liu K, Zhu M, Zhang YQ, Chen LJ, Dong SZ. Utility of fetal cardiac magnetic resonance imaging in assessing the cardiac axis in fetuses with congenital heart disease. Pediatr Radiol 2023; 53:910-919. [PMID: 36602571 DOI: 10.1007/s00247-022-05582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fetal dedicated echocardiography is the standard to measure the fetal cardiac axis. However, fetal screening ultrasound (US) or fetal dedicated echocardiography may be technically limited. OBJECTIVE The purpose of this study was to explore the accuracy of fetal cardiac magnetic resonance imaging (MRI) to measure the cardiac axis in fetuses with congenital heart disease as an adjunct to fetal dedicated echocardiography and to assess the predictive value of fetal cardiac MRI measurements in distinguishing healthy fetuses from fetuses with congenital heart disease. MATERIALS AND METHODS This is a retrospective study of fetuses referred to our hospital for a fetal cardiac MRI from November 2019 to December 2021. Cardiac axes were measured in the 4-chamber view of the fetal heart using fetal cardiac MRI and dedicated echocardiography, or only using fetal cardiac MRI when screening US was technically limited. The fetuses were divided into a congenital heart disease group and a healthy control group. We used Bland-Altman analysis and the intraclass correlation coefficient (ICC) to assess the agreement of cardiac axis measurements in fetuses with congenital heart disease obtained by cardiac MRI and by fetal dedicated echocardiography. Receiver operating characteristic (ROC) curve analysis of the fetal cardiac axes in the congenital heart disease and healthy fetus groups assessed the predictive value of the cardiac axis measurements. RESULTS This retrospective study included 431 women (162 carrying fetuses with congenital heart disease, 269 carrying healthy fetuses). Cardiac axes were measured in the 162 fetuses with congenital heart disease using fetal cardiac MRI and dedicated echocardiography. Cardiac axes were measured in the 269 healthy control fetuses using fetal cardiac MRI when fetal screening US was technically limited. The interobserver analysis and intraobserver analysis showed that the cardiac axis measured by fetal cardiac MRI and fetal dedicated echocardiography was repeatable (ICC>0.90). In 162 fetuses with congenital heart disease, Bland-Altman analysis showed a strong agreement between cardiac MRI and fetal dedicated echocardiography measurements for the cardiac axis. The ICC for the cardiac axis values between cardiac MRI and fetal dedicated echocardiography measurements was 0.99. In fetuses with congenital heart disease, 64.2% (104/162) had an abnormal cardiac axis. For the fetal cardiac axis in both the 162 fetuses with congenital heart disease and the 269 healthy fetuses, the area under the ROC curve reached 0.85 (95% confidence interval: 0.80-0.89; P<0.0001). CONCLUSION The cardiac axis can be accurately measured using fetal cardiac MRI when fetal dedicated echocardiography/fetal screening US is technically limited. The cardiac axis measurements by fetal cardiac MRI are consistent with known cardiac axis measurements by fetal dedicated echocardiography. The frequency of abnormal cardiac axis depends on the type of congenital heart disease.
Collapse
Affiliation(s)
- Ke Liu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Ming Zhu
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yu-Qi Zhang
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Jun Chen
- Department of Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Su-Zhen Dong
- Department of Radiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
5
|
Haxel CS, Johnson JN, Hintz S, Renno MS, Ruano R, Zyblewski SC, Glickstein J, Donofrio MT. Care of the Fetus With Congenital Cardiovascular Disease: From Diagnosis to Delivery. Pediatrics 2022; 150:189887. [PMID: 36317976 DOI: 10.1542/peds.2022-056415c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The majority of congenital cardiovascular disease including structural cardiac defects, abnormalities in cardiac function, and rhythm disturbances can be identified prenatally using screening obstetrical ultrasound with referral for fetal echocardiogram when indicated. METHODS Diagnosis of congenital heart disease in the fetus should prompt assessment for extracardiac abnormalities and associated genetic abnormalities once maternal consent is obtained. Pediatric cardiologists, in conjunction with maternal-fetal medicine, neonatology, and cardiothoracic surgery subspecialists, should counsel families about the details of the congenital heart defect as well as prenatal and postnatal management. RESULTS Prenatal diagnosis often leads to increased maternal depression and anxiety; however, it decreases morbidity and mortality for many congenital heart defects by allowing clinicians the opportunity to optimize prenatal care and plan delivery based on the specific lesion. Changes in prenatal care can include more frequent assessments through the remainder of the pregnancy, maternal medication administration, or, in selected cases, in utero cardiac catheter intervention or surgical procedures to optimize postnatal outcomes. Delivery planning may include changing the location, timing or mode of delivery to ensure that the neonate is delivered in the most appropriate hospital setting with the required level of hospital staff for immediate postnatal stabilization. CONCLUSIONS Based on the specific congenital heart defect, prenatal echocardiogram assessment in late gestation can often aid in predicting the severity of postnatal instability and guide the medical or interventional level of care needed for immediate postnatal intervention to optimize the transition to postnatal circulation.
Collapse
Affiliation(s)
- Caitlin S Haxel
- The University of Vermont Children's Hospital, Burlington, Vermont
| | | | - Susan Hintz
- Stanford University, Lucille Salter Packard Children's Hospital, Palo Alto, California
| | - Markus S Renno
- University Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | - Julie Glickstein
- Columbia University Vagelos School of Medicine, Morgan Stanley Children's Hospital, New York, New York
| | | |
Collapse
|
6
|
Relan J, Swami M, Rana A, Chaudhary P, Ojha V, Devarapalli S, Dadhwal V, Verma A, Jagia P, Saxena A. Prenatal Pericardiocentesis and Postnatal Sirolimus for a Giant Inoperable Cardiac Rhabdomyoma. JACC Case Rep 2021; 3:1473-1479. [PMID: 34746849 PMCID: PMC8551506 DOI: 10.1016/j.jaccas.2021.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
We describe the case of an antenatally diagnosed massive cardiac tumor in a fetus requiring cardiorespiratory support immediately following birth. We further discuss the successful management of this case and highlight the importance of a multidisciplinary team in managing such complicated cases. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
- Jay Relan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Swami
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Chaudhary
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Vineeta Ojha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Sowmya Devarapalli
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Vatsla Dadhwal
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Verma
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Jagia
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Anita Saxena
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Lee FT, Seed M, Sun L, Marini D. Fetal brain issues in congenital heart disease. Transl Pediatr 2021; 10:2182-2196. [PMID: 34584890 PMCID: PMC8429876 DOI: 10.21037/tp-20-224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Following the improvements in the clinical management of patients with congenital heart disease (CHD) and their increased survival, neurodevelopmental outcome has become an emerging priority in pediatric cardiology. Large-scale efforts have been made to protect the brain during the postnatal, surgical, and postoperative period; however, the presence of brain immaturity and injury at birth suggests in utero and peripartum disturbances. Over the past decade, there has been considerable interest and investigations on fetal brain growth in the setting of CHD. Advancements in fetal brain imaging have identified abnormal brain development in fetuses with CHD from the macrostructural (brain volumes and cortical folding) down to the microstructural (biochemistry and water diffusivity) scale, with more severe forms of CHD showing worse disturbances and brain abnormalities starting as early as the first trimester. Anomalies in common genetic developmental pathways and diminished cerebral substrate delivery secondary to altered cardiovascular physiology are the forefront hypotheses, but other factors such as impaired placental function and maternal psychological stress have surfaced as important contributors to fetal brain immaturity in CHD. The characterization and timing of fetal brain disturbances and their associated mechanisms are important steps for determining preventative prenatal interventions, which may provide a stronger foundation for the developing brain during childhood.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Lee FT, Marini D, Seed M, Sun L. Maternal hyperoxygenation in congenital heart disease. Transl Pediatr 2021; 10:2197-2209. [PMID: 34584891 PMCID: PMC8429855 DOI: 10.21037/tp-20-226] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 01/26/2023] Open
Abstract
The importance of prenatal diagnosis and fetal intervention has been increasing as a preventative strategy for improving the morbidity and mortality in congenital heart disease (CHD). The advancements in medical imaging technology have greatly enhanced our understanding of disease progression, assessment, and impact in those with CHD. In particular, there has been a growing focus on improving the morbidity and mortality of fetuses diagnosed with left-sided lesions. The disruption of fetal hemodynamics resulting from poor structural developmental of the left outflow tract during cardiogenesis is considered a major factor in the progressive lethal underdevelopment of the left ventricle (LV). This positive feedback cycle of inadequate flow and underdevelopment of the LV leads to a disrupted fetal circulation, which has been described to impact fetal brain growth where systemic outflow is poor and, in some cases, the fetal lungs in the setting of a restrictive interatrial communication. For the past decade, maternal hyperoxygenation (MH) has been investigated as a diagnostic tool to assess the pulmonary vasculature and a therapeutic agent to improve the development of the heart and brain in fetuses with CHD with a focus on left-sided cardiac defects. This review discusses the findings of these studies as well as the utility of acute and chronic administration of MH in CHD.
Collapse
Affiliation(s)
- Fu-Tsuen Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada.,Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Sun L, Lee FT, van Amerom JFP, Freud L, Jaeggi E, Macgowan CK, Seed M. Update on fetal cardiovascular magnetic resonance and utility in congenital heart disease. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart disease (CHD) is the most common birth defect, affecting approximately eight per thousand newborns. Between one and two neonates per thousand have congenital cardiac lesions that require immediate post-natal treatment to stabilize the circulation, and the management of these patients in particular has been greatly enhanced by prenatal detection. The antenatal diagnosis of CHD has been made possible through the development of fetal echocardiography, which provides excellent visualization of cardiac anatomy and physiology and is widely available. However, late gestational fetal echocardiographic imaging can be hampered by suboptimal sonographic windows, particularly in the setting of oligohydramnios or adverse maternal body habitus.
Main body
Recent advances in fetal cardiovascular magnetic resonance (CMR) technology now provide a feasible alternative that could be helpful when echocardiography is inconclusive or limited. Fetal CMR has also been used to study fetal circulatory physiology in human fetuses with CHD, providing new insights into how these common anatomical abnormalities impact the distribution of blood flow and oxygen across the fetal circulation. In combination with conventional fetal and neonatal magnetic resonance imaging (MRI) techniques, fetal CMR can be used to explore the relationship between abnormal cardiovascular physiology and fetal development. Similarly, fetal CMR has been successfully applied in large animal models of the human fetal circulation, aiding in the evaluation of experimental interventions aimed at improving in utero development. With the advent of accelerated image acquisition techniques, post-processing approaches to correcting motion artifacts and commercial MRI compatible cardiotocography units for acquiring gated fetal cardiac imaging, an increasing number of CMR methods including angiography, ventricular volumetry, and the quantification of vessel blood flow and oxygen content are now possible.
Conclusion
Fetal CMR has reached an exciting stage whereby it may now be used to enhance the assessment of cardiac morphology and fetal hemodynamics in the setting of prenatal CHD.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW There is an increasing recognition that structural abnormalities and functional changes in the placenta can have deleterious effects on the development of the fetal heart. This article reviews the role of the placenta and the potential impact of placental insufficiency on fetuses with congenital heart disease. RECENT FINDINGS The fetal heart and the placenta are directly linked because they develop concurrently with shared regulatory and signaling pathways. Placental disease is more common in pregnancies carrying a fetus with congenital heart disease and the fetal response to placental insufficiency may lead to the postnatal persistence of cardiac remodeling. The mechanisms underlying this placental-fetal axis of interaction potentially include genetic factors, oxidative stress, chronic hypoxia, and/or angiogenic imbalance. SUMMARY The maternal-placental-fetal circulation is critical to advancing our understanding of congenital heart disease. We must first expand our ability to detect, image, and quantify placental insufficiency and dysfunction in utero. Elucidating the modifiable factors involved in these pathways is an exciting opportunity for future research, which may enable us to improve outcomes in patients with congenital heart disease.
Collapse
Affiliation(s)
- Jordan A Cohen
- University of Miami, Miller School of Medicine, Miami, Florida
| | - Jack Rychik
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill J Savla
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Cho SKS, Darby JRT, Saini BS, Lock MC, Holman SL, Lim JM, Perumal SR, Macgowan CK, Morrison JL, Seed M. Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep. J Physiol 2020; 598:2557-2573. [PMID: 32378201 DOI: 10.1113/jp279054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS The application of fetal cardiovascular magnetic resonance imaging (CMR) to assess fetal cardiovascular physiology and cardiac function through the quantification of ventricular volumes has previously been investigated, but the approach has not yet been fully validated. Ventricular output measurements calculated from heart rate and stroke volumes (SV) of the right and left ventricles measured by ventricular volumetry (VV) exhibited a high level of agreement with phase-contrast (PC) blood flow measurements in the main pulmonary artery and ascending aorta, respectively. Ejection fraction of the right ventricle, which is lower than that of the left ventricle in postnatal subjects, was similar to the left ventricular ejection fraction in the fetus; probably due to the different loading conditions present in the fetal circulation. This study provides evidence to support the reliability of VV in the sheep fetus, providing evidence for its use in animal models of human diseases affecting the fetal circulation. ABSTRACT The application of ventricular volumetry (VV) by cardiovascular magnetic resonance imaging (CMR) in the fetus remains challenging due to the small size of the fetal heart and high heart rate. The reliability of this technique in utero has not yet been established. The aim of this study was to assess the feasibility and reliability of VV in a fetal sheep model of human pregnancy. Right and left ventricular outputs by stroke volume (SV) measured using VV were compared with 2D phase-contrast (PC) CMR measurements of blood flow in the main pulmonary artery (MPA) and ascending aorta (AAo). At 124-140 days (d) gestation, singleton bearing Merino ewes underwent CMR under general anaesthesia using fetal femoral artery catheters, implanted at 109-117d, to trigger cine steady state free precession acquisitions of ventricular short-axis stacks. The short-axis cine stacks were segmented at end-systole and end-diastole, yielding right and left ventricular SV, ejection fraction, and cardiac outputs (SV × heart rate). PC cine acquisitions of MPA and AAo were analysed to measure blood flow, which served as comparators for the right and left cardiac outputs by VV. There was good correlation and agreement between VV and PC measures of ventricular outputs with no significant bias (r2 = 0.926; P < 0.0001; Bias = -4.7 ± 10.5 ml min-1 kg-1 ; 95% limits of agreement: -15.9 to 25.2 ml min-1 kg-1 ). This study validates fetal VV by CMR in a large animal model of human pregnancy and provides preliminary reference values of fetal sheep right and left ventricles in late gestation.
Collapse
Affiliation(s)
- Steven K S Cho
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Brahmdeep S Saini
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jessie Mei Lim
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Cardiology, Hospital for Sick Children, Toronto, Canada
| | - Sunthara Rajan Perumal
- Preclinical, Imaging & Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA, 5001, Australia
| | - Mike Seed
- Division of Cardiology, Hospital for Sick Children, Toronto, Canada.,Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Marini D, Xu J, Sun L, Jaeggi E, Seed M. Current and future role of fetal cardiovascular MRI in the setting of fetal cardiac interventions. Prenat Diagn 2019; 40:71-83. [PMID: 31834624 DOI: 10.1002/pd.5626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Over recent years, technical developments resulting in the feasibility of fetal cardiovascular magnetic resonance (CMR) have provided a new diagnostic tool for studying the human fetal heart and circulation. During the same period, we have witnessed the arrival of several minimally invasive fetal cardiac interventions (FCI) as a possible form of treatment in selected congenital heart diseases (CHDs). The role of fetal CMR in the planning and monitoring of FCI is not yet clear. Indeed, high-quality fetal CMR is not available or routinely offered at most centers caring for patients with prenatally detected CHD. However, in theory, fetal CMR could have much to offer in the setting of FCI by providing complementary anatomic and physiologic information relating to the specific intervention under consideration. Similarly, fetal CMR may be useful as an alternative imaging modality when ultrasound is hampered by technical limitations, for example, in the setting of oligohydramnios and in late gestation. In this review, we summarize current experience of the use of fetal CMR in the diagnosis and monitoring of fetuses with cardiopathies in the setting of a range of invasive in utero cardiac and vascular interventions and medical treatments and speculate about future directions for this versatile imaging medium.
Collapse
Affiliation(s)
- Davide Marini
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiawei Xu
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Liqun Sun
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edgar Jaeggi
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mike Seed
- Division of Pediatric Cardiology, Department of Pediatrics, University of Toronto and Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|