1
|
Wang L, Chen L, Wei K, Zhou H, Zwiggelaar R, Fu W, Liu Y. Weakly supervised pathological differentiation of primary central nervous system lymphoma and glioblastoma on multi-site whole slide images. J Med Imaging (Bellingham) 2025; 12:017502. [PMID: 39802317 PMCID: PMC11724367 DOI: 10.1117/1.jmi.12.1.017502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/29/2024] [Accepted: 11/01/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Differentiating primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) is crucial because their prognosis and treatment differ substantially. Manual examination of their histological characteristics is considered the golden standard in clinical diagnosis. However, this process is tedious and time-consuming and might lead to misdiagnosis caused by morphological similarity between their histology and tumor heterogeneity. Existing research focuses on radiological differentiation, which mostly uses multi-parametric magnetic resonance imaging. By contrast, we investigate the pathological differentiation between the two types of tumors using whole slide images (WSIs) of postoperative formalin-fixed paraffin-embedded samples. Approach To learn the specific and intrinsic histological feature representations from the WSI patches, a self-supervised feature extractor is trained. Then, the patch representations are fused by feeding into a weakly supervised multiple-instance learning model for the WSI classification. We validate our approach on 134 PCNSL and 526 GBM cases collected from three hospitals. We also investigate the effect of feature extraction on the final prediction by comparing the performance of applying the feature extractors trained on the PCNSL/GBM slides from specific institutions, multi-site PCNSL/GBM slides, and large-scale histopathological images. Results Different feature extractors perform comparably with the overall area under the receiver operating characteristic curve value exceeding 85% for each dataset and close to 95% for the combined multi-site dataset. Using the institution-specific feature extractors generally obtains the best overall prediction with both of the PCNSL and GBM classification accuracies reaching 80% for each dataset. Conclusions The excellent classification performance suggests that our approach can be used as an assistant tool to reduce the pathologists' workload by providing an accurate and objective second diagnosis. Moreover, the discriminant regions indicated by the generated attention heatmap improve the model interpretability and provide additional diagnostic information.
Collapse
Affiliation(s)
- Liping Wang
- Shandong Normal University, School of Information Science and Engineering, Jinan, China
| | - Lin Chen
- The Affiliated Hospital of Southwest Medical University, Department of Neurosurgery, Luzhou, China
| | - Kaixi Wei
- The Affiliated Hospital of Southwest Medical University, Department of Neurosurgery, Luzhou, China
- Hejiang County Traditional Chinese Medicine Hospital, Department of Neurosurgery, Luzhou, China
| | - Huiyu Zhou
- University of Leicester, School of Computing and Mathematical Sciences, Leicester, United Kingdom
| | - Reyer Zwiggelaar
- Aberystwyth University, Department of Computer Science, Aberystwyth, United Kingdom
| | - Weiwei Fu
- The Affiliated Hospital of Qingdao University, Department of Pathology, Qingdao, China
| | - Yingchao Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Neurosurgery, Jinan, China
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Institute of Brain Science and Brain-inspired Research, Jinan, China
| |
Collapse
|
2
|
Yang YF, Zhao E, Shi Y, Zhang H, Yang YY. Multicenter investigation of preoperative distinction between primary central nervous system lymphomas and glioblastomas through interpretable artificial intelligence models. Neuroradiology 2024; 66:1893-1906. [PMID: 39225815 DOI: 10.1007/s00234-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE Research into the effectiveness and applicability of deep learning, radiomics, and their integrated models based on Magnetic Resonance Imaging (MRI) for preoperative differentiation between Primary Central Nervous System Lymphoma (PCNSL) and Glioblastoma (GBM), along with an exploration of the interpretability of these models. MATERIALS AND METHODS A retrospective analysis was performed on MRI images and clinical data from 261 patients across two medical centers. The data were split into a training set (n = 153, medical center 1) and an external test set (n = 108, medical center 2). Radiomic features were extracted using Pyradiomics to build the Radiomics Model. Deep learning networks, including the transformer-based MobileVIT Model and Convolutional Neural Networks (CNN) based ConvNeXt Model, were trained separately. By applying the "late fusion" theory, the radiomics model and deep learning model were fused to produce the optimal Max-Fusion Model. Additionally, Shapley Additive exPlanations (SHAP) and Grad-CAM were employed for interpretability analysis. RESULTS In the external test set, the Radiomics Model achieved an Area under the receiver operating characteristic curve (AUC) of 0.86, the MobileVIT Model had an AUC of 0.91, the ConvNeXt Model demonstrated an AUC of 0.89, and the Max-Fusion Model showed an AUC of 0.92. The Delong test revealed a significant difference in AUC between the Max-Fusion Model and the Radiomics Model (P = 0.02). CONCLUSION The Max-Fusion Model, combining different models, presents superior performance in distinguishing PCNSL and GBM, highlighting the effectiveness of model fusion for enhanced decision-making in medical applications. CLINICAL RELEVANCE STATEMENT The preoperative non-invasive differentiation between PCNSL and GBM assists clinicians in selecting appropriate treatment regimens and clinical management strategies.
Collapse
Affiliation(s)
- Yun-Feng Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Endong Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| | - Hao Zhang
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yuan-Yuan Yang
- Laboratory for Medical Imaging Informatics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China.
- Laboratory for Medical Imaging Informatics, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Okada T. Editorial for "Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures". J Magn Reson Imaging 2024; 60:921-922. [PMID: 37974516 DOI: 10.1002/jmri.29126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023] Open
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Madani F, Morovvati H, Webster TJ, Najaf Asaadi S, Rezayat SM, Hadjighassem M, Khosravani M, Adabi M. Combination chemotherapy via poloxamer 188 surface-modified PLGA nanoparticles that traverse the blood-brain-barrier in a glioblastoma model. Sci Rep 2024; 14:19516. [PMID: 39174603 PMCID: PMC11341868 DOI: 10.1038/s41598-024-69888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188. Cranial tumors were induced by implanting C6 cells in a rat model and MRI demonstrated that the tumors were indistinguishable in the two rats with P-MTX NPs + P-PTX NPs treated groups. Brain PET scans exhibited a decreased brain-to-background ratio which could be attributed to the diminished metabolic tumor volume. The expression of Ki-67 as a poor prognosis factor, was significantly lower in P-MTX NPs + P-PTX NPs compared to the control. Furthermore, the biodistribution of PLGA NPs was determined by carbon quantum dots loaded into PLGA NPs (P-CQD NPs), and quantitative analysis of ex-vivo imaging of the dissected organs demonstrated that 17.2 ± 0.6% of the NPs were concentrated in the brain after 48 h. The findings highlight the efficacy of combination nanochemotherapy in glioblastoma treatment, indicating the need for further preclinical studies.
Collapse
Affiliation(s)
- Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovvati
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Sareh Najaf Asaadi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Qi H, Zheng Y, Li J, Chen K, Zhou L, Luo D, Huang S, Zhang J, Lv Y, Tian Z. Correlation of functional magnetic resonance imaging features of primary central nervous system lymphoma with vasculogenic mimicry and reticular fibers. Heliyon 2024; 10:e32111. [PMID: 38947483 PMCID: PMC11214443 DOI: 10.1016/j.heliyon.2024.e32111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Objective To deepen the imaging-pathological mechanism of primary central nervous system lymphoma (PCNSL) and provide a theoretical basis for clinical diagnosis and treatment, the functional magnetic resonance imaging (fMRI) characteristics of PCNSL were analyzed, and the relationship between the fMRI characteristics and vasculogenic mimicry (VM) and reticular fiber in PCNSL was discussed. Methods Ninety-six patients with PCNSL treated in our hospital were divided into three groups according to the pathological examination results, including strong positive group of VM (n = 40), weak positive group of VM (n = 56), strong positive group of reticular fiber (n = 45) and weak positive group of reticular fiber (n = 51). The levels of augmentation index and apparent diffusion coefficient (ADC) were compared among the groups. receiver operator characteristic (ROC) curve analysis was used to analyze the clinical value of ADC value in differential diagnosis of PCNSL. Results The levels of augmentation index in the strong positive group of VM were significantly higher than that in the weak positive group of VM, and the ADC value in the strong positive group of VM was significantly lower than that in the weak positive group of VM (P < 0.001). The levels of augmentation index in the strong positive group of reticular fiber were significantly higher than that in the weak positive group of reticular fiber, and ADC value in the strong positive group of reticular fiber was significantly lower than that in reticular fiber weak positive group (P < 0.001). Pearson correlation analysis showed that the levels of augmentation index were positively correlated with VM and reticular fiber (r = 0.529, 0.548, P < 0.001) and the ADC value was negatively correlated with VM and reticular fiber (r = -0.485, -0.513, P < 0.001). There was a significant negative correlation between necrotic lesions and VM (r = -0.185, P < 0.05). The area under the curve (AUC) values of average ADC value, minimum ADC value, and maximum ADC value for individual differential diagnosis of PCNSL were 0.920, 0.901, and 0.702, while the AUC of the combined differential diagnosis was 0.985, with a sensitivity of 95.00 % and a specificity of 92.70 %. Conclusion The levels of augmentation index and the ADC value of PCNSL focus are significantly correlated with VM and reticular fiber, and there is a strong negative correlation between necrotic lesions and VM. MRI imaging technology is of great significance in revealing the biological behavior of PCNSL, which can effectively reveal the relationship between VM and reticular fibers and the MRI characteristics in PCNSL, thereby providing a new imaging basis for the clinical diagnosis and treatment of PCNSL.
Collapse
Affiliation(s)
- Huaiju Qi
- Department of Emergency, Shapingba Hospital, Chongqing University. people’s hospital of Shapingba district, 400033, Chongqing, China
| | - Yu Zheng
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, 400000, Chongqing, China
| | - Jiansheng Li
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Kaixuan Chen
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Li Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Dilin Luo
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Shan Huang
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Jiahui Zhang
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Yongge Lv
- Department of Radiology, Shenzhen Hospital of Integrated Traditional and Western Medicine, Shenzhen, Guangdong, 518104, China
| | - Zhu Tian
- Department of Emergency, Shapingba Hospital, Chongqing University. people’s hospital of Shapingba district, 400033, Chongqing, China
| |
Collapse
|
6
|
Guha A, Halder S, Shinde SH, Gawde J, Munnolli S, Talole S, Goda JS. How does deep learning/machine learning perform in comparison to radiologists in distinguishing glioblastomas (or grade IV astrocytomas) from primary CNS lymphomas?: a meta-analysis and systematic review. Clin Radiol 2024; 79:460-472. [PMID: 38614870 DOI: 10.1016/j.crad.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Several studies have been published comparing deep learning (DL)/machine learning (ML) to radiologists in differentiating PCNSLs from GBMs with equivocal results. We aimed to perform this meta-analysis to evaluate the diagnostic accuracy of ML/DL versus radiologists in classifying PCNSL versus GBM using MRI. METHODOLOGY The study was performed in accordance with PRISMA guidelines. Data was extracted and interpreted by two researchers with 12 and 23 years' experience, respectively, and QUADAS-2 tool was used for quality and risk-bias assessment. We constructed contingency tables to derive sensitivity, specificity accuracy, summary receiver operating characteristic (SROC) curve, and the area under the curve (AUC). RESULTS Our search identified 11 studies, of which 8 satisfied our inclusion criteria and restricted the analysis in each study to reporting the model showing highest accuracy, with a total sample size of 1159 patients. The random effects model showed a pooled sensitivity of 0.89 [95% CI:0.84-0.92] for ML and 0.82 [95% CI:0.76-0.87] for radiologists. Pooled specificity was 0.88 [95% CI: 0.84-0.91] for ML and 0.90 [95% CI: 0.81-0.95] for radiologists. Pooled accuracy was 0.88 [95% CI: 0.86-0.90] for ML and 0.86 [95% CI: 0.78-0.91] for radiologists. Pooled AUC of ML was 0.94 [95% CI:0.92-0.96]and for radiologists, it was 0.90 [95% CI: 0.84-0.93]. CONCLUSIONS MRI-based ML/DL techniques can complement radiologists to improve the accuracy of classifying GBMs from PCNSL, possibly reduce the need for a biopsy, and avoid any unwanted neurosurgical resection of a PCNSL.
Collapse
Affiliation(s)
- A Guha
- Department of Radio-diagnosis, Tata Memorial Hospital, Parel, Mumbai, 400012, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India.
| | - S Halder
- Centre for Cancer Epidemiology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - S H Shinde
- Department of Radio-diagnosis, Tata Memorial Hospital, Parel, Mumbai, 400012, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - J Gawde
- Centre for Cancer Epidemiology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - S Munnolli
- Librarian and Officer In-Charge, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - S Talole
- Biostatistician, Centre for Cancer Epidemiology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India
| | - J S Goda
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, 410210, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, 400094, India.
| |
Collapse
|
7
|
Liang Q, Jing H, Shao Y, Wang Y, Zhang H. Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas. Clin Neuroradiol 2024; 34:33-43. [PMID: 38277059 DOI: 10.1007/s00062-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.
Collapse
Affiliation(s)
- Qian Liang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Jing
- Department of MRI, The Sixth Hospital, Shanxi Medical University, 030008, Taiyuan, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Yinhua Wang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
| |
Collapse
|
8
|
Rajadurai S, Perumal K, Ijaz MF, Chowdhary CL. PrecisionLymphoNet: Advancing Malignant Lymphoma Diagnosis via Ensemble Transfer Learning with CNNs. Diagnostics (Basel) 2024; 14:469. [PMID: 38472941 DOI: 10.3390/diagnostics14050469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/14/2024] Open
Abstract
Malignant lymphoma, which impacts the lymphatic system, presents diverse challenges in accurate diagnosis due to its varied subtypes-chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and mantle cell lymphoma (MCL). Lymphoma is a form of cancer that begins in the lymphatic system, impacting lymphocytes, which are a specific type of white blood cell. This research addresses these challenges by proposing ensemble and non-ensemble transfer learning models employing pre-trained weights from VGG16, VGG19, DenseNet201, InceptionV3, and Xception. For the ensemble technique, this paper adopts a stack-based ensemble approach. It is a two-level classification approach and best suited for accuracy improvement. Testing on a multiclass dataset of CLL, FL, and MCL reveals exceptional diagnostic accuracy, with DenseNet201, InceptionV3, and Xception exceeding 90% accuracy. The proposed ensemble model, leveraging InceptionV3 and Xception, achieves an outstanding 99% accuracy over 300 epochs, surpassing previous prediction methods. This study demonstrates the feasibility and efficiency of the proposed approach, showcasing its potential in real-world medical applications for precise lymphoma diagnosis.
Collapse
Affiliation(s)
- Sivashankari Rajadurai
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India
| | - Kumaresan Perumal
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India
| | - Muhammad Fazal Ijaz
- School of IT and Engineering, Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Chiranji Lal Chowdhary
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
9
|
Wang S, Wu J, Chen M, Huang S, Huang Q. Balanced transformer: efficient classification of glioblastoma and primary central nervous system lymphoma. Phys Med Biol 2024; 69:045032. [PMID: 38232389 DOI: 10.1088/1361-6560/ad1f88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective.Primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM) are malignant primary brain tumors with different biological characteristics. Great differences exist between the treatment strategies of PCNSL and GBM. Thus, accurately distinguishing between PCNSL and GBM before surgery is very important for guiding neurosurgery. At present, the spinal fluid of patients is commonly extracted to find tumor markers for diagnosis. However, this method not only causes secondary injury to patients, but also easily delays treatment. Although diagnosis using radiology images is non-invasive, the morphological features and texture features of the two in magnetic resonance imaging (MRI) are quite similar, making distinction with human eyes and image diagnosis very difficult. In order to solve the problem of insufficient number of samples and sample imbalance, we used data augmentation and balanced sample sampling methods. Conventional Transformer networks use patch segmentation operations to divide images into small patches, but the lack of communication between patches leads to unbalanced data layers.Approach.To address this problem, we propose a balanced patch embedding approach that extracts high-level semantic information by reducing the feature dimensionality and maintaining the geometric variation invariance of the features. This approach balances the interactions between the information and improves the representativeness of the data. To further address the imbalance problem, the balanced patch partition method is proposed to increase the receptive field by sampling the four corners of the sliding window and introducing a linear encoding component without increasing the computational effort, and designed a new balanced loss function.Main results.Benefiting from the overall balance design, we conducted an experiment using Balanced Transformer and obtained an accuracy of 99.89%, sensitivity of 99.74%, specificity of 99.73% and AUC of 99.19%, which is far higher than the previous results (accuracy of 89.6% ∼ 96.8%, sensitivity of 74.3% ∼ 91.3%, specificity of 88.9% ∼ 96.02% and AUC of 87.8% ∼ 94.9%).Significance.This study can accurately distinguish PCNSL and GBM before surgery. Because GBM is a common type of malignant tumor, the 1% improvement in accuracy has saved many patients and reduced treatment times considerably. Thus, it can provide doctors with a good basis for auxiliary diagnosis.
Collapse
Affiliation(s)
- Shigang Wang
- Department of Electronic Engineering, College of Communication Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Jinyang Wu
- Department of Electronic Engineering, College of Communication Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Meimei Chen
- Department of Electronic Engineering, College of Communication Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Sa Huang
- Department of Radiology, the Second Hospital of Jilin University, Changchun 130012, People's Republic of China
| | - Qian Huang
- Department of Radiology, the Second Hospital of Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
10
|
Garaba A, Aslam N, Ponzio F, Panciani PP, Brinjikji W, Fontanella M, De Maria L. Radiomics for differentiation of gliomas from primary central nervous system lymphomas: a systematic review and meta-analysis. Front Oncol 2024; 14:1291861. [PMID: 38420015 PMCID: PMC10899458 DOI: 10.3389/fonc.2024.1291861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Background and objective Numerous radiomics-based models have been proposed to discriminate between central nervous system (CNS) gliomas and primary central nervous system lymphomas (PCNSLs). Given the heterogeneity of the existing models, we aimed to define their overall performance and identify the most critical variables to pilot future algorithms. Methods A systematic review of the literature and a meta-analysis were conducted, encompassing 12 studies and a total of 1779 patients, focusing on radiomics to differentiate gliomas from PCNSLs. A comprehensive literature search was performed through PubMed, Ovid MEDLINE, Ovid EMBASE, Web of Science, and Scopus databases. Overall sensitivity (SEN) and specificity (SPE) were estimated. Event rates were pooled using a random-effects meta-analysis, and the heterogeneity was assessed using the χ2 test. Results The overall SEN and SPE for differentiation between CNS gliomas and PCNSLs were 88% (95% CI = 0.83 - 0.91) and 87% (95% CI = 0.83 - 0.91), respectively. The best-performing features were the ones extracted from the Gray Level Run Length Matrix (GLRLM; ACC 97%), followed by those obtained from the Neighboring Gray Tone Difference Matrix (NGTDM; ACC 93%), and shape-based features (ACC 91%). The 18F-FDG-PET/CT was the best-performing imaging modality (ACC 97%), followed by the MRI CE-T1W (ACC 87% - 95%). Most studies applied a cross-validation analysis (92%). Conclusion The current SEN and SPE of radiomics to discriminate CNS gliomas from PCNSLs are high, making radiomics a helpful method to differentiate these tumor types. The best-performing features are the GLRLM, NGTDM, and shape-based features. The 18F-FDG-PET/CT imaging modality is the best-performing, while the MRI CE-T1W is the most used.
Collapse
Affiliation(s)
- Alexandru Garaba
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Nummra Aslam
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Francesco Ponzio
- Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Torino, Italy
| | - Pier Paolo Panciani
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Waleed Brinjikji
- Department of Neurosurgery and Interventional Neuroradiology, Mayo Clinic, Rochester, MN, United States
| | - Marco Fontanella
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Lucio De Maria
- Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
- Department of Clinical Neuroscience, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
11
|
Bai A, Si M, Xue P, Qu Y, Jiang Y. Artificial intelligence performance in detecting lymphoma from medical imaging: a systematic review and meta-analysis. BMC Med Inform Decis Mak 2024; 24:13. [PMID: 38191361 PMCID: PMC10775443 DOI: 10.1186/s12911-023-02397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Accurate diagnosis and early treatment are essential in the fight against lymphatic cancer. The application of artificial intelligence (AI) in the field of medical imaging shows great potential, but the diagnostic accuracy of lymphoma is unclear. This study was done to systematically review and meta-analyse researches concerning the diagnostic performance of AI in detecting lymphoma using medical imaging for the first time. METHODS Searches were conducted in Medline, Embase, IEEE and Cochrane up to December 2023. Data extraction and assessment of the included study quality were independently conducted by two investigators. Studies that reported the diagnostic performance of an AI model/s for the early detection of lymphoma using medical imaging were included in the systemic review. We extracted the binary diagnostic accuracy data to obtain the outcomes of interest: sensitivity (SE), specificity (SP), and Area Under the Curve (AUC). The study was registered with the PROSPERO, CRD42022383386. RESULTS Thirty studies were included in the systematic review, sixteen of which were meta-analyzed with a pooled sensitivity of 87% (95%CI 83-91%), specificity of 94% (92-96%), and AUC of 97% (95-98%). Satisfactory diagnostic performance was observed in subgroup analyses based on algorithms types (machine learning versus deep learning, and whether transfer learning was applied), sample size (≤ 200 or > 200), clinicians versus AI models and geographical distribution of institutions (Asia versus non-Asia). CONCLUSIONS Even if possible overestimation and further studies with a better standards for application of AI algorithms in lymphoma detection are needed, we suggest the AI may be useful in lymphoma diagnosis.
Collapse
Affiliation(s)
- Anying Bai
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyu Si
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yimin Qu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Wei M, Zhang Y, Ding C, Jia J, Xu H, Dai Y, Feng G, Qin C, Bai G, Chen S, Wang H. Associating Peritoneal Metastasis With T2-Weighted MRI Images in Epithelial Ovarian Cancer Using Deep Learning and Radiomics: A Multicenter Study. J Magn Reson Imaging 2024; 59:122-131. [PMID: 37134000 DOI: 10.1002/jmri.28761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The preoperative diagnosis of peritoneal metastasis (PM) in epithelial ovarian cancer (EOC) is challenging and can impact clinical decision-making. PURPOSE To investigate the performance of T2 -weighted (T2W) MRI-based deep learning (DL) and radiomics methods for PM evaluation in EOC patients. STUDY TYPE Retrospective. POPULATION Four hundred seventy-nine patients from five centers, including one training set (N = 297 [mean, 54.87 years]), one internal validation set (N = 75 [mean, 56.67 years]), and two external validation sets (N = 53 [mean, 55.58 years] and N = 54 [mean, 58.22 years]). FIELD STRENGTH/SEQUENCE 1.5 or 3 T/fat-suppression T2W fast or turbo spin-echo sequence. ASSESSMENT ResNet-50 was used as the architecture of DL. The largest orthogonal slices of the tumor area, radiomics features, and clinical characteristics were used to construct the DL, radiomics, and clinical models, respectively. The three models were combined using decision-level fusion to create an ensemble model. Diagnostic performances of radiologists and radiology residents with and without model assistance were evaluated. STATISTICAL TESTS Receiver operating characteristic analysis was used to assess the performances of models. The McNemar test was used to compare sensitivity and specificity. A two-tailed P < 0.05 was considered significant. RESULTS The ensemble model had the best AUCs, outperforming the DL model (0.844 vs. 0.743, internal validation set; 0.859 vs. 0.737, external validation set I) and clinical model (0.872 vs. 0.730, external validation set II). After model assistance, all readers had significantly improved sensitivity, especially for those with less experience (junior radiologist1, from 0.639 to 0.820; junior radiologist2, from 0.689 to 0.803; resident1, from 0.623 to 0.803; resident2, from 0.541 to 0.738). One resident also had significantly improved specificity (from 0.633 to 0.789). DATA CONCLUSIONS T2W MRI-based DL and radiomics approaches have the potential to preoperatively predict PM in EOC patients and assist in clinical decision-making. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Mingxiang Wei
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yu Zhang
- Department of Radiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Cong Ding
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jianye Jia
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Haimin Xu
- Department of Radiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Yao Dai
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guannan Feng
- Department of Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Cai Qin
- Department of Radiology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Genji Bai
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Shuangqing Chen
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Hong Wang
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Zhang D, Luan J, Liu B, Yang A, Lv K, Hu P, Han X, Yu H, Shmuel A, Ma G, Zhang C. Comparison of MRI radiomics-based machine learning survival models in predicting prognosis of glioblastoma multiforme. Front Med (Lausanne) 2023; 10:1271687. [PMID: 38098850 PMCID: PMC10720716 DOI: 10.3389/fmed.2023.1271687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Objective To compare the performance of radiomics-based machine learning survival models in predicting the prognosis of glioblastoma multiforme (GBM) patients. Methods 131 GBM patients were included in our study. The traditional Cox proportional-hazards (CoxPH) model and four machine learning models (SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, and the performance of the five models was evaluated using the C-index. Results After the screening, 1792 radiomics features were obtained. Seven radiomics features with the strongest relationship with prognosis were obtained following the application of the least absolute shrinkage and selection operator (LASSO) regression. The CoxPH model demonstrated that age (HR = 1.576, p = 0.037), Karnofsky performance status (KPS) score (HR = 1.890, p = 0.006), radiomics risk score (HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, p = 0.043) were associated with poorer prognosis. The DeepSurv model performed the best among the five models, obtaining C-index of 0.882 and 0.732 for the training and test set, respectively. The performances of the other four models were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), RSF (0.735/0.667), DeepHit (0.608/0.560). Conclusion This study confirmed the superior performance of deep learning algorithms based on radiomics relative to the traditional method in predicting the overall survival of GBM patients; specifically, the DeepSurv model showed the best predictive ability.
Collapse
Affiliation(s)
- Di Zhang
- Department of Radiology, Liaocheng People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| | - Jixin Luan
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Bing Liu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Aocai Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Kuan Lv
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Pianpian Hu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaowei Han
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Chuanchen Zhang
- Department of Radiology, Liaocheng People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Liaocheng, Shandong, China
| |
Collapse
|
14
|
Zhong S, Ren JX, Yu ZP, Peng YD, Yu CW, Deng D, Xie Y, He ZQ, Duan H, Wu B, Li H, Yang WZ, Bai Y, Sai K, Chen YS, Guo CC, Li DP, Cheng Y, Zhang XH, Mou YG. Predicting glioblastoma molecular subtypes and prognosis with a multimodal model integrating convolutional neural network, radiomics, and semantics. J Neurosurg 2023; 139:305-314. [PMID: 36461822 DOI: 10.3171/2022.10.jns22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to build a convolutional neural network (CNN)-based prediction model of glioblastoma (GBM) molecular subtype diagnosis and prognosis with multimodal features. METHODS In total, 222 GBM patients were included in the training set from Sun Yat-sen University Cancer Center (SYSUCC) and 107 GBM patients were included in the validation set from SYSUCC, Xuanwu Hospital Capital Medical University, and the First Hospital of Jilin University. The multimodal model was trained with MR images (pre- and postcontrast T1-weighted images and T2-weighted images), corresponding MRI impression, and clinical patient information. First, the original images were segmented using the Multimodal Brain Tumor Image Segmentation Benchmark toolkit. Convolutional features were extracted using 3D residual deep neural network (ResNet50) and convolutional 3D (C3D). Radiomic features were extracted using pyradiomics. Report texts were converted to word embedding using word2vec. These three types of features were then integrated to train neural networks. Accuracy, precision, recall, and F1-score were used to evaluate the model performance. RESULTS The C3D-based model yielded the highest accuracy of 91.11% in the prediction of IDH1 mutation status. Importantly, the addition of semantics improved precision by 11.21% and recall in MGMT promoter methylation status prediction by 14.28%. The areas under the receiver operating characteristic curves of the C3D-based model in the IDH1, ATRX, MGMT, and 1-year prognosis groups were 0.976, 0.953, 0.955, and 0.976, respectively. In external validation, the C3D-based model showed significant improvement in accuracy in the IDH1, ATRX, MGMT, and 1-year prognosis groups, which were 88.30%, 76.67%, 85.71%, and 85.71%, respectively (compared with 3D ResNet50: 83.51%, 66.67%, 82.14%, and 70.79%, respectively). CONCLUSIONS The authors propose a novel multimodal model integrating C3D, radiomics, and semantics, which had a great performance in predicting IDH1, ATRX, and MGMT molecular subtypes and the 1-year prognosis of GBM.
Collapse
Affiliation(s)
- Sheng Zhong
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- 3Department of Bioinformatics, Harvard Medical School, Boston, Massachusetts
| | - Jia-Xin Ren
- 4Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Ze-Peng Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Da Peng
- 5College of Computer Science and Technology, Jilin University, Changchun, China
| | - Cheng-Wei Yu
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Davy Deng
- 2Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - YangYiran Xie
- 6Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Zhen-Qiang He
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hao Duan
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Wu
- Departments of7Orthopaedics
| | | | - Wen-Zhuo Yang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Bai
- 9Neurosurgery, The First Hospital of Jilin University, Changchun, China; and
| | - Ke Sai
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yin-Sheng Chen
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng-Cheng Guo
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Pei Li
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye Cheng
- 10Department of Neurosurgery, The Xuanwu Hospital Capital Medical University, Beijing, China
| | - Xiang-Heng Zhang
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Gao Mou
- 1Department of Neurosurgery and Neuro-Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
15
|
Hamdi M, Senan EM, Jadhav ME, Olayah F, Awaji B, Alalayah KM. Hybrid Models Based on Fusion Features of a CNN and Handcrafted Features for Accurate Histopathological Image Analysis for Diagnosing Malignant Lymphomas. Diagnostics (Basel) 2023; 13:2258. [PMID: 37443652 DOI: 10.3390/diagnostics13132258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/10/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant lymphoma is one of the most severe types of disease that leads to death as a result of exposure of lymphocytes to malignant tumors. The transformation of cells from indolent B-cell lymphoma to B-cell lymphoma (DBCL) is life-threatening. Biopsies taken from the patient are the gold standard for lymphoma analysis. Glass slides under a microscope are converted into whole slide images (WSI) to be analyzed by AI techniques through biomedical image processing. Because of the multiplicity of types of malignant lymphomas, manual diagnosis by pathologists is difficult, tedious, and subject to disagreement among physicians. The importance of artificial intelligence (AI) in the early diagnosis of malignant lymphoma is significant and has revolutionized the field of oncology. The use of AI in the early diagnosis of malignant lymphoma offers numerous benefits, including improved accuracy, faster diagnosis, and risk stratification. This study developed several strategies based on hybrid systems to analyze histopathological images of malignant lymphomas. For all proposed models, the images and extraction of malignant lymphocytes were optimized by the gradient vector flow (GVF) algorithm. The first strategy for diagnosing malignant lymphoma images relied on a hybrid system between three types of deep learning (DL) networks, XGBoost algorithms, and decision tree (DT) algorithms based on the GVF algorithm. The second strategy for diagnosing malignant lymphoma images was based on fusing the features of the MobileNet-VGG16, VGG16-AlexNet, and MobileNet-AlexNet models and classifying them by XGBoost and DT algorithms based on the ant colony optimization (ACO) algorithm. The color, shape, and texture features, which are called handcrafted features, were extracted by four traditional feature extraction algorithms. Because of the similarity in the biological characteristics of early-stage malignant lymphomas, the features of the fused MobileNet-VGG16, VGG16-AlexNet, and MobileNet-AlexNet models were combined with the handcrafted features and classified by the XGBoost and DT algorithms based on the ACO algorithm. We concluded that the performance of the two networks XGBoost and DT, with fused features between DL networks and handcrafted, achieved the best performance. The XGBoost network based on the fused features of MobileNet-VGG16 and handcrafted features resulted in an AUC of 99.43%, accuracy of 99.8%, precision of 99.77%, sensitivity of 99.7%, and specificity of 99.8%. This highlights the significant role of AI in the early diagnosis of malignant lymphoma, offering improved accuracy, expedited diagnosis, and enhanced risk stratification. This study highlights leveraging AI techniques and biomedical image processing; the analysis of whole slide images (WSI) converted from biopsies allows for improved accuracy, faster diagnosis, and risk stratification. The developed strategies based on hybrid systems, combining deep learning networks, XGBoost and decision tree algorithms, demonstrated promising results in diagnosing malignant lymphoma images. Furthermore, the fusion of handcrafted features with features extracted from DL networks enhanced the performance of the classification models.
Collapse
Affiliation(s)
- Mohammed Hamdi
- Department of Computer Science, Faculty of Computer Science and Information System, Najran University, Najran 66462, Saudi Arabia
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana'a, Yemen
| | - Mukti E Jadhav
- Shri Shivaji Science & Arts College, Chikhli Dist., Buldana 443201, India
| | - Fekry Olayah
- Department of Information System, Faculty Computer Science and Information System, Najran University, Najran 66462, Saudi Arabia
| | - Bakri Awaji
- Department of Computer Science, Faculty of Computer Science and Information System, Najran University, Najran 66462, Saudi Arabia
| | - Khaled M Alalayah
- Department of Computer Science, Faculty of Science and Arts, Sharurah, Najran University, Najran 66462, Saudi Arabia
| |
Collapse
|
16
|
Jaruenpunyasak J, Duangsoithong R, Tunthanathip T. Deep learning for image classification between primary central nervous system lymphoma and glioblastoma in corpus callosal tumors. J Neurosci Rural Pract 2023; 14:470-476. [PMID: 37692824 PMCID: PMC10483185 DOI: 10.25259/jnrp_50_2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/23/2023] [Indexed: 09/12/2023] Open
Abstract
Objectives It can be challenging in some situations to distinguish primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM) based on magnetic resonance imaging (MRI) scans, especially those involving the corpus callosum. The objective of this study was to assess the diagnostic performance of deep learning (DL) models between PCNSLs and GBMs in corpus callosal tumors. Materials and Methods The axial T1-weighted gadolinium-enhanced MRI scans of 274 individuals with pathologically confirmed PCNSL (n = 94) and GBM (n = 180) were examined. After image pooling, pre-operative MRI scans were randomly split with an 80/20 procedure into a training dataset (n = 709) and a testing dataset (n = 177) for DL model development. Therefore, the DL model was deployed as a web application and validated with the unseen images (n = 114) and area under the receiver operating characteristic curve (AUC); other outcomes were calculated to assess the discrimination performance. Results The first baseline DL model had an AUC of 0.77 for PCNSL when evaluated with unseen images. The 2nd model with ridge regression regularization and the 3rd model with drop-out regularization increased an AUC of 0.83 and 0.84. In addition, the last model with data augmentation yielded an AUC of 0.57. Conclusion DL with regularization may provide useful diagnostic information to help doctors distinguish PCNSL from GBM.
Collapse
Affiliation(s)
- Jermphiphut Jaruenpunyasak
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University Songkhla, Songkhla, Thailand
| | - Rakkrit Duangsoithong
- Department of Electrical Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla, Thailand
| | - Thara Tunthanathip
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
17
|
Kim S, Choi BH, Shin H, Kwon K, Lee SY, Yoon HB, Kim HK, Choi Y. Plasma Exosome Analysis for Protein Mutation Identification Using a Combination of Raman Spectroscopy and Deep Learning. ACS Sens 2023; 8:2391-2400. [PMID: 37279515 DOI: 10.1021/acssensors.3c00681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Protein mutation detection using liquid biopsy can be simply performed periodically, making it easy to detect the occurrence of newly emerging mutations rapidly. However, it has low diagnostic accuracy since there are more normal proteins than mutated proteins in body fluids. To increase the diagnostic accuracy, we analyzed plasma exosomes using nanoplasmonic spectra and deep learning. Exosomes, a promising biomarker, are abundant in plasma and stably carry intact proteins originating from mother cells. However, the mutated exosomal proteins cannot be detected sensitively because of the subtle changes in their structure. Therefore, we obtained Raman spectra that provide molecular information about structural changes in mutated proteins. To extract the unique features of the protein from complex Raman spectra, we developed a deep-learning classification algorithm with two deep-learning models. Consequently, controls with wild-type proteins and patients with mutated proteins were classified with high accuracy. As a proof of concept, we discriminated the lung cancer patients with mutations in the epidermal growth factor receptor (EGFR), L858R, E19del, L858R + T790M, and E19del + T790M, from controls with an accuracy of 0.93. Moreover, the protein mutation status of the patients with primary (E19del, L858R) and secondary (+T790M) mutations was clearly monitored. Overall, our technique is expected to be applied as a novel method for companion diagnostic and treatment monitoring.
Collapse
Affiliation(s)
- Seungmin Kim
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Hyeon Choi
- Korea Artificial Organ Center, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Hyunku Shin
- Exopert Corporation, Seoul 02580, Republic of Korea
| | - Kihun Kwon
- Exopert Corporation, Seoul 02580, Republic of Korea
| | - Sung Yong Lee
- Division of Respiratory and Critical Care, Department of Internal Medicine, Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Hyun Bin Yoon
- Department of Chemical Engineering, Kyonggi University, Suwon 16227, Republic of Korea
| | - Hyun Koo Kim
- Korea Artificial Organ Center, Korea University, Seoul 02841, Republic of Korea
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Korea University, Seoul 08308, Republic of Korea
| | - Yeonho Choi
- Department of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- Exopert Corporation, Seoul 02580, Republic of Korea
| |
Collapse
|
18
|
Miao X, Shao T, Wang Y, Wang Q, Han J, Li X, Li Y, Sun C, Wen J, Liu J. The value of convolutional neural networks-based deep learning model in differential diagnosis of space-occupying brain diseases. Front Neurol 2023; 14:1107957. [PMID: 36816568 PMCID: PMC9932812 DOI: 10.3389/fneur.2023.1107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Objectives It is still a challenge to differentiate space-occupying brain lesions such as tumefactive demyelinating lesions (TDLs), tumefactive primary angiitis of the central nervous system (TPACNS), primary central nervous system lymphoma (PCNSL), and brain gliomas. Convolutional neural networks (CNNs) have been used to analyze complex medical data and have proven transformative for image-based applications. It can quickly acquire diseases' radiographic features and correct doctors' diagnostic bias to improve diagnostic efficiency and accuracy. The study aimed to assess the value of CNN-based deep learning model in the differential diagnosis of space-occupying brain diseases on MRI. Methods We retrospectively analyzed clinical and MRI data from 480 patients with TDLs (n = 116), TPACNS (n = 64), PCNSL (n = 150), and brain gliomas (n = 150). The patients were randomly assigned to training (n = 240), testing (n = 73), calibration (n = 96), and validation (n = 71) groups. And a CNN-implemented deep learning model guided by clinical experts was developed to identify the contrast-enhanced T1-weighted sequence lesions of these four diseases. We utilized accuracy, sensitivity, specificity, and area under the curve (AUC) to evaluate the performance of the CNN model. The model's performance was then compared to the neuroradiologists' diagnosis. Results The CNN model had a total accuracy of 87% which was higher than senior neuroradiologists (74%), and the AUC of TDLs, PCNSL, TPACNS and gliomas were 0.92, 0.92, 0.89 and 0.88, respectively. Conclusion The CNN model can accurately identify specific radiographic features of TDLs, TPACNS, PCNSL, and gliomas. It has the potential to be an effective auxiliary diagnostic tool in the clinic, assisting inexperienced clinicians in reducing diagnostic bias and improving diagnostic efficiency.
Collapse
Affiliation(s)
- Xiuling Miao
- Department of Neurology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Tianyu Shao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yaming Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingjun Wang
- Department of Radiology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Jing Han
- Department of Neurology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xinnan Li
- Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Yuxin Li
- Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Chenjing Sun
- Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| | - Junhai Wen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jianguo Liu
- Department of Neurology, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Neurology, The Sixth Medical Center of PLA General Hospital of Beijing, Beijing, China
| |
Collapse
|
19
|
Kotsyfakis S, Iliaki-Giannakoudaki E, Anagnostopoulos A, Papadokostaki E, Giannakoudakis K, Goumenakis M, Kotsyfakis M. The application of machine learning to imaging in hematological oncology: A scoping review. Front Oncol 2022; 12:1080988. [PMID: 36605438 PMCID: PMC9808781 DOI: 10.3389/fonc.2022.1080988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Here, we conducted a scoping review to (i) establish which machine learning (ML) methods have been applied to hematological malignancy imaging; (ii) establish how ML is being applied to hematological cancer radiology; and (iii) identify addressable research gaps. Methods The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. The inclusion criteria were (i) pediatric and adult patients with suspected or confirmed hematological malignancy undergoing imaging (population); (ii) any study using ML techniques to derive models using radiological images to apply to the clinical management of these patients (concept); and (iii) original research articles conducted in any setting globally (context). Quality Assessment of Diagnostic Accuracy Studies 2 criteria were used to assess diagnostic and segmentation studies, while the Newcastle-Ottawa scale was used to assess the quality of observational studies. Results Of 53 eligible studies, 33 applied diverse ML techniques to diagnose hematological malignancies or to differentiate them from other diseases, especially discriminating gliomas from primary central nervous system lymphomas (n=18); 11 applied ML to segmentation tasks, while 9 applied ML to prognostication or predicting therapeutic responses, especially for diffuse large B-cell lymphoma. All studies reported discrimination statistics, but no study calculated calibration statistics. Every diagnostic/segmentation study had a high risk of bias due to their case-control design; many studies failed to provide adequate details of the reference standard; and only a few studies used independent validation. Conclusion To deliver validated ML-based models to radiologists managing hematological malignancies, future studies should (i) adhere to standardized, high-quality reporting guidelines such as the Checklist for Artificial Intelligence in Medical Imaging; (ii) validate models in independent cohorts; (ii) standardize volume segmentation methods for segmentation tasks; (iv) establish comprehensive prospective studies that include different tumor grades, comparisons with radiologists, optimal imaging modalities, sequences, and planes; (v) include side-by-side comparisons of different methods; and (vi) include low- and middle-income countries in multicentric studies to enhance generalizability and reduce inequity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michail Kotsyfakis
- Biology Center of the Czech Academy of Sciences, Budweis (Ceske Budejovice), Czechia
| |
Collapse
|
20
|
Cao L, Zhang M, Zhang Y, Ji B, Wang X, Wang X. Progress of radiological‑pathological workflows in the differential diagnosis between primary central nervous system lymphoma and high‑grade glioma (Review). Oncol Rep 2022; 49:20. [PMID: 36484403 PMCID: PMC9773014 DOI: 10.3892/or.2022.8457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) and high‑grade glioma (HGG) are distinct entities of the CNS with completely distinct treatments. The treatment of PCNSL is chemotherapy‑based, while surgery is the first choice for HGG. However, the clinical features of the two entities often overlap, and a clear pathological diagnosis is important for subsequent management, especially for the management of PCNSL. Stereotactic biopsy is recognized as one of the minimally invasive alternatives for evaluating the involvement of the CNS. However, in the case of limited tissue materials, the differential diagnosis between the two entities is still difficult. In addition, some patients are too ill to tolerate a needle biopsy. Therefore, combining imaging, histopathology and laboratory examinations is essential in order to make a clear diagnosis as soon as possible. The present study reviews the progress of comparative research on both imaging and laboratory tests based on the pathophysiological changes of the two entities, and proposes an integrative and optimized diagnostic process, with the purpose of building a better understanding for neurologists, hematologists, radiologists and pathologists.
Collapse
Affiliation(s)
- Luming Cao
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Mengchao Zhang
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Ji
- Department of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China,Correspondence to: Dr Xueju Wang, Department of Pathology, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, P.R. China, E-mail:
| |
Collapse
|
21
|
|
22
|
Lu G, Zhang Y, Wang W, Miao L, Mou W. Machine Learning and Deep Learning CT-Based Models for Predicting the Primary Central Nervous System Lymphoma and Glioma Types: A Multicenter Retrospective Study. Front Neurol 2022; 13:905227. [PMID: 36110392 PMCID: PMC9469735 DOI: 10.3389/fneur.2022.905227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose and BackgroundDistinguishing primary central nervous system lymphoma (PCNSL) and glioma on computed tomography (CT) is an important task since treatment options differ vastly from the two diseases. This study aims to explore various machine learning and deep learning methods based on radiomic features extracted from CT scans and end-to-end convolutional neural network (CNN) model to predict PCNSL and glioma types and compare the performance of different models.MethodsA total of 101 patients from five Chinese medical centers with pathologically confirmed PCNSL and glioma were analyzed retrospectively, including 50 PCNSL and 51 glioma. After manual segmentation of the region of interest (ROI) on CT scans, 293 radiomic features of each patient were extracted. The radiomic features were used as input, and then, we established six machine learning models and one deep learning model and three readers to identify the two types of tumors. We also established a 2D CNN model using raw CT scans as input. The area under the receiver operating characteristic curve (AUC) and accuracy (ACC) were used to evaluate different models.ResultsThe cohort was split into a training (70, 70% patients) and validation cohort (31,30% patients) according to the stratified sampling strategy. Among all models, the MLP performed best, with an accuracy of 0.886 and 0.903, sensitivity of 0.914 and 0.867, specificity of 0.857 and 0.937, and AUC of 0.957 and 0.908 in the training and validation cohorts, respectively, which was significantly higher than the three primary physician's diagnoses (ACCs ranged from 0.710 to 0.742, p < 0.001 for all) and comparable with the senior radiologist (ACC 0.839, p = 0.988). Among all the machine learning models, the AUC ranged from 0.605 to 0.821 in the validation cohort. The end-to-end CNN model achieved an AUC of 0.839 and an ACC of 0.840 in the validation cohort, which had no significant difference in accuracy compared to the MLP model (p = 0.472) and the senior radiologist (p = 0.470).ConclusionThe established PCNSL and glioma prediction model based on deep neural network methods from CT scans or radiomic features are feasible and provided high performance, which shows the potential to assist clinical decision-making.
Collapse
Affiliation(s)
- Guang Lu
- Department of Hematology, Shengli Oilfield Central Hospital, Dongying, China
| | - Yuxin Zhang
- Department of Neurosurgery, Guangrao County People's Hospital, Dongying, China
| | | | - Lixin Miao
- Department of Medical Imaging Center, Shengli Oilfield Central Hospital, Dongying, China
- *Correspondence: Lixin Miao
| | - Weiwei Mou
- Department of Pediatrics, Shengli Oilfield Central Hospital, Dongying, China
- Weiwei Mou
| |
Collapse
|
23
|
Wang L, Du L, Li Q, Li F, Wang B, Zhao Y, Meng Q, Li W, Pan J, Xia J, Wu S, Yang J, Li H, Ma J, ZhangBao J, Huang W, Chang X, Tan H, Yu J, Zhou L, Lu C, Wang M, Dong Q, Lu J, Zhao C, Quan C. Deep learning-based relapse prediction of neuromyelitis optica spectrum disorder with anti-aquaporin-4 antibody. Front Neurol 2022; 13:947974. [PMID: 35989911 PMCID: PMC9389264 DOI: 10.3389/fneur.2022.947974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Objective We previously identified the independent predictors of recurrent relapse in neuromyelitis optica spectrum disorder (NMOSD) with anti-aquaporin-4 antibody (AQP4-ab) and designed a nomogram to estimate the 1- and 2-year relapse-free probability, using the Cox proportional hazard (Cox-PH) model, assuming that the risk of relapse had a linear correlation with clinical variables. However, whether the linear assumption fits real disease tragedy is unknown. We aimed to employ deep learning and machine learning to develop a novel prediction model of relapse in patients with NMOSD and compare the performance with the conventional Cox-PH model. Methods This retrospective cohort study included patients with NMOSD with AQP4-ab in 10 study centers. In this study, 1,135 treatment episodes from 358 patients in Huashan Hospital were employed as the training set while 213 treatment episodes from 92 patients in nine other research centers as the validation set. We compared five models with added variables of gender, AQP4-ab titer, previous attack under the same therapy, EDSS score at treatment initiation, maintenance therapy, age at treatment initiation, disease duration, the phenotype of the most recent attack, and annualized relapse rate (ARR) of the most recent year by concordance index (C-index): conventional Cox-PH, random survival forest (RSF), LogisticHazard, DeepHit, and DeepSurv. Results When including all variables, RSF outperformed the C-index in the training set (0.739), followed by DeepHit (0.737), LogisticHazard (0.722), DeepSurv (0.698), and Cox-PH (0.679) models. As for the validation set, the C-index of LogisticHazard outperformed the other models (0.718), followed by DeepHit (0.704), DeepSurv (0.698), RSF (0.685), and Cox-PH (0.651) models. Maintenance therapy was calculated to be the most important variable for relapse prediction. Conclusion This study confirmed the superiority of deep learning to design a prediction model of relapse in patients with AQP4-ab-positive NMOSD, with the LogisticHazard model showing the best predictive power in validation.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Lei Du
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Qinying Li
- Department of Rehabilitation Medicine, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Fang Li
- National Center for Neurological Disorders (NCND), Shanghai, China
- Department of Rehabilitation Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bei Wang
- Department of Neurology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuanqi Zhao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Wenyu Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Juyuan Pan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junhui Xia
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shitao Wu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Yang
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, China
| | - Heng Li
- Department of Neurology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianhua Ma
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jingzi ZhangBao
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Wenjuan Huang
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xuechun Chang
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Hongmei Tan
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chuanzhen Lu
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Min Wang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chao Quan
- Department of Neurology, Huashan Rare Disease Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
- *Correspondence: Chao Quan
| |
Collapse
|
24
|
Qi J, Gao A, Ma X, Song Y, zhao G, Bai J, Gao E, Zhao K, Wen B, Zhang Y, Cheng J. Differentiation of Benign From Malignant Parotid Gland Tumors Using Conventional MRI Based on Radiomics Nomogram. Front Oncol 2022; 12:937050. [PMID: 35898886 PMCID: PMC9309371 DOI: 10.3389/fonc.2022.937050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives We aimed to develop and validate radiomic nomograms to allow preoperative differentiation between benign- and malignant parotid gland tumors (BPGT and MPGT, respectively), as well as between pleomorphic adenomas (PAs) and Warthin tumors (WTs). Materials and Methods This retrospective study enrolled 183 parotid gland tumors (68 PAs, 62 WTs, and 53 MPGTs) and divided them into training (n = 128) and testing (n = 55) cohorts. In total, 2553 radiomics features were extracted from fat-saturated T2-weighted images, apparent diffusion coefficient maps, and contrast-enhanced T1-weighted images to construct single-, double-, and multi-sequence combined radiomics models, respectively. The radiomics score (Rad-score) was calculated using the best radiomics model and clinical features to develop the radiomics nomogram. The receiver operating characteristic curve and area under the curve (AUC) were used to assess these models, and their performances were compared using DeLong’s test. Calibration curves and decision curve analysis were used to assess the clinical usefulness of these models. Results The multi-sequence combined radiomics model exhibited better differentiation performance (BPGT vs. MPGT, AUC=0.863; PA vs. MPGT, AUC=0.929; WT vs. MPGT, AUC=0.825; PA vs. WT, AUC=0.927) than the single- and double sequence radiomics models. The nomogram based on the multi-sequence combined radiomics model and clinical features attained an improved classification performance (BPGT vs. MPGT, AUC=0.907; PA vs. MPGT, AUC=0.961; WT vs. MPGT, AUC=0.879; PA vs. WT, AUC=0.967). Conclusions Radiomics nomogram yielded excellent diagnostic performance in differentiating BPGT from MPGT, PA from MPGT, and PA from WT.
Collapse
Affiliation(s)
- Jinbo Qi
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ankang Gao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyue Ma
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Song
- Magnetic Resonance Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Guohua zhao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Bai
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Eryuan Gao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai Zhao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Baohong Wen, ; Yong Zhang, ; Jingliang Cheng,
| | - Yong Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Baohong Wen, ; Yong Zhang, ; Jingliang Cheng,
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Baohong Wen, ; Yong Zhang, ; Jingliang Cheng,
| |
Collapse
|
25
|
A Systematic Review of the Current Status and Quality of Radiomics for Glioma Differential Diagnosis. Cancers (Basel) 2022; 14:cancers14112731. [PMID: 35681711 PMCID: PMC9179305 DOI: 10.3390/cancers14112731] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gliomas can be difficult to discern clinically and radiologically from other brain lesions (either neoplastic or non-neoplastic) since their clinical manifestations as well as preoperative imaging features often overlap and appear misleading. Radiomics could be extremely helpful for non-invasive glioma differential diagnosis (DDx). However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. In this context, we aimed to summarize the current status and quality of radiomic studies concerning glioma DDx in a systematic review. In total, 42 studies were selected and examined in our work. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx. Abstract Radiomics is a promising tool that may increase the value of imaging in differential diagnosis (DDx) of glioma. However, implementation in clinical practice is still distant and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the current status of radiomic studies concerning glioma DDx, also using the radiomics quality score (RQS) to assess the quality of the methodology used in each study. A systematic literature search was performed to identify original articles focused on the use of radiomics for glioma DDx from 2015. Methodological quality was assessed using the RQS tool. Spearman’s correlation (ρ) analysis was performed to explore whether RQS was correlated with journal metrics and the characteristics of the studies. Finally, 42 articles were selected for the systematic qualitative analysis. Selected articles were grouped and summarized in terms of those on DDx between glioma and primary central nervous system lymphoma, those aiming at differentiating glioma from brain metastases, and those based on DDx of glioma and other brain diseases. Median RQS was 8.71 out 36, with a mean RQS of all studies of 24.21%. Our study revealed that, despite promising and encouraging results, current studies on radiomics for glioma DDx still lack the quality required to allow its introduction into clinical practice. This work could provide new insights and help to reach a consensus on the use of the radiomic approach for glioma DDx.
Collapse
|
26
|
Hsiao M, Hung M. Construction of an Artificial Intelligence Writing Model for English Based on Fusion Neural Network Model. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1779131. [PMID: 35637722 PMCID: PMC9148263 DOI: 10.1155/2022/1779131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022]
Abstract
This paper presents an in-depth study and analysis of the model of English writing using artificial intelligence algorithms of neural networks. Based on word vectors, the unsupervised disambiguation, and clustering of multimedia contexts extracted from massive online videos, the disambiguation accuracy reaches over 0.7, and the resulting small-scale multimedia context set can cover up to 90% of vocabulary learning tasks; user experiments show that the multimedia context learning system based on this method can improve the effectiveness and experience of ESL vocabulary learning, as well as the long-term word sense memory of learners. The results are 30% better. Based on the dependency grammatical relations and semantic metrics of collocations on a large-scale professional corpus, we established a collocation intention description and retrieval method in line with users' linguistic cognition and doubled the usage rate of collocation retrieval on the actual deployment system after half a year, becoming a user "sticky" ESL writing aid, and further defined style. Dictionaries only provide basic lexical definitions, and, even if supported by example sentences, they still cannot meet the needs of ESL authors in terms of expressive accuracy and richness. However, the current machine translation is based on the black box deep neural network construction, and its translation process is not understandable and interactive. Among the three algorithmic models constructed in this paper, the multitask learning model outperforms the conditional random field model and the LSTM-CRF model because the multitask learning model with auxiliary tasks solves the problem of sparse data to a certain extent, allowing the model to be trained more adequately in the case of uneven label distribution, and thus performs better than other models in the task of grammatical error detection.
Collapse
Affiliation(s)
- Meijin Hsiao
- School of Art and Design, Fuzhou University of International Studies and Trade, Fuzhou, Fujian 350202, China
| | - Maosheng Hung
- School of Foreign Languages, Fuzhou University of International Studies and Trade, Fuzhou, Fujian 350202, China
| |
Collapse
|
27
|
Lv K, Cao X, Wang R, Du P, Fu J, Geng D, Zhang J. Neuroplasticity of Glioma Patients: Brain Structure and Topological Network. Front Neurol 2022; 13:871613. [PMID: 35645982 PMCID: PMC9136300 DOI: 10.3389/fneur.2022.871613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common primary malignant brain tumor in adults. It accounts for about 75% of such tumors and occurs more commonly in men. The incidence rate has been increasing in the past 30 years. Moreover, the 5-year overall survival rate of glioma patients is < 35%. Different locations, grades, and molecular characteristics of gliomas can lead to different behavioral deficits and prognosis, which are closely related to patients' quality of life and associated with neuroplasticity. Some advanced magnetic resonance imaging (MRI) technologies can explore the neuroplasticity of structural, topological, biochemical metabolism, and related mechanisms, which may contribute to the improvement of prognosis and function in glioma patients. In this review, we summarized the studies conducted on structural and topological plasticity of glioma patients through different MRI technologies and discussed future research directions. Previous studies have found that glioma itself and related functional impairments can lead to structural and topological plasticity using multimodal MRI. However, neuroplasticity caused by highly heterogeneous gliomas is not fully understood, and should be further explored through multimodal MRI. In addition, the individualized prediction of functional prognosis of glioma patients from the functional level based on machine learning (ML) is promising. These approaches and the introduction of ML can further shed light on the neuroplasticity and related mechanism of the brain, which will be helpful for management of glioma patients.
Collapse
Affiliation(s)
- Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Cao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
- Institute of Intelligent Imaging Phenomics, International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Rong Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
- Institute of Intelligent Imaging Phenomics, International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Peng Du
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
- Institute of Intelligent Imaging Phenomics, International Human Phenome Institutes (Shanghai), Shanghai, China
- *Correspondence: Daoying Geng
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
- Institute of Intelligent Imaging Phenomics, International Human Phenome Institutes (Shanghai), Shanghai, China
- Jun Zhang
| |
Collapse
|
28
|
Ma D, Kumar M, Khetan V, Sen P, Bhende M, Chen S, Yu TTL, Lee S, Navajas EV, Matsubara JA, Ju MJ, Sarunic MV, Raman R, Beg MF. Clinical explainable differential diagnosis of polypoidal choroidal vasculopathy and age-related macular degeneration using deep learning. Comput Biol Med 2022; 143:105319. [PMID: 35220077 DOI: 10.1016/j.compbiomed.2022.105319] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study aims to achieve an automatic differential diagnosis between two types of retinal pathologies with similar pathological features - Polypoidal choroidal vasculopathy (PCV) and wet age-related macular degeneration (AMD) from volumetric optical coherence tomography (OCT) images, and identify clinically-relevant pathological features, using an explainable deep-learning-based framework. METHODS This is a retrospective study with data from a cross-sectional cohort. The OCT volume of 73 eyes from 59 patients was included in this study. Disease differentiation was achieved through single-B-scan-based classification followed by a volumetric probability prediction aggregation step. We compared different labeling strategies with and without identifying pathological B-scans within each OCT volume. Clinical interpretability was achieved through normalized aggregation of B-scan-based saliency maps followed by maximum-intensity-projection onto the en face plane. We derived the PCV score from the proposed differential diagnosis framework with different labeling strategies. The en face projection of saliency map was validated with the pathologies identified in Indocyanine green angiography (ICGA). RESULTS Model trained with both labeling strategies achieved similar level differentiation power (>90%), with good correspondence between pathological features detected from the projected en face saliency map and ICGA. CONCLUSIONS This study demonstrated the potential clinical application of non-invasive differential diagnosis using AI-driven OCT-based analysis, with minimal requirement of labeling efforts, along with clinical explainability achieved through automatically detected disease-related pathologies.
Collapse
Affiliation(s)
- Da Ma
- Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA; School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Meenakshi Kumar
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Parveen Sen
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Muna Bhende
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Shuo Chen
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy T L Yu
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Sieun Lee
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada; Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Eduardo V Navajas
- Department of Ophthalmology & Visual Sciences, The University of British Columbia, Vancouver, BC, Canada; University of British Columbia Vancouver General Hospital, Eye Care Centre, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology & Visual Sciences, The University of British Columbia, Vancouver, BC, Canada; University of British Columbia Vancouver General Hospital, Eye Care Centre, Vancouver, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology & Visual Sciences, The University of British Columbia, Vancouver, BC, Canada; University of British Columbia Vancouver General Hospital, Eye Care Centre, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, BC, Canada
| | - Marinko V Sarunic
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada; Institute of Ophthalmology, University College London, London, UK; Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom
| | - Rajiv Raman
- Shri Bhagwan Mahavir Vitreoretinal Service, Medical Research Foundation, Sankara Nethralaya, Chennai, India.
| | - Mirza Faisal Beg
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
29
|
Tariciotti L, Caccavella VM, Fiore G, Schisano L, Carrabba G, Borsa S, Giordano M, Palmisciano P, Remoli G, Remore LG, Pluderi M, Caroli M, Conte G, Triulzi F, Locatelli M, Bertani G. A Deep Learning Model for Preoperative Differentiation of Glioblastoma, Brain Metastasis and Primary Central Nervous System Lymphoma: A Pilot Study. Front Oncol 2022; 12:816638. [PMID: 35280801 PMCID: PMC8907851 DOI: 10.3389/fonc.2022.816638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/22/2022] Open
Abstract
Background Neuroimaging differentiation of glioblastoma, primary central nervous system lymphoma (PCNSL) and solitary brain metastasis (BM) remains challenging in specific cases showing similar appearances or atypical features. Overall, advanced MRI protocols have high diagnostic reliability, but their limited worldwide availability, coupled with the overlapping of specific neuroimaging features among tumor subgroups, represent significant drawbacks and entail disparities in the planning and management of these oncological patients. Objective To evaluate the classification performance metrics of a deep learning algorithm trained on T1-weighted gadolinium-enhanced (T1Gd) MRI scans of glioblastomas, atypical PCNSLs and BMs. Materials and Methods We enrolled 121 patients (glioblastoma: n=47; PCNSL: n=37; BM: n=37) who had undergone preoperative T1Gd-MRI and histopathological confirmation. Each lesion was segmented, and all ROIs were exported in a DICOM dataset. The patient cohort was then split in a training and hold-out test sets following a 70/30 ratio. A Resnet101 model, a deep neural network (DNN), was trained on the training set and validated on the hold-out test set to differentiate glioblastomas, PCNSLs and BMs on T1Gd-MRI scans. Results The DNN achieved optimal classification performance in distinguishing PCNSLs (AUC: 0.98; 95%CI: 0.95 - 1.00) and glioblastomas (AUC: 0.90; 95%CI: 0.81 - 0.97) and moderate ability in differentiating BMs (AUC: 0.81; 95%CI: 0.70 - 0.95). This performance may allow clinicians to correctly identify patients eligible for lesion biopsy or surgical resection. Conclusion We trained and internally validated a deep learning model able to reliably differentiate ambiguous cases of PCNSLs, glioblastoma and BMs by means of T1Gd-MRI. The proposed predictive model may provide a low-cost, easily-accessible and high-speed decision-making support for eligibility to diagnostic brain biopsy or maximal tumor resection in atypical cases.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valerio M. Caccavella
- Department of Paediatric Orthopaedics and Traumatology, ASST Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milan, Italy
| | - Giorgio Fiore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Luigi Schisano
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giorgio Carrabba
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Martina Giordano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Palmisciano
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Luigi Gianmaria Remore
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Pluderi
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Manuela Caroli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Unit of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Fabio Triulzi
- Unit of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Marco Locatelli
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Aldo Ravelli” Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Giulio Bertani
- Unit of Neurosurgery, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
30
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
31
|
Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Sci Rep 2021; 11:15219. [PMID: 34312463 PMCID: PMC8313677 DOI: 10.1038/s41598-021-94733-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
A subset of primary central nervous system lymphomas (PCNSL) are difficult to distinguish from glioblastoma multiforme (GBM) on magnetic resonance imaging (MRI). We developed a convolutional neural network (CNN) to distinguish these tumors on contrast-enhanced T1-weighted images. Preoperative brain tumor MRIs were retrospectively collected among 320 patients with either GBM (n = 160) and PCNSL (n = 160) from two academic institutions. The individual images from these MRIs consisted of a training set (n = 1894 GBM and 1245 PCNSL), a validation set (n = 339 GBM; 202 PCNSL), and a testing set (99 GBM and 108 PCNSL). Three CNNs using the EfficientNetB4 architecture were evaluated. To increase the size of the training set and minimize overfitting, random flips and changes to color were performed on the training set. Our transfer learning approach (with image augmentation and 292 epochs) yielded an AUC of 0.94 (95% CI: 0.91–0.97) for GBM and an AUC of 0.95 (95% CI: 0.92–0.98) for PCNL. In the second case (not augmented and 137 epochs), the images were augmented prior to training. The area under the curve for GBM was 0.92 (95% CI: 0.88–0.96) for GBM and an AUC of 0.94 (95% CI: 0.91–0.97) for PCNSL. For the last case (augmented, Gaussian noise and 238 epochs) the AUC for GBM was 0.93 (95% CI: 0.89–0.96) and an AUC 0.93 (95% CI = 0.89–0.96) for PCNSL. Even with a relatively small dataset, our transfer learning approach demonstrated CNNs may provide accurate diagnostic information to assist radiologists in distinguishing PCNSL and GBM.
Collapse
|
32
|
Priya S, Liu Y, Ward C, Le NH, Soni N, Pillenahalli Maheshwarappa R, Monga V, Zhang H, Sonka M, Bathla G. Radiomic Based Machine Learning Performance for a Three Class Problem in Neuro-Oncology: Time to Test the Waters? Cancers (Basel) 2021; 13:2568. [PMID: 34073840 PMCID: PMC8197204 DOI: 10.3390/cancers13112568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
Prior radiomics studies have focused on two-class brain tumor classification, which limits generalizability. The performance of radiomics in differentiating the three most common malignant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastatic disease) is assessed; factors affecting the model performance and usefulness of a single sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-CE) sequence without the edema mask across 45 model/feature selection combinations. The second pipeline showed significantly high performance across all combinations (Brier score: 0.311-0.325). GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the top models were built using a full feature set and inbuilt feature selection. No significant difference was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with (AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with comparable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on tumor subregion and the combination of model/feature selection methods.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| | - Yanan Liu
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA;
| | - Nam H. Le
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| | | | - Varun Monga
- Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Honghai Zhang
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Milan Sonka
- College of Engineering, University of Iowa, Iowa City, IA 52242, USA; (Y.L.); (N.H.L.); (H.Z.); (M.S.)
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (N.S.); (R.P.M.); (G.B.)
| |
Collapse
|
33
|
Radiomics-Based Differentiation between Glioblastoma, CNS Lymphoma, and Brain Metastases: Comparing Performance across MRI Sequences and Machine Learning Models. Cancers (Basel) 2021. [DOI: 10.3390/cancers13092261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Prior radiomics studies have focused on two-class brain tumor classification, which limits generalizability. The performance of radiomics in differentiating the three most common malignant brain tumors (glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastatic disease) is assessed; factors affecting the model performance and usefulness of a single sequence versus multiparametric MRI (MP-MRI) remain largely unaddressed. This retrospective study included 253 patients (120 metastatic (lung and brain), 40 PCNSL, and 93 GBM). Radiomic features were extracted for whole a tumor mask (enhancing plus necrotic) and an edema mask (first pipeline), as well as for separate enhancing and necrotic and edema masks (second pipeline). Model performance was evaluated using MP-MRI, individual sequences, and the T1 contrast enhanced (T1-CE) sequence without the edema mask across 45 model/feature selection combinations. The second pipeline showed significantly high performance across all combinations (Brier score: 0.311–0.325). GBRM fit using the full feature set from the T1-CE sequence was the best model. The majority of the top models were built using a full feature set and inbuilt feature selection. No significant difference was seen between the top-performing models for MP-MRI (AUC 0.910) and T1-CE sequence with (AUC 0.908) and without edema masks (AUC 0.894). T1-CE is the single best sequence with comparable performance to that of multiparametric MRI (MP-MRI). Model performance varies based on tumor subregion and the combination of model/feature selection methods.
Collapse
|