1
|
Luo KL, Santos L, Tokaria R, Jambawalikar S, Duong PT, Raya JG, Mostoufi‐Moab S, Jaramillo D. Generalizing Diffusion Tensor Imaging of the Physis and Metaphysis. J Magn Reson Imaging 2025; 61:798-804. [PMID: 38757966 PMCID: PMC11706308 DOI: 10.1002/jmri.29455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Current methods to predict height potential are inaccurate. Predicting height by using MRI of the physeal cartilage has shown promise but the applicability of this technique in different imaging setups has not been well-evaluated. PURPOSE To assess variability in diffusion tensor imaging of the physis and metaphysis (DTI-P/M) of the distal femur between different scanners, imaging parameters, tractography software, and resolution. STUDY TYPE Prospective. POPULATION/SUBJECTS Eleven healthy subjects (five males and six females ages 10-16.94). FIELD STRENGTH/SEQUENCE 3 T; DTI single shot echo planar sequences. ASSESSMENT Physeal DTI tract measurements of the distal femur were compared between different scanners, imaging parameters, tractography settings, interpolation correction, and tractography software. STATISTICAL TESTS Bland-Altman, Spearman correlation, linear regression, and Shapiro-Wilk tests. Threshold for statistical significance was set at P = 0.05. RESULTS DTI tract values consistently showed low variability with different imaging and analysis settings. Vendor to vendor comparison exhibited strong correlation (ρ = 0.93) and small but significant bias (bias -5.76, limits of agreement [LOA] -24.31 to 12.78). Strong correlation and no significant difference were seen between technical replicates of the General Electric MRI scanner (ρ = 1, bias 0.17 [LOA -1.5 to 1.2], P = 0.42) and the Siemens MRI scanner (ρ = 0.89, bias = 0.56, P = 0.71). Different voxel sizes (1 × 1 × 2 mm3 vs. 2 × 2 × 3 mm3) did not significantly affect DTI values (bias = 1.4 [LOA -5.7 to 8.4], P = 0.35) but maintained a strong correlation (ρ = 0.82). Gap size (0 mm vs. 0.6 mm) significantly affects tract volume (bias = 1.8 [LOA -5.4 to 1.8]) but maintains a strong correlation (ρ = 0.93). Comparison of tractography algorithms generated significant differences in tract number, length, and volume while maintaining correlation (ρ = 0.86, 0.99, 0.93, respectively). Comparison of interobserver variability between different tractography software also revealed significant differences while maintaining high correlation (ρ = 0.85-0.98). DATA CONCLUSION DTI of the pediatric physis cartilage shows high reproducibility between different imaging and analytic parameters. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Katherine L. Luo
- Department of RadiologyHospital of the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Laura Santos
- Department of RadiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Rumana Tokaria
- Department of RadiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Sachin Jambawalikar
- Department of RadiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Phuong T. Duong
- Department of RadiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - José G. Raya
- New York University Langone Medical CenterNew YorkNew YorkUSA
| | | | - Diego Jaramillo
- Department of RadiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
2
|
Santos L, Guariento A, Moustoufi-Moab S, Nguyen J, Tokaria R, Raya JM, Zurakowski D, Jambawalikar S, Jaramillo D. Comparison of tibial and femoral physeal diffusion tensor imaging in adolescents. Pediatr Radiol 2024; 54:2243-2253. [PMID: 39516384 PMCID: PMC11638376 DOI: 10.1007/s00247-024-06073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Distal femoral diffusion tensor imaging (DTI) is a predictor of height gain but it is uncertain whether DTI can demonstrate differences in growth potential between the tibia and femur. OBJECTIVE To explore the differences in structure and growth potential of the proximal tibia physeal-metaphyseal complex compared to those of the distal femur through DTI tractographic characterization and DTI metric comparison. MATERIALS AND METHODS Prospective cross-sectional study involved 108 healthy children (59 females) aged 8-14 years (females) and 10-16 years (males) around the growth spurt. We acquired knee DTI once at 3 T with b-values of 0 s/mm2 and 600 s/mm2. Tract parameters including number, length, volume, and fractional anisotropy were measured. Regression analysis with linear and negative binomial models, incorporating bone age-based quadratic fitting, characterized DTI parameter changes in relation to bone age and sex, as well as variations between physes. Femorotibial ratios were calculated based on paired DTI parameter absolute values during peak height gain. The study was approved by the institutional review board of two tertiary pediatric centers in compliance with the Health Insurance Portability and Accountability Act. RESULTS Proximal tibial tracts were more numerous in the central physis, whereas distal femoral tracts predominated peripherally. Tract volume rose and fell during adolescence and peaked earlier in females (140-160 months vs. 160-180 months, P=0.02). At maximal height velocity (160 months), tibial tract volume (5.43 cc) was 37.4% of total knee tract volume (14.53 cc). Tibial fractional anisotropy decreased and then increased, both earlier than the femur. CONCLUSION Proximal tibial and distal femoral tract distributions differ. The tibia accounts for 37.4% of total knee tract volume during maximal height velocity. Tract volumes rise and fall, earlier in females. Tibiofemoral ratios of DTI metrics resemble known ratios of growth rates between tibia and femur.
Collapse
Affiliation(s)
- Laura Santos
- Columbia University Medical Center, 622 W 168Th St, New York, NY, 10032, USA.
| | | | | | - Jie Nguyen
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rumana Tokaria
- Columbia University Medical Center, 622 W 168Th St, New York, NY, 10032, USA
| | | | | | - Sachin Jambawalikar
- Columbia University Medical Center, 622 W 168Th St, New York, NY, 10032, USA
| | | |
Collapse
|
3
|
Zhang Y, Cheng Z, Peng H, Ma W, Zhang R, Ma J, Gao S, Li W, Xu Y. Factors influencing diffusion tensor imaging of knee cartilage in children ages 6-12 years: a prospective study. Pediatr Radiol 2024; 54:1284-1293. [PMID: 38910223 DOI: 10.1007/s00247-024-05965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Magnetic resonance diffusion tensor imaging (DTI) has recently been used to evaluate the developing cartilage of children, but the influencing factors have not been well studied. OBJECTIVE The objective of this study was to investigate the influence of the diffusion gradient strength (b value), diffusion gradient direction, age and sex on knee cartilage DTI in healthy children aged 6-12 years. MATERIALS AND METHODS A total of 30 healthy child volunteers, with an average age of 8.9 ± 1.6 (mean ± standard deviation) years, were enrolled in this study. They were categorized into three groups according to their age range: 6-8 years, 8-10 years and 10-12 years, ensuring equal sex distribution in each group (5 boys and 5 girls). These volunteers underwent routine left knee joint magnetic resonance imaging (MRI) and serial DTI scans. DTI parameters were altered as follows: when b value = 600 s/mm2, diffusion gradient direction was set to 6, 15, 25, 35 and 45; and when diffusion gradient direction = 25, b value was set to 300, 600, 900 and 1200 s/mm2. The values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were separately acquired using image post-processing techniques. The correlation between various b values, diffusion gradient directions, age and sex on the one hand and FA and ADC values on the other, was investigated. RESULTS (1) When diffusion gradient direction was fixed and the b value was varied, both FA and ADC exhibited a decreasing trend as the b value increased (P < 0.001). (2) When the b value was fixed and diffusion gradient direction was varied, the FA of knee cartilage showed a decreasing trend with increasing diffusion gradient direction (P < 0.001). (3) The FA value increased with age (P < 0.05). CONCLUSION The b value, diffusion gradient direction value and age exert a significant impact on both FA and ADC values in MR DTI of knee cartilage in children aged 6-12 years. In order to obtain a stable DTI, it is recommended to select a b value ≥ 600 s/mm2 and a diffusion gradient direction ≥ 25 during scanning.
Collapse
Affiliation(s)
- Yilu Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Zhuo Cheng
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Hailun Peng
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Wei Ma
- Department of Radiology, The People's Hospital of Yubei District of Chongqing City, Yubei District, Chongqing, China
| | - Rui Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Junya Ma
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Sijie Gao
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Wei Li
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China
| | - Ye Xu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, 136 Zhongshan Er Lu, Yuzhong District, Chongqing, 400000, China.
| |
Collapse
|
4
|
Santos L, Hsu HY, Nelson RR, Sullivan B, Shin J, Fung M, Lebel MR, Jambawalikar S, Jaramillo D. Impact of Deep Learning Denoising Algorithm on Diffusion Tensor Imaging of the Growth Plate on Different Spatial Resolutions. Tomography 2024; 10:504-519. [PMID: 38668397 PMCID: PMC11054892 DOI: 10.3390/tomography10040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
To assess the impact of a deep learning (DL) denoising reconstruction algorithm applied to identical patient scans acquired with two different voxel dimensions, representing distinct spatial resolutions, this IRB-approved prospective study was conducted at a tertiary pediatric center in compliance with the Health Insurance Portability and Accountability Act. A General Electric Signa Premier unit (GE Medical Systems, Milwaukee, WI) was employed to acquire two DTI (diffusion tensor imaging) sequences of the left knee on each child at 3T: an in-plane 2.0 × 2.0 mm2 with section thickness of 3.0 mm and a 2 mm3 isovolumetric voxel; neither had an intersection gap. For image acquisition, a multi-band DTI with a fat-suppressed single-shot spin-echo echo-planar sequence (20 non-collinear directions; b-values of 0 and 600 s/mm2) was utilized. The MR vendor-provided a commercially available DL model which was applied with 75% noise reduction settings to the same subject DTI sequences at different spatial resolutions. We compared DTI tract metrics from both DL-reconstructed scans and non-denoised scans for the femur and tibia at each spatial resolution. Differences were evaluated using Wilcoxon-signed ranked test and Bland-Altman plots. When comparing DL versus non-denoised diffusion metrics in femur and tibia using the 2 mm × 2 mm × 3 mm voxel dimension, there were no significant differences between tract count (p = 0.1, p = 0.14) tract volume (p = 0.1, p = 0.29) or tibial tract length (p = 0.16); femur tract length exhibited a significant difference (p < 0.01). All diffusion metrics (tract count, volume, length, and fractional anisotropy (FA)) derived from the DL-reconstructed scans, were significantly different from the non-denoised scan DTI metrics in both the femur and tibial physes using the 2 mm3 voxel size (p < 0.001). DL reconstruction resulted in a significant decrease in femorotibial FA for both voxel dimensions (p < 0.01). Leveraging denoising algorithms could address the drawbacks of lower signal-to-noise ratios (SNRs) associated with smaller voxel volumes and capitalize on their better spatial resolutions, allowing for more accurate quantification of diffusion metrics.
Collapse
Affiliation(s)
- Laura Santos
- Radiology Department, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hao-Yun Hsu
- Radiology Department, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ronald R. Nelson
- Radiology Department, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brendan Sullivan
- Radiology Department, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | | | - Sachin Jambawalikar
- Radiology Department, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Diego Jaramillo
- Radiology Department, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
5
|
Duong PT, Santos L, Hsu HY, Jambawalikar S, Mutasa S, Nguyen MK, Guariento A, Jaramillo D. Deep Learning-Assisted Diffusion Tensor Imaging for Evaluation of the Physis and Metaphysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:756-765. [PMID: 38321313 PMCID: PMC11031540 DOI: 10.1007/s10278-024-00993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Diffusion tensor imaging of physis and metaphysis can be used as a biomarker to predict height change in the pediatric population. Current application of this technique requires manual segmentation of the physis which is time-consuming and introduces interobserver variability. UNET Transformers (UNETR) can be used for automatic segmentation to optimize workflow. Three hundred and eighty-five DTI scans from 191 subjects with mean age of 12.6 years ± 2.01 years were retrospectively used for training and validation. The mean Dice correlation coefficient was 0.81 for the UNETR model and 0.68 for the UNET. Manual extraction and segmentation took 15 min per volume, whereas both deep learning segmentation techniques took < 1 s per volume and were deterministic, always producing the same result for a given input. Intraclass correlation coefficient (ICC) for ROI-derived femur diffusion metrics was excellent for tract count (0.95), volume (0.95), and FA (0.97), and good for tract length (0.87). The results support the hypothesis that a hybrid UNETR model can be trained to replace the manual segmentation of physeal DTI images, therefore automating the process.
Collapse
Affiliation(s)
- Phuong T Duong
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Laura Santos
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hao-Yun Hsu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael K Nguyen
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Diego Jaramillo
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Raya JG, Duarte A, Wang N, Mazzoli V, Jaramillo D, Blamire AM, Dietrich O. Applications of Diffusion-Weighted MRI to the Musculoskeletal System. J Magn Reson Imaging 2024; 59:376-396. [PMID: 37477576 DOI: 10.1002/jmri.28870] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
Diffusion-weighted imaging (DWI) is an established MRI technique that can investigate tissue microstructure at the scale of a few micrometers. Musculoskeletal tissues typically have a highly ordered structure to fulfill their functions and therefore represent an optimal application of DWI. Even more since disruption of tissue organization affects its biomechanical properties and may indicate irreversible damage. The application of DWI to the musculoskeletal system faces application-specific challenges on data acquisition including susceptibility effects, the low T2 relaxation time of most musculoskeletal tissues (2-70 msec) and the need for sub-millimetric resolution. Thus, musculoskeletal applications have been an area of development of new DWI methods. In this review, we provide an overview of the technical aspects of DWI acquisition including diffusion-weighting, MRI pulse sequences and different diffusion regimes to study tissue microstructure. For each tissue type (growth plate, articular cartilage, muscle, bone marrow, intervertebral discs, ligaments, tendons, menisci, and synovium), the rationale for the use of DWI and clinical studies in support of its use as a biomarker are presented. The review describes studies showing that DTI of the growth plate has predictive value for child growth and that DTI of articular cartilage has potential to predict the radiographic progression of joint damage in early stages of osteoarthritis. DTI has been used extensively in skeletal muscle where it has shown potential to detect microstructural and functional changes in a wide range of muscle pathologies. DWI of bone marrow showed to be a valuable tool for the diagnosis of benign and malignant acute vertebral fractures and bone metastases. DTI and diffusion kurtosis have been investigated as markers of early intervertebral disc degeneration and lower back pain. Finally, promising new applications of DTI to anterior cruciate ligament grafts and synovium are presented. The review ends with an overview of the use of DWI in clinical routine. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- José G Raya
- Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Alejandra Duarte
- Division of Musculoskeletal Radiology, Department of Radiology, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nian Wang
- Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Diego Jaramillo
- Department of Radiology, Columbia University Medical Center, New York, New York, USA
| | - Andrew M Blamire
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Kvist O, Santos LA, De Luca F, Jaramillo D. Can diffusion tensor imaging unlock the secrets of the growth plate? BJR Open 2024; 6:tzae005. [PMID: 38558926 PMCID: PMC10978376 DOI: 10.1093/bjro/tzae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
"How tall will I be?" Every paediatrician has been asked this during their career. The growth plate is the main site of longitudinal growth of the long bones. The chondrocytes in the growth plate have a columnar pattern detectable by diffusion tensor imaging (DTI). DTI shows the diffusion of water in a tissue and whether it is iso- or anisotropic. By detecting direction and magnitude of diffusion, DTI gives information about the microstructure of the tissue. DTI metrics include tract volume, length, and number, fractional anisotropy (FA), and mean diffusivity. DTI metrics, particularly tract volume, provide quantitative data regarding skeletal growth and, in conjunction with the fractional anisotropy, be used to determine whether a growth plate is normal. Tractography is a visual display of the diffusion, depicting its direction and amplitude. Tractography gives a more qualitative visualization of cellular orientation in a tissue and reflects the activity in the growth plate. These two components of DTI can be used to assess the growth plate without ionizing radiation or pain. Further refinements in DTI will improve prediction of post-imaging growth and growth plate closure, and assessment of the positive and negative effect of treatments like cis-retinoic acid and growth hormone administration.
Collapse
Affiliation(s)
- Ola Kvist
- Department of Paediatric Radiology, Karolinska University Hospital, Stockholm, 171 64, Sweden
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, 171 77, Sweden
| | - Laura A Santos
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY 100 32, United States
| | - Francesca De Luca
- Department of Radiology, Karolinska University Hospital, Stockholm, 171 64, Sweden
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, 171 65, Sweden
| | - Diego Jaramillo
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY 100 32, United States
| |
Collapse
|
8
|
Santos LA, Sullivan B, Kvist O, Jambawalikar S, Mostoufi-Moab S, Raya JM, Nguyen J, Marin D, Delgado J, Tokaria R, Nelson RR, Kammen B, Jaramillo D. Diffusion tensor imaging of the physis: the ABC's. Pediatr Radiol 2023; 53:2355-2368. [PMID: 37658251 PMCID: PMC10859915 DOI: 10.1007/s00247-023-05753-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
The physis, or growth plate, is the primary structure responsible for longitudinal growth of the long bones. Diffusion tensor imaging (DTI) is a technique that depicts the anisotropic motion of water molecules, or diffusion. When diffusion is limited by cellular membranes, information on tissue microstructure can be acquired. Tractography, the visual display of the direction and magnitude of water diffusion, provides qualitative visualization of complex cellular architecture as well as quantitative diffusion metrics that appear to indirectly reflect physeal activity. In the growing bones, DTI depicts the columns of cartilage and new bone in the physeal-metaphyseal complex. In this "How I do It", we will highlight the value of DTI as a clinical tool by presenting DTI tractography of the physeal-metaphyseal complex of children and adolescents during normal growth, illustrating variation in qualitative and quantitative tractography metrics with age and skeletal location. In addition, we will present tractography from patients with physeal dysfunction caused by growth hormone deficiency and physeal injury due to trauma, chemotherapy, and radiation therapy. Furthermore, we will delineate our process, or "DTI pipeline," from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Laura A Santos
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA.
| | - Brendan Sullivan
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Ola Kvist
- Pediatric Radiology Department, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | | | - Jose M Raya
- New York University Langone Health, New York, NY, USA
| | - Jie Nguyen
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diana Marin
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Jorge Delgado
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rumana Tokaria
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Ronald R Nelson
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| | - Bamidele Kammen
- University of California San Francisco, San Francisco, CA, USA
| | - Diego Jaramillo
- Department of Radiology, Columbia University Irvine Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Kvist O, Damberg P, Dou Z, Berglund JS, Flodmark C, Nilsson O, Diaz S. Magnetic resonance and diffusion tensor imaging of the adolescent rabbit growth plate of the knee. Magn Reson Med 2023; 89:331-342. [PMID: 36110062 PMCID: PMC9826331 DOI: 10.1002/mrm.29432] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To assess the ability of MRI-DTI to evaluate growth plate morphology and activity compared with that of histomorphometry and micro-CT in rabbits. METHODS The hind limbs of female rabbits aged 16, 20, and 24 wk (n = 4 per age group) were studied using a 9.4T MRI scanner with a multi-gradient echo 3D sequence and DTI in 14 directions (b-value = 984 s/mm2 ). After MRI, the right and left hind limb were processed for histological analysis and micro-CT, respectively. The Wilcoxon signed-rank test was used to evaluate the height and volume of the growth plate. Intraclass correlation and Pearson correlation coefficient were used to evaluate the association between DTI metrics and age. RESULTS The growth plate height and volume were similar for all modalities at each time point and age. Age was correlated with all tractography and DTI metrics in both the femur and tibia. A correlation was also observed between all the metrics at both sites. Tract number and volume declined with age; however, tract length did not show any changes. The fractional anisotropy color map showed lateral diffusion centrally in the growth plate and perpendicular diffusion in the hypertrophic zone, as verified by histology and micro-CT. CONCLUSION MRI-DTI may be useful for evaluating the growth plates.
Collapse
Affiliation(s)
- Ola Kvist
- Department of Paediatric RadiologyKarolinska University Hospital
StockholmSweden,Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | - Peter Damberg
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Zelong Dou
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
| | | | | | - Ola Nilsson
- Department of Women's and Children's HealthKarolinska InstituteStockholmSweden,School of Medical SciencesÖrebro UniversityÖrebroSweden
| | - Sandra Diaz
- Department of Paediatric RadiologyKarolinska University Hospital
StockholmSweden,Department of Women's and Children's HealthKarolinska InstituteStockholmSweden,Department of RadiologyLunds UniversityLundSweden
| |
Collapse
|
10
|
Jaramillo D, Duong P, Nguyen JC, Mostoufi-Moab S, Nguyen MK, Moreau A, Barrera CA, Hong S, Raya JG. Diffusion Tensor Imaging of the Knee to Predict Childhood Growth. Radiology 2022; 303:655-663. [PMID: 35315716 PMCID: PMC9131176 DOI: 10.1148/radiol.210484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/16/2023]
Abstract
Background Accurate and precise methods to predict growth remain lacking. Diffusion tensor imaging (DTI) depicts the columnar structure of the physis and metaphyseal spongiosa and provides measures of tract volume and length that may help predict growth. Purpose To validate physeal DTI metrics as predictors of height velocity (1-year height gain from time of MRI examination) and total height gain (height gain from time of MRI examination until growth stops) and compare the prediction accuracy with bone age-based models. Materials and Methods Femoral DTI studies (b values = 0 and 600 sec/mm2; directions = 20) of healthy children who underwent MRI of the knee between February 2012 and December 2016 were retrospectively analyzed. Children with height measured at MRI and either 1 year later (height velocity) or after growth cessation (total height gain, mean = 34 months from MRI) were included. Physeal DTI tract volume and length were correlated with height velocity and total height gain. Multilinear regression was used to assess the potential of DTI metrics in the prediction of both parameters. Bland-Altman plots were used to compare root mean square error (RMSE) and bias in height prediction using DTI versus bone age methods. Results Eighty-nine children (mean age, 13 years ± 3 [SD]; 47 boys) had height velocity measured, and 70 (mean age, 14 years ± 1; 36 girls) had total height gain measured. Tract volumes correlated with height velocity (r2 = 0.49) and total height gain (r2 = 0.46) (P < .001 for both) after controlling for age and sex. Tract volume was the strongest predictor for height velocity and total height gain. An optimal multilinear model including tract volume improved prediction of height velocity (R2 = 0.63, RMSE = 1.7 cm) and total height gain (R2 = 0.59, RMSE = 1.8 cm) compared with bone age-based methods (height velocity: R2 = 0.32, RMSE = 2.9 cm; total height gain: R2 = 0.42, RMSE = 5.0 cm). Conclusion Models using tract volume derived from diffusion tensor imaging may perform better than bone age-based models in children for the prediction of height velocity and total height gain. © RSNA, 2022.
Collapse
Affiliation(s)
- Diego Jaramillo
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - Phuong Duong
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - Jie C. Nguyen
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - Sogol Mostoufi-Moab
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - Michael K. Nguyen
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - Andrew Moreau
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - Christian A. Barrera
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - Shijie Hong
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| | - José G. Raya
- From the Department of Radiology, Columbia University Medical Center,
630 W 168th St, MC 28, New York, NY 10032 (D.J., P.D.); Department of Radiology
(J.C.N., M.K.N., S.H.) and Division of Oncology (S.M.M., A.M.),
Children’s Hospital of Philadelphia, Philadelphia, Pa; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (C.A.B.); and Department
of Radiology, NYU Grossman School of Medicine, New York, NY (J.G.R.)
| |
Collapse
|
11
|
Chaturvedi A. Pediatric skeletal diffusion-weighted magnetic resonance imaging, part 2: current and emerging applications. Pediatr Radiol 2021; 51:1575-1588. [PMID: 34018037 DOI: 10.1007/s00247-021-05028-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 01/07/2023]
Abstract
Diffusion-weighted imaging (DWI) complements the more established T1, fluid-sensitive and gadolinium-enhanced magnetic resonance pulse sequences used to assess several pediatric skeletal pathologies. There is optimism that the technique might not just be complementary but could serve as an alternative to gadolinium and radiopharmaceuticals for several indications. As a non-contrast, free-breathing and noninvasive technique, DWI is especially valuable in children and is readily incorporated into existing MRI protocols. The indications for skeletal DWI in children include distinguishing between benign and malignant skeletal processes, initial assessment and treatment response assessment for osseous sarcomas, and assessment of inflammatory arthropathies and femoral head ischemia, among others. A notable challenge of diffusion MRI is the dynamic nature of the growing pediatric skeleton. It is important to consider the child's age when placing DWI findings in context with potential marrow pathology. This review article summarizes the current and evolving applications of DWI for assessing the pediatric skeleton, rounding off the discussion with evolving directions for further research in this realm.
Collapse
Affiliation(s)
- Apeksha Chaturvedi
- Division of Pediatric Radiology, Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Chaturvedi A. Pediatric skeletal diffusion-weighted magnetic resonance imaging: part 1 - technical considerations and optimization strategies. Pediatr Radiol 2021; 51:1562-1574. [PMID: 33792751 DOI: 10.1007/s00247-021-04975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
Diffusion-weighted MRI, or DWI, is a fast, quantitative technique that is easily integrated into a morphological MR acquisition. The ability of DWI to aid in detecting multifocal skeletal pathology and in characterizing tissue cellularity to a level beyond that possible with other techniques makes it a niche component of multiparametric MR imaging of the skeleton. Besides its role in disease detection and establishing cellularity and character of osseous lesions, DWI continues to be examined as a surrogate biomarker for therapeutic response of several childhood bone tumors. There is increasing interest in harnessing DWI as a potential substitute to alternative modes of imaging evaluation that involve radiation or administration of intravenous contrast agent or radiopharmaceuticals, for example in early detection and diagnosis of capital femoral epiphyseal ischemia in cases of Legg-Calvé-Perthes disease, or diagnosis and staging of lymphoma. The expected evolution of skeletal diffusivity characteristics with maturation and the unique disease processes that affect the pediatric skeleton necessitate a pediatric-specific discussion. In this article, the author examines the developmentally appropriate normal appearances, technique, artifacts and pitfalls of pediatric skeletal DWI.
Collapse
Affiliation(s)
- Apeksha Chaturvedi
- Division of Pediatric Radiology, Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY, 14642, USA.
| |
Collapse
|
13
|
Affiliation(s)
- Nancy A Chauvin
- Department of Pediatric Radiology, Penn State Health Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA.
| |
Collapse
|