1
|
McElroy S, Tomi-Tricot R, Cleary J, Tan HEI, Kinsella S, Jeljeli S, Goh V, Neji R. 3D distortion-free, reduced FOV diffusion-prepared gradient echo at 3 T. Magn Reson Med 2024. [PMID: 39462469 DOI: 10.1002/mrm.30357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
PURPOSE To develop a 3D distortion-free reduced-FOV diffusion-prepared gradient-echo sequence and demonstrate its application in vivo for diffusion imaging of the spinal cord in healthy volunteers. METHODS A 3D multi-shot reduced-FOV diffusion-prepared gradient-echo acquisition is achieved using a slice-selective tip-down pulse in the phase-encoding direction in the diffusion preparation, combined with magnitude stabilizers, centric k-space encoding, and 2D phase navigators to correct for intershot phase errors. The accuracy of the ADC values obtained using the proposed approach was evaluated in a diffusion phantom and compared to the tabulated reference ADC values and to the ADC values obtained using a standard spin echo diffusion-weighted single-shot EPI sequence (DW-SS-EPI). Five healthy volunteers were scanned at 3 T using the proposed sequence, DW-SS-EPI, and a clinical diffusion-weighted multi-shot readout-segmented EPI sequence (RESOLVE) for cervical spinal cord imaging. Image quality, perceived SNR, and image distortion were assessed by two expert radiologists. ADC maps were calculated, and ADC values obtained with the proposed sequence were compared to those obtained using DW-SS-EPI and RESOLVE. RESULTS Consistent ADC estimates were measured in the diffusion phantom with the proposed sequence and the conventional DW-SS-EPI sequence, and the ADC values were in close agreement with the reference values provided by the manufacturer of the phantom. In vivo, the proposed sequence demonstrated improved image quality, improved perceived SNR, and reduced perceived distortion compared to DW-SS-EPI, whereas all measures were comparable against RESOLVE. There were no significant differences in ADC values estimated in vivo for each of the sequences. CONCLUSION 3D distortion-free diffusion-prepared imaging can be achieved using the proposed sequence.
Collapse
Affiliation(s)
- Sarah McElroy
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Raphael Tomi-Tricot
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Siemens Healthcare, Courbevoie, France
| | - Jon Cleary
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Shawna Kinsella
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Sami Jeljeli
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Pan J, Shao X, Liu H, Li Y, Wang Q. Image quality optimization: dynamic contrast-enhanced MRI of the abdomen at 3T using a continuously acquired radial golden-angle compressed sensing acquisition. Abdom Radiol (NY) 2024; 49:399-405. [PMID: 37792056 PMCID: PMC10830580 DOI: 10.1007/s00261-023-04035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION The image quality of continuously acquired free-breathing Dynamic Contrast-Enhanced (DCE) golden-angle radial Magnetic Resonance Imaging (MRI) of abdomen suffers from motion artifacts and motion-related blurring. We propose a scheme by minimizing patients' motion status from breathing as well as optimizing the acquiring parameters to improve image quality and diagnostic performance of DCE-MRI with Golden-Angle Radial Sparse Parallel (GRASP) sequence of abdomen. METHODS The optimization scheme follows two principles: (1) reduce the impact on images from unpredictable and irregulate motions during examination and (2) adjust the sequence parameters to increase the number of radial views in each partition. For the assessment of image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the severity of radial artifact, the degree of image sharpness, and a visual scoring of image quality with a 5-point scale were assessed. RESULTS A total of 64 patients were included in this study before (16 men, 14 women, age: 54.9 ± 17.0) and after (18 men, 16 women, age: 58.6 ± 12.6) the optimization scheme was performed. The results showed that the SNR values of right and left lobe of liver in both plain phase and arterial phase were significantly increased (All P < 0.001) after the GRASP sequence been optimized. Significant improvements in CNR values were observed in the arterial phase (All P < 0.05). The significant differences in scores at each phase for visual scoring of image quality, noise of the right and left lobe of liver, radial artifact, and sharpness indicating that the image quality was significantly improved after the optimization (All P < 0.001). CONCLUSION Our study demonstrated that the optimized scheme significantly improved the image quality of liver DCE-MRI with GRASP sequence both in plain and arterial phases. The optimized scheme of GRASP sequence could be a superior alternative to conventional approach for the assessment of liver.
Collapse
Affiliation(s)
- Jiangyang Pan
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xian Shao
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, Hebei, China
| | - Hui Liu
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Yang Li
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Qi Wang
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Kim D, Collins JD, White JA, Hanneman K, Lee DC, Patel AR, Hu P, Litt H, Weinsaft JW, Davids R, Mukai K, Ng MY, Luetkens JA, Roguin A, Rochitte CE, Woodard PK, Manisty C, Zareba KM, Mont L, Bogun F, Ennis DB, Nazarian S, Webster G, Stojanovska J. SCMR expert consensus statement for cardiovascular magnetic resonance of patients with a cardiac implantable electronic device. J Cardiovasc Magn Reson 2024; 26:100995. [PMID: 38219955 PMCID: PMC11211236 DOI: 10.1016/j.jocmr.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.
Collapse
Affiliation(s)
- Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | - James A White
- Departments of Cardiac Sciences and Diagnostic Imaging, Cummings School of Medicine, University of Calgary, Calgary, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital and Peter Munk Cardiac Centre, University of Toronto, Toronto, Canada
| | - Daniel C Lee
- Department of Medicine (Division of Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amit R Patel
- Cardiovascular Division, University of Virginia, Charlottesville, VA, USA
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Division of Cardiology), Weill Cornell Medicine, New York, NY, USA
| | - Rachel Davids
- SHS AM NAM USA DI MR COLLAB ADV-APPS, Siemens Medical Solutions USA, Inc., Chicago, Il, USA
| | - Kanae Mukai
- Salinas Valley Memorial Healthcare System, Ryan Ranch Center for Advanced Diagnostic Imaging, Monterey, CA, USA
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Ariel Roguin
- Department of Cardiology, Hillel Yaffe Medical Center, Hadera and Faculty of Medicine. Technion - Israel Institute of Technology, Israel
| | - Carlos E Rochitte
- Heart Institute, InCor, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karolina M Zareba
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Lluis Mont
- Cardiovascular Institute, Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - Frank Bogun
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Webster
- Department of Pediatrics (Cardiology), Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Jadranka Stojanovska
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
4
|
Mansour R, Romaguera LV, Huet C, Bentridi A, Vu KN, Billiard JS, Gilbert G, Tang A, Kadoury S. Abdominal motion tracking with free-breathing XD-GRASP acquisitions using spatio-temporal geodesic trajectories. Med Biol Eng Comput 2022; 60:583-598. [PMID: 35029812 DOI: 10.1007/s11517-021-02477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
Free-breathing external beam radiotherapy remains challenging due to the complex elastic or irregular motion of abdominal organs, as imaging moving organs leads to the creation of motion blurring artifacts. In this paper, we propose a radial-based MRI reconstruction method from 3D free-breathing abdominal data using spatio-temporal geodesic trajectories, to quantify motion during radiotherapy. The prospective study was approved by the institutional review board and consent was obtained from all participants. A total of 25 healthy volunteers, 12 women and 13 men (38 years ± 12 [standard deviation]), and 11 liver cancer patients underwent imaging using a 3.0 T clinical MRI system. The radial acquisition based on golden-angle sparse sampling was performed using a 3D stack-of-stars gradient-echo sequence and reconstructed using a discretized piecewise spatio-temporal trajectory defined in a low-dimensional embedding, which tracks the inhale and exhale phases, allowing the separation between distinct motion phases. Liver displacement between phases as measured with the proposed radial approach based on the deformation vector fields was compared to a navigator-based approach. Images reconstructed with the proposed technique with 20 motion states and registered with the multiscale B-spline approach received on average the highest Likert scores for the overall image quality and visual SNR score 3.2 ± 0.3 (mean ± standard deviation), with liver displacement errors varying between 0.1 and 2.0 mm (mean 0.8 ± 0.6 mm). When compared to navigator-based approaches, the proposed method yields similar deformation vector field magnitudes and angle distributions, and with improved reconstruction accuracy based on mean squared errors. Schematic illustration of the proposed 4D-MRI reconstruction method based on radial golden-angle acquisitions and a respiration motion model from a manifold embedding used for motion tracking. First, data is extracted from the center of k-space using golden-angle sampling, which is then mapped onto a low-dimensional embedding, describing the relationship between neighboring samples in the breathing cycle. The trained model is then used to extract the respiratory motion signal for slice re-ordering. The process then improves the image quality through deformable image registration. Using a reference volume, the deformation vector field (DVF) of sequential motion states are extracted, followed by deformable registrations. The output is a 4DMRI which allows to visualize and quantify motion during free-breathing.
Collapse
Affiliation(s)
- Rihab Mansour
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montreal, QC, Canada
| | - Liset Vazquez Romaguera
- Department of Computer and Software Engineering, Polytechnique Montreal, PO Box 6079, Montreal, QC, Canada
| | - Catherine Huet
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Ahmed Bentridi
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Kim-Nhien Vu
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jean-Sébastien Billiard
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | | | - An Tang
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montreal, QC, Canada
- Department of Radiology, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Samuel Kadoury
- Centre hospitalier de l'Université de Montréal (CHUM) Research Center, Montreal, QC, Canada.
- Department of Computer and Software Engineering, Polytechnique Montreal, PO Box 6079, Montreal, QC, Canada.
| |
Collapse
|
5
|
Wang W, Pun KP, Zhao B. A Current-Switching Technique for Intra-Body Communication With Miniaturized Electrodes. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:1343-1353. [PMID: 34748499 DOI: 10.1109/tbcas.2021.3125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medical implants are required to be minimized in size to alleviate surgical pains. Battery and antenna are often the main bottlenecks in system miniaturization. Wireless power transfer (WPT) is a possible way to minimize or eliminate the battery. Medical implants with WPT often use backscattering for data communication due to its low power consumption and low hardware cost. However, the conventional backscattering approach with WPT requires a large implanted antenna to ensure a relatively high efficiency and enough signal-to-noise ratio (SNR) for demodulation. In this work, we propose a current-switching technique for intra-body communication to achieve a high SNR and data rate with a pair of small implanted electrodes. Instead of the conventional electric-field based WPT and communication, a current loop is configured in the body tissue for WPT, where a new passive-communication scheme is implemented at the same time. A prototype is implemented to validate the proposed technique, in which the implanted electrodes are designed to be as small as 200 μm × 200 μm, located 13 mm deep in the tissue. The system achieves a communication rate of 10 Mbps with a bit error rate (BER) of 8.4 ×10-4 over the 406 MHz MedRadio band, while the signal-to-blocker ratio and SNR are measured to be -35.7 dB and 12.4dB, respectively.
Collapse
|
6
|
Mansour R, Thibodeau Antonacci A, Bilodeau L, Vazquez Romaguera L, Cerny M, Huet C, Gilbert G, Tang A, Kadoury S. Impact of temporal resolution and motion correction for dynamic contrast-enhanced MRI of the liver using an accelerated golden-angle radial sequence. Phys Med Biol 2020; 65:085004. [PMID: 32084661 DOI: 10.1088/1361-6560/ab78be] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This paper presents a prospective study evaluating the impact on image quality and quantitative dynamic contrast-enhanced (DCE)-MRI perfusion parameters when varying the number of respiratory motion states when using an eXtra-Dimensional Golden-Angle Radial Sparse Parallel (XD-GRASP) MRI sequence. DCE acquisition was performed using a 3D stack-of-stars gradient-echo golden-angle radial acquisition in free-breathing with 100 spokes per motion state and temporal resolution of 6 s/volume, and using a non-rigid motion compensation to align different motion states. Parametric analysis was conducted using a dual-input single-compartment model. Nonparametric analysis was performed on the time-intensity curves. A total of 22 hepatocellular carcinomas (size: 11-52 mm) were evaluated. XD-GRASP reconstructed with increasing number of spokes for each motion state increased the signal-to-noise ratio (SNR) (p < 0.05) but decreased temporal resolution (0.04 volume/s vs 0.17 volume/s for one motion state) (p < 0.05). A visual scoring by an experienced radiologist show no change between increasing number of motion states with same number of spokes using the Likert score. The normalized maximum intensity time ratio, peak enhancement ratio and tumor arterial fraction increased with decreasing number of motion states (p < 0.05) while the transfer constant from the portal venous plasma to the surrounding tissue significantly decreased (p < 0.05). These same perfusion parameters show a significant difference in case of tumor displacement more than 1 cm (p < 0.05) whereas in the opposite case there was no significant variation. While a higher number of motion states and higher number of spokes improves SNR, the resulting lower temporal resolution can influence quantitative parameters that capture rapid signal changes. Finally, fewer displacement compensation is advantageous with lower number of motion state due to the higher temporal resolution. XD-GRASP can be used to perform quantitative perfusion measures in the liver, but the number of motion states may significantly alter some quantitative parameters.
Collapse
Affiliation(s)
- Rihab Mansour
- Centre hospitalier de l'Université de Montréal (CHUM) Research center, Montréal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|