1
|
Michels L, O'Gorman-Tuura R, Bachmann D, Müller S, Studer S, Saake A, Gruber E, Rauen K, Buchmann A, Zuber I, Hock C, Gietl A, Treyer V. The links among age, sex, and glutathione: A cross-sectional magnetic resonance spectroscopy study. Neurobiol Aging 2024; 144:19-29. [PMID: 39255570 DOI: 10.1016/j.neurobiolaging.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Glutathione (GSH) is a brain marker for oxidative stress and has previously been associated with cerebral amyloid deposition and memory decline. However, to date, no study has examined the links among GSH, sex, age, amyloid, and Apolipoprotein E (APOE) genotype in a large non-clinical cohort of older adults. We performed APOE genotyping, magnetic resonance spectroscopy (MRS) as well as simultaneous positron emission tomography with the radiotracer Flutemetamol (Amyloid-PET), in a group of older adults. The final analysis set comprised 140 healthy older adults (mean age: 64.7 years) and 49 participants with mild cognitive impairment (mean age: 71.4 years). We recorded metabolites in the posterior cingulate cortex (PCC) by a GSH-edited MEGAPRESS sequence. Structural equation modeling revealed that higher GSH levels were associated with female sex, but neither APOE- epsilon 4 carrier status nor age showed significant associations with GSH. Conversely, older age and the presence of an APOE4 allele, but not sex, are linked to higher global amyloid load. Our results suggest that the PCC shows sex-specific GSH alterations in older adults.
Collapse
Affiliation(s)
- Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center (KNZ), University Hospital Zurich, Zurich, Switzerland.
| | | | - Dario Bachmann
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Susanne Müller
- Department of Neuroradiology, Clinical Neuroscience Center (KNZ), University Hospital Zurich, Zurich, Switzerland
| | - Sandro Studer
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Antje Saake
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Esmeralda Gruber
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Katrin Rauen
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Isabelle Zuber
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Neurimmune, Schlieren, Switzerland
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland; Department of Geriatric Psychiatry, Psychiatric Hospital Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; Institute for Regenerative Medicine, University of Zurich Campus Schlieren, Schlieren, Switzerland
| |
Collapse
|
2
|
Jeon YJ, Nam KM, Park SE, Baek HM. Improving Brain Metabolite Detection with a Combined Low-Rank Approximation and Denoising Diffusion Probabilistic Model Approach. Bioengineering (Basel) 2024; 11:1170. [PMID: 39593829 PMCID: PMC11592133 DOI: 10.3390/bioengineering11111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
In vivo proton magnetic resonance spectroscopy (MRS) is a noninvasive technique for monitoring brain metabolites. However, it is challenged by a low signal-to-noise ratio (SNR), often necessitating extended scan times to compensate. One of the conventional techniques for noise reduction is signal averaging, which is inherently time-consuming and can lead to participant discomfort, thus posing limitations in clinical settings. This study aimed to develop a hybrid denoising strategy that integrates low-rank approximation and denoising diffusion probabilistic model (DDPM) to enhance MRS data quality and shorten scan times. Using publicly available 1H MRS datasets from 15 subjects, we applied the Casorati SVD and DDPM to obtain baseline and functional data during a pain stimulation task. This method significantly improved SNR, resulting in outcomes comparable to or better than averaging over 32 signals. It also provided the most consistent metabolite measurements and adequately tracked temporal changes in glutamate levels, correlating with pain intensity ratings after heating. These findings demonstrate that our approach enhances MRS data quality, offering a more efficient alternative to conventional methods and expanding the potential for the real-time monitoring of neurochemical changes. This contribution has the potential to advance MRS techniques by integrating advanced denoising methods to increase the acquisition speed and enhance the precision of brain metabolite analyses.
Collapse
Affiliation(s)
- Yeong-Jae Jeon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea;
| | - Kyung Min Nam
- High Field MR Research Group, Center for Image Sciences, University Medical Centre Utrecht, Heidelberglaan 100, P.O. Box 85500, 3584 CX Utrecht, The Netherlands;
| | - Shin-Eui Park
- Department of Biomedical Science, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea;
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea;
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Vidyasagar R, Fazollahi A, Desmond P, Moffat B, Bush AI, Ayton S. Single-session reproducibility of MR spectroscopy measures of glutathione in the mesial temporal lobe with MEGA-PRESS. J Neuroimaging 2024; 34:224-231. [PMID: 38174904 DOI: 10.1111/jon.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance spectroscopy (MRS) measures neurochemicals in vivo. Glutathione (GSH) is a neuroprotective chemical shown to vary significantly in patients with Alzheimer's disease (AD). This work investigates the reproducibility of GSH measures in the mesial temporal lobe (MTL) to identify its potential clinical utility. METHODS MRS data were acquired from eight healthy volunteers (31.1 ± 5.2 years; 4 male/female) using Mescher-Garwood-Point Resolved Spectroscopy (MEGA-PRESS) from the MTL in the left hemisphere across two scan sessions in the same visit. Total N-acetylaspartate (tNAA), choline (tCho), creatine (tCr), and GSH were quantified. Reproducibility of quantifications of these neurochemicals were tested using coefficient of variance (CV) between scan sessions. Reproducibility of voxel placement on the left MTL was calculated by measuring the tissue overlap and percent of hippocampus within that voxel. CV measured across different scan sessions in each individual, with a CV<15% was accepted as "good" reproducibility. Paired t-tests were carried out to establish the significant differences between the two scans across each individual with p<.05 as significant. RESULTS TNAA (%CV = 7.2; p = .5), tCr (%CV = 7.8; p = .6) and tCho (%CV = 9.3; p = .4), and GSH (%CV = 22; p = .1). The dice coefficient that reflects the level of overlap of hippocampal tissue in the voxel was shown to be 0.8 ± 0.1. Voxel tissue composition were: Scan 1 (cerebrospinal fluid [CSF]: 5 ± 1%, white matter [WM]: 52 ± 3%, gray matter [GM]: 43 ± 3%); Scan 2 (CSF: 5 ± 1%, WM: 52 ± 4%, GM: 44 ± 4%). CONCLUSION The data suggest measures of abundant metabolites in the MTL using the MEGA-PRESS sequence has a high reproducibility. Reproducibility of GSH in this area was poorer requiring care when interpreting measures of GSH in the MTL for clinical translational purposes.
Collapse
Affiliation(s)
- Rishma Vidyasagar
- Radiology Department, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Amir Fazollahi
- Radiology Department, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Patricia Desmond
- Radiology Department, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Bradford Moffat
- Melbourne Biomedical Centre Imaging Unit, Department of Radiology, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health and University of Melbourne, Melbourne, Victoria, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health and University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|