1
|
Valizadeh P, Jannatdoust P, Pahlevan-Fallahy MT, Hassankhani A, Amoukhteh M, Bagherieh S, Ghadimi DJ, Gholamrezanezhad A. Diagnostic accuracy of radiomics and artificial intelligence models in diagnosing lymph node metastasis in head and neck cancers: a systematic review and meta-analysis. Neuroradiology 2024:10.1007/s00234-024-03485-x. [PMID: 39527265 DOI: 10.1007/s00234-024-03485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Head and neck cancers are the seventh most common globally, with lymph node metastasis (LNM) being a critical prognostic factor, significantly reducing survival rates. Traditional imaging methods have limitations in accurately diagnosing LNM. This meta-analysis aims to estimate the diagnostic accuracy of Artificial Intelligence (AI) models in detecting LNM in head and neck cancers. METHODS A systematic search was performed on four databases, looking for studies reporting the diagnostic accuracy of AI models in detecting LNM in head and neck cancers. Methodological quality was assessed using the METRICS tool and meta-analysis was performed using bivariate model in R environment. RESULTS 23 articles met the inclusion criteria. Due to the absence of external validation in most studies, all analyses were confined to internal validation sets. The meta-analysis revealed a pooled AUC of 91% for CT-based radiomics, 84% for MRI-based radiomics, and 92% for PET/CT-based radiomics. Sensitivity and specificity were highest for PET/CT-based models. The pooled AUC was 92% for deep learning models and 91% for hand-crafted radiomics models. Models based on lymph node features had a pooled AUC of 92%, while those based on primary tumor features had an AUC of 89%. No significant differences were found between deep learning and hand-crafted radiomics models or between lymph node and primary tumor feature-based models. CONCLUSION Radiomics and deep learning models exhibit promising accuracy in diagnosing LNM in head and neck cancers, particularly with PET/CT. Future research should prioritize multicenter studies with external validation to confirm these results and enhance clinical applicability.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Jannatdoust
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Hassankhani
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Melika Amoukhteh
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Ave Ste 2315, Los Angeles, CA, 90089, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Sara Bagherieh
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Delaram J Ghadimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
2
|
Lin P, Xie W, Li Y, Zhang C, Wu H, Wan H, Gao M, Liang F, Han P, Chen R, Cheng G, Liu X, Fan S, Huang X. Intratumoral and peritumoral radiomics of MRIs predicts pathologic complete response to neoadjuvant chemoimmunotherapy in patients with head and neck squamous cell carcinoma. J Immunother Cancer 2024; 12:e009616. [PMID: 39500529 PMCID: PMC11552555 DOI: 10.1136/jitc-2024-009616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
BACKGROUND For patients with locally advanced head and neck squamous cell carcinoma (HNSCC), combined programmed death receptor-1 inhibitor and chemotherapy improved response rate to neoadjuvant therapy. However, treatment response varies among patients. There is no tool to predict pathologic complete response (pCR) with high accuracy for now. To develop a tool based on radiomics features of MRI to predict pCR to neoadjuvant chemoimmunotherapy (NACI) may provide valuable assistance in treatment regimen determination for HNSCC. METHODS From January 2021 to April 2024, a total of 172 patients with HNSCC from three medical center, who received NACI followed by surgery, were included and allocated into a training set (n=84), an internal validation set (n=37) and an external validation set (n=51). Radiomics features were extracted from intratumoral and different peritumoral areas, and radiomics signature (Rad-score) for each area was constructed. A radiomics-clinical nomogram was developed based on Rad-scores and clinicopathological characteristics, tested in the validation sets, and compared with clinical nomogram and combined positive score (CPS) in predicting pCR. RESULTS The radiomics-clinical nomogram, incorporating peritumoral Rad-score, intratumoral Rad-score and CPS, achieved the highest accuracy with areas under the receiver operating characteristic curve of 0.904 (95% CI, 0.835 to 0.972) in the training cohort, 0.860 (95% CI, 0.722 to 0.998) in the internal validation cohort, and 0.849 (95% CI, 0.739 to 0.959) in the external validation cohort, respectively, which outperformed the clinical nomogram and CPS in predict pCR to NACI for HNSCC. CONCLUSION A nomogram developed based on intratumoral and peritumoral MRI radiomics features outperformed CPS, a widely employed biomarker, in predict pCR to NACI for HNSCC, which would provide incremental value in treatment regimen determination.
Collapse
Affiliation(s)
- Peiliang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Wenqian Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Chenjia Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Huiqian Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Pathology Department, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Huan Wan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Cellular & Molecular Diagnostics Center, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Ming Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Faya Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Ping Han
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Renhui Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Gui Cheng
- Department of Otolaryngology, Shenshan Medical Centre, Memorial Hospital of Sun Yat-sen University, Shanwei, China
| | - Xuekui Liu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Xiaoming Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Tagliabue M, Ruju F, Mossinelli C, Gaeta A, Raimondi S, Volpe S, Zaffaroni M, Isaksson LJ, Garibaldi C, Cremonesi M, Rapino A, Chiocca S, Pietrobon G, Alterio D, Trisolini G, Morbini P, Rampinelli V, Grammatica A, Petralia G, Jereczek-Fossa BA, Preda L, Ravanelli M, Maroldi R, Piazza C, Benazzo M, Ansarin M. The prognostic role of MRI-based radiomics in tongue carcinoma: a multicentric validation study. LA RADIOLOGIA MEDICA 2024; 129:1369-1381. [PMID: 39096355 PMCID: PMC11379741 DOI: 10.1007/s11547-024-01859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
PURPOSE Radiomics is an emerging field that utilizes quantitative features extracted from medical images to predict clinically meaningful outcomes. Validating findings is crucial to assess radiomics applicability. We aimed to validate previously published magnetic resonance imaging (MRI) radiomics models to predict oncological outcomes in oral tongue squamous cell carcinoma (OTSCC). MATERIALS AND METHODS Retrospective multicentric study on OTSCC surgically treated from 2010 to 2019. All patients performed preoperative MRI, including contrast-enhanced T1-weighted (CE-T1), diffusion-weighted sequences and apparent diffusion coefficient map. We evaluated overall survival (OS), locoregional recurrence-free survival (LRRFS), cause-specific mortality (CSM). We elaborated different models based on clinical and radiomic data. C-indexes assessed the prediction accuracy of the models. RESULTS We collected 112 consecutive independent patients from three Italian Institutions to validate the previously published MRI radiomic models based on 79 different patients. The C-indexes for the hybrid clinical-radiomic models in the validation cohort were lower than those in the training cohort but remained > 0.5 in most cases. CE-T1 sequence provided the best fit to the models: the C-indexes obtained were 0.61, 0.59, 0.64 (pretreatment model) and 0.65, 0.69, 0.70 (posttreatment model) for OS, LRRFS and CSM, respectively. CONCLUSION Our clinical-radiomic models retain a potential to predict OS, LRRFS and CSM in heterogeneous cohorts across different centers. These findings encourage further research, aimed at overcoming current limitations, due to the variability of imaging acquisition, processing and tumor volume delineation.
Collapse
Affiliation(s)
- Marta Tagliabue
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesca Ruju
- Division of Radiology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Mossinelli
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy.
| | - Aurora Gaeta
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Via Bicocca Degli Arcimboldi, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lars Johannes Isaksson
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Cristina Garibaldi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Anna Rapino
- Postgraduate School of Radiodiagnostic, University of Milan, Milan, Italy
| | - Susanna Chiocca
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giacomo Pietrobon
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Trisolini
- Department of Otorhinolaryngology and Skull Base Microsurgery-Neurosciences, ASST Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Vittorio Rampinelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, 25123, Brescia, Italy
| | - Alberto Grammatica
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, 25123, Brescia, Italy
| | - Giuseppe Petralia
- Division of Radiology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Preda
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Ravanelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| | - Roberto Maroldi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, School of Medicine, Brescia, Italy
| | - Cesare Piazza
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili of Brescia, University of Brescia, 25123, Brescia, Italy
| | - Marco Benazzo
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mohssen Ansarin
- Division of Otolaryngology and Head and Neck Surgery, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| |
Collapse
|
4
|
Huang W, Zhang Y, Fu G, Huang M, Luo G, Xie H, Liang Z, Cao D, Li S, Luo C, Li H, Gao J, Nie R, Ruan G, Li H, Liu L. Value of radiological depth of invasion in non-pT4 Oral tongue squamous cell carcinoma: implication for preoperative MR T-staging. Eur Radiol 2024; 34:6047-6059. [PMID: 38308013 PMCID: PMC11364799 DOI: 10.1007/s00330-024-10598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVE The prognostic stratification for oral tongue squamous cell carcinoma (OTSCC) is heavily based on postoperative pathological depth of invasion (pDOI). This study aims to propose a preoperative MR T-staging system based on tumor size for non-pT4 OTSCC. METHODS Retrospectively, 280 patients with biopsy-confirmed, non-metastatic, pT1-3 OTSCC, treated between January 2010 and December 2017, were evaluated. Multiple MR sequences, including axial T2-weighted imaging (WI), unenhanced T1WI, and axial, fat-suppressed coronal, and sagittal contrast-enhanced (CE) T1WI, were utilized to measure radiological depth of invasion (rDOI), tumor thickness, and largest diameter. Intra-class correlation (ICC) and univariate and multivariate analyses were used to evaluate measurement reproducibility, and factors' significance, respectively. Cutoff values were established using an exhaustive method. RESULTS Intra-observer (ICC = 0.81-0.94) and inter-observer (ICC = 0.79-0.90) reliability were excellent for rDOI measurements, and all measurements were significantly associated with overall survival (OS) (all p < .001). Measuring the rDOI on axial CE-T1WI with cutoffs of 8 mm and 12 mm yielded an optimal MR T-staging system for rT1-3 disease (5-year OS of rT1 vs rT2 vs rT3: 94.0% vs 72.8% vs 57.5%). Using multivariate analyses, the proposed T-staging exhibited increasingly worse OS (hazard ratio of rT2 and rT3 versus rT1, 3.56 [1.35-9.6], p = .011; 4.33 [1.59-11.74], p = .004; respectively), which outperformed pathological T-staging based on nonoverlapping Kaplan-Meier curves and improved C-index (0.682 vs. 0.639, p < .001). CONCLUSIONS rDOI is a critical predictor of OTSCC mortality and facilitates preoperative prognostic stratification, which should be considered in future oral subsite MR T-staging. CLINICAL RELEVANCE STATEMENT Utilizing axial CE-T1WI, an MR T-staging system for non-pT4 OTSCC was developed by employing rDOI measurement with optimal thresholds of 8 mm and 12 mm, which is comparable with pathological staging and merits consideration in future preoperative oral subsite planning. KEY POINTS • Tumor morphology, measuring sequences, and observers could impact MR-derived measurements and compromise the consistency with histology. • MR-derived measurements, including radiological depth of invasion (rDOI), tumor thickness, and largest diameter, have a prognostic impact on OS (all p < .001). • rDOI with cutoffs of 8 mm and 12 mm on axial CE-T1WI is an optimal predictor of OS and could facilitate risk stratification in non-pT4 OTSCC disease.
Collapse
Affiliation(s)
- Wenjie Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Gui Fu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Manqian Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guangfeng Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hui Xie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhiying Liang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Di Cao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shuqi Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chao Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Haojiang Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiexin Gao
- Department of Mathematics, Faculty of Science and Technology, University of Macau, Macao, China
| | - Rongcheng Nie
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guangying Ruan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hao Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Lizhi Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
5
|
Alabi RO, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int J Med Inform 2024; 188:105464. [PMID: 38728812 DOI: 10.1016/j.ijmedinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to improve the accuracy of diagnostic models and clinical outcome prediction. OBJECTIVES This review aims at examining the application areas of artificial intelligence-based radiomics (AI-based radiomics) for the management of head and neck cancer (HNC). It further explores the workflow of AI-based radiomics for personalized and precision oncology in HNC. Finally, it examines the current challenges of AI-based radiomics in daily clinical oncology and offers possible solutions to these challenges. METHODS Comprehensive electronic databases (PubMed, Medline via Ovid, Scopus, Web of Science, CINAHL, and Cochrane Library) were searched following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of included studies and their risk of biases were evaluated using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)and Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS Out of the 659 search hits retrieved, 45 fulfilled the inclusion criteria. Our review revealed that the application of AI-based radiomics model as an ancillary tool for improved decision-making in HNC management includes radiomics-based cancer diagnosis and radiomics-based cancer prognosis. The radiomics-based cancer diagnosis includes tumor staging, tumor grading, and classification of malignant and benign tumors. Similarly, radiomics-based cancer prognosis includes prediction for treatment response, recurrence, metastasis, and survival. In addition, the challenges in the implementation of these models for clinical evaluations include data imbalance, feature engineering (extraction and selection), model generalizability, multi-modal fusion, and model interpretability. CONCLUSION Considering the highly subjective and interobserver variability that is peculiar to the interpretation of medical images by expert clinicians, AI-based radiomics seeks to offer potentially useful quantitative information, which is not visible to the human eye or unintentionally often remain ignored during clinical imaging practice. By enabling the extraction of this type of information, AI-based radiomics has the potential to revolutionize HNC oncology, providing a platform for more personalized, higher quality, and cost-effective care for HNC patients.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Cai C, Zhou Y, Jiao Y, Li L, Xu J. Prognostic Analysis Combining Histopathological Features and Clinical Information to Predict Colorectal Cancer Survival from Whole-Slide Images. Dig Dis Sci 2024; 69:2985-2995. [PMID: 38837111 DOI: 10.1007/s10620-024-08501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignant tumor within the digestive tract with both a high incidence rate and mortality. Early detection and intervention could improve patient clinical outcomes and survival. METHODS This study computationally investigates a set of prognostic tissue and cell features from diagnostic tissue slides. With the combination of clinical prognostic variables, the pathological image features could predict the prognosis in CRC patients. Our CRC prognosis prediction pipeline sequentially consisted of three modules: (1) A MultiTissue Net to delineate outlines of different tissue types within the WSI of CRC for further ROI selection by pathologists. (2) Development of three-level quantitative image metrics related to tissue compositions, cell shape, and hidden features from a deep network. (3) Fusion of multi-level features to build a prognostic CRC model for predicting survival for CRC. RESULTS Experimental results suggest that each group of features has a particular relationship with the prognosis of patients in the independent test set. In the fusion features combination experiment, the accuracy rate of predicting patients' prognosis and survival status is 81.52%, and the AUC value is 0.77. CONCLUSION This paper constructs a model that can predict the postoperative survival of patients by using image features and clinical information. Some features were found to be associated with the prognosis and survival of patients.
Collapse
Affiliation(s)
- Chengfei Cai
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
- College of Information Engineering, Taizhou University, Taizhou, 225300, China.
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Yangshu Zhou
- Department of Pathology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Yiping Jiao
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Jun Xu
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
7
|
Lan T, Kuang S, Liang P, Ning C, Li Q, Wang L, Wang Y, Lin Z, Hu H, Yang L, Li J, Liu J, Li Y, Wu F, Chai H, Song X, Huang Y, Duan X, Zeng D, Li J, Cao H. MRI-based deep learning and radiomics for prediction of occult cervical lymph node metastasis and prognosis in early-stage oral and oropharyngeal squamous cell carcinoma: a diagnostic study. Int J Surg 2024; 110:4648-4659. [PMID: 38729119 PMCID: PMC11325978 DOI: 10.1097/js9.0000000000001578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
INTRODUCTION The incidence of occult cervical lymph node metastases (OCLNM) is reported to be 20-30% in early-stage oral cancer and oropharyngeal cancer. There is a lack of an accurate diagnostic method to predict occult lymph node metastasis and to help surgeons make precise treatment decisions. AIM To construct and evaluate a preoperative diagnostic method to predict OCLNM in early-stage oral and oropharyngeal squamous cell carcinoma (OC and OP SCC) based on deep learning features (DLFs) and radiomics features. METHODS A total of 319 patients diagnosed with early-stage OC or OP SCC were retrospectively enrolled and divided into training, test and external validation sets. Traditional radiomics features and DLFs were extracted from their MRI images. The least absolute shrinkage and selection operator (LASSO) analysis was employed to identify the most valuable features. Prediction models for OCLNM were developed using radiomics features and DLFs. The effectiveness of the models and their clinical applicability were evaluated using the area under the curve (AUC), decision curve analysis (DCA), and survival analysis. RESULTS Seventeen prediction models were constructed. The Resnet50 deep learning (DL) model based on the combination of radiomics and DL features achieves the optimal performance, with AUC values of 0.928 (95% CI: 0.881-0.975), 0.878 (95% CI: 0.766-0.990), 0.796 (95% CI: 0.666-0.927), and 0.834 (95% CI: 0.721-0.947) in the training, test, external validation set1, and external validation set2, respectively. Moreover, the Resnet50 model has great prediction value of prognosis in patients with early-stage OC and OP SCC. CONCLUSION The proposed MRI-based Resnet50 DL model demonstrated high capability in diagnosis of OCLNM and prognosis prediction in the early-stage OC and OP SCC. The Resnet50 model could help refine the clinical diagnosis and treatment of the early-stage OC and OP SCC.
Collapse
Affiliation(s)
- Tianjun Lan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Shijia Kuang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Peisheng Liang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou
| | - Chenglin Ning
- School of Biomedical Engineering, Southern Medical University, Guangzhou
| | - Qunxing Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Liansheng Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Youyuan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Zhaoyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Lingjie Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Jintao Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Jingkang Liu
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Yanyan Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Fan Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Hua Chai
- School of Mathematics and Big Data, Foshan University, Foshan, Guangdong
| | - Xinpeng Song
- School of Mathematics and Big Data, Foshan University, Foshan, Guangdong
| | - Yiqian Huang
- School of Mathematics and Big Data, Foshan University, Foshan, Guangdong
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangzhou
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| | - Haotian Cao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou
| |
Collapse
|
8
|
Hu Z, Tian Z, Wei X, Chen Y. Letter to the editor: Magnetic resonance imaging-based radiomics and deep learning models for predicting lymph node metastasis of squamous cell carcinoma of the tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:337-338. [PMID: 38797626 DOI: 10.1016/j.oooo.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Zhe Hu
- Clinical Medical College of Jining Medical University, Jining, China
| | - Zhikang Tian
- Clinical Medical College of Jining Medical University, Jining, China
| | - Xi Wei
- Clinical Medical College of Jining Medical University, Jining, China
| | - Yueqin Chen
- Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
9
|
Wang D, He X, Huang C, Li W, Li H, Huang C, Hu C. Magnetic resonance imaging-based radiomics and deep learning models for predicting lymph node metastasis of squamous cell carcinoma of the tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:214-224. [PMID: 38378316 DOI: 10.1016/j.oooo.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVE This study aimed to establish a combined method of radiomics and deep learning (DL) in magnetic resonance imaging (MRI) to predict lymph node metastasis (LNM) preoperatively in patients with squamous cell carcinoma of the tongue. STUDY DESIGN In total, MR images of 196 patients with lingual squamous cell carcinoma were divided into training (n = 156) and test (n = 40) cohorts. Radiomics and DL features were extracted from MR images and selected to construct machine learning models. A DL radiomics nomogram was established via multivariate logistic regression by incorporating the radiomics signature, the DL signature, and MRI-reported LN status. RESULTS Nine radiomics and 3 DL features were selected. In the radiomics test cohort, the multilayer perceptron model performed best with an area under the receiver operating characteristic curve (AUC) of 0.747, but in the DL cohort, the best model (logistic regression) performed less well (AUC = 0.655). The DL radiomics nomogram showed good calibration and performance with an AUC of 0.934 (outstanding discrimination ability) in the training cohort and 0.757 (acceptable discrimination ability) in the test cohort. The decision curve analysis demonstrated that the nomogram could offer more net benefit than a single radiomics or DL signature. CONCLUSION The DL radiomics nomogram exhibited promising performance in predicting LNM, which facilitates personalized treatment of tongue cancer.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunming Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haosen Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cicheng Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Nikkuni Y, Nishiyama H, Hayashi T. Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to 18F-FDG-PET Radiomics. Biomedicines 2024; 12:1411. [PMID: 39061984 PMCID: PMC11273837 DOI: 10.3390/biomedicines12071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/28/2024] Open
Abstract
The histological grade of oral squamous cell carcinoma affects the prognosis. In the present study, we performed a radiomics analysis to extract features from 18F-FDG PET image data, created machine learning models from the features, and verified the accuracy of the prediction of the histological grade of oral squamous cell carcinoma. The subjects were 191 patients in whom an 18F-FDG-PET examination was performed preoperatively and a histopathological grade was confirmed after surgery, and their tumor sizes were sufficient for a radiomics analysis. These patients were split in a 70%/30% ratio for use as training data and testing data, respectively. We extracted 2993 radiomics features from the PET images of each patient. Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) machine learning models were created. The areas under the curve obtained from receiver operating characteristic curves for the prediction of the histological grade of oral squamous cell carcinoma were 0.72, 0.71, 0.84, 0.74, and 0.73 for LR, SVM, RF, NB, and KNN, respectively. We confirmed that a PET radiomics analysis is useful for the preoperative prediction of the histological grade of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Yutaka Nikkuni
- Division of Oral and Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (H.N.); (T.H.)
| | | | | |
Collapse
|
11
|
Deng C, Hu J, Tang P, Xu T, He L, Zeng Z, Sheng J. Application of CT and MRI images based on artificial intelligence to predict lymph node metastases in patients with oral squamous cell carcinoma: a subgroup meta-analysis. Front Oncol 2024; 14:1395159. [PMID: 38957322 PMCID: PMC11217320 DOI: 10.3389/fonc.2024.1395159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Background The performance of artificial intelligence (AI) in the prediction of lymph node (LN) metastasis in patients with oral squamous cell carcinoma (OSCC) has not been quantitatively evaluated. The purpose of this study was to conduct a systematic review and meta-analysis of published data on the diagnostic performance of CT and MRI based on AI algorithms for predicting LN metastases in patients with OSCC. Methods We searched the Embase, PubMed (Medline), Web of Science, and Cochrane databases for studies on the use of AI in predicting LN metastasis in OSCC. Binary diagnostic accuracy data were extracted to obtain the outcomes of interest, namely, the area under the curve (AUC), sensitivity, and specificity, and compared the diagnostic performance of AI with that of radiologists. Subgroup analyses were performed with regard to different types of AI algorithms and imaging modalities. Results Fourteen eligible studies were included in the meta-analysis. The AUC, sensitivity, and specificity of the AI models for the diagnosis of LN metastases were 0.92 (95% CI 0.89-0.94), 0.79 (95% CI 0.72-0.85), and 0.90 (95% CI 0.86-0.93), respectively. Promising diagnostic performance was observed in the subgroup analyses based on algorithm types [machine learning (ML) or deep learning (DL)] and imaging modalities (CT vs. MRI). The pooled diagnostic performance of AI was significantly better than that of experienced radiologists. Discussion In conclusion, AI based on CT and MRI imaging has good diagnostic accuracy in predicting LN metastasis in patients with OSCC and thus has the potential for clinical application. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails, PROSPERO (No. CRD42024506159).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianfeng Sheng
- Department of Thyroid, Head, Neck and Maxillofacial Surgery, the Third Hospital of Mianyang & Sichuan Mental Health Center, Mianyang, Sichuan, China
| |
Collapse
|
12
|
Han W, Wang Y, Li T, Dong Y, Dang Y, He L, Xu L, Zhou Y, Li Y, Wang X. A CT-based integrated model for preoperative prediction of occult lymph node metastasis in early tongue cancer. PeerJ 2024; 12:e17254. [PMID: 38685941 PMCID: PMC11057426 DOI: 10.7717/peerj.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Background Occult lymph node metastasis (OLNM) is an essential prognostic factor for early-stage tongue cancer (cT1-2N0M0) and a determinant of treatment decisions. Therefore, accurate prediction of OLNM can significantly impact the clinical management and outcomes of patients with tongue cancer. The aim of this study was to develop and validate a multiomics-based model to predict OLNM in patients with early-stage tongue cancer. Methods The data of 125 patients diagnosed with early-stage tongue cancer (cT1-2N0M0) who underwent primary surgical treatment and elective neck dissection were retrospectively analyzed. A total of 100 patients were randomly assigned to the training set and 25 to the test set. The preoperative contrast-enhanced computed tomography (CT) and clinical data on these patients were collected. Radiomics features were extracted from the primary tumor as the region of interest (ROI) on CT images, and correlation analysis and the least absolute shrinkage and selection operator (LASSO) method were used to identify the most relevant features. A support vector machine (SVM) classifier was constructed and compared with other machine learning algorithms. With the same method, a clinical model was built and the peri-tumoral and intra-tumoral images were selected as the input for the deep learning model. The stacking ensemble technique was used to combine the multiple models. The predictive performance of the integrated model was evaluated for accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUC-ROC), and compared with expert assessment. Internal validation was performed using a stratified five-fold cross-validation approach. Results Of the 125 patients, 41 (32.8%) showed OLNM on postoperative pathological examination. The integrated model achieved higher predictive performance compared with the individual models, with an accuracy of 84%, a sensitivity of 100%, a specificity of 76.5%, and an AUC-ROC of 0.949 (95% CI [0.870-1.000]). In addition, the performance of the integrated model surpassed that of younger doctors and was comparable to the evaluation of experienced doctors. Conclusions The multiomics-based model can accurately predict OLNM in patients with early-stage tongue cancer, and may serve as a valuable decision-making tool to determine the appropriate treatment and avoid unnecessary neck surgery in patients without OLNM.
Collapse
Affiliation(s)
- Wei Han
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yingshu Wang
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Li
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuke Dong
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yanwei Dang
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Liang He
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lianfang Xu
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuhao Zhou
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yujie Li
- Department of Otolaryngology, Head and Neck Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
13
|
Liu S, Zhang A, Xiong J, Su X, Zhou Y, Li Y, Zhang Z, Li Z, Liu F. The application of radiomics machine learning models based on multimodal MRI with different sequence combinations in predicting cervical lymph node metastasis in oral tongue squamous cell carcinoma patients. Head Neck 2024; 46:513-527. [PMID: 38108536 DOI: 10.1002/hed.27605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore preliminary the performance of radiomics machine learning models based on multimodal MRI to predict the risk of cervical lymph node metastasis (CLNM) for oral tongue squamous cell carcinoma (OTSCC) patients. METHODS A total of 400 patients were enrolled in this study and divided into six groups according to the different combinations of MRI sequences. Group I consisted of patients with T1-weighted images (T1WI) and FS-T2WI (fat-suppressed T2-weighted images), group II consisted of patients with T1WI, FS-T2WI, and contrast enhanced MRI (CE-MRI), group III consisted of patients with T1WI, FS-T2WI, and T2-weighted images (T2WI), group IV consisted of patients with T1WI, FS-T2WI, CE-MRI, and T2WI, group V consisted of patients with T1WI, FS-T2WI, T2WI, and apparent diffusion coefficient map (ADC), and group VI consisted of patients with T1WI, FS-T2WI, CE-MRI, T2WI, and ADC. Machine learning models were constructed. The performance of the models was compared in each group. RESULTS The machine learning model in group IV including T1WI, FS-T2WI, T2WI, and CE-MRI presented best prediction performance, with AUCs of 0.881 and 0.868 in the two sets. The models with CE-MRI performed better than the models without CE-MRI(I vs. II, III vs. IV, V vs. VI). CONCLUSIONS The radiomics machine learning models based on CE-MRI showed great accuracy and stability in predicting the risk of CLNM for OTSCC patients.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Aihua Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jianjun Xiong
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xingzhou Su
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yuhang Zhou
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yang Li
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Zheng Zhang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fayu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
14
|
Wang P, Wang X, Zhang M, Li G, Zhao N, Qiao Q. Combining the radiomics signature and HPV status for the risk stratification of patients with OPC. Oral Dis 2024; 30:272-280. [PMID: 36135344 DOI: 10.1111/odi.14386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The objective was to perform risk stratification of oropharyngeal cancer (OPC) for treatment de-escalation based on the radiomics analysis and human papillomavirus (HPV) status. METHODS A total of 265 patients with OPC who underwent baseline contrast-enhanced computed tomography were analyzed, and the patients were grouped into the training (n = 133) and test (n = 132) cohorts at a ratio of 1:1. Intratumoral and peritumoral radiomics features were extracted, and the radiomics signature (Rscore) was calculated using least absolute shrinkage and selection operator regression (LASSO) and Cox regression analyses. RESULTS Twelve features were selected to establish the radiomics signature (Rscore) of intratumoral regions +10-mm peritumoral regions, which yielded maximum AUCs of 0.835, 0.798, and 0.784 in the training, test, and validation cohorts, respectively. Patients with OPC were divided into the high-risk group, intermediate-risk group, and low-risk group based on the Rscore and HPV status and had different prognoses. Patients in the low-risk group benefit from radiotherapy alone, and patients in the intermediate-risk group only benefitted from chemoradiotherapy. CONCLUSION The radiomics signature appears to improve the predictive performance of clinical characteristics for oropharyngeal cancer. The combined stratification of the radiomics signature and HPV status might be preferred to select patients for de-escalated treatment.
Collapse
Affiliation(s)
- Ping Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Xuan Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Miao Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Mottola M, Golfieri R, Bevilacqua A. The Effectiveness of an Adaptive Method to Analyse the Transition between Tumour and Peritumour for Answering Two Clinical Questions in Cancer Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:1156. [PMID: 38400314 PMCID: PMC10893370 DOI: 10.3390/s24041156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Based on the well-known role of peritumour characterization in cancer imaging to improve the early diagnosis and timeliness of clinical decisions, this study innovated a state-of-the-art approach for peritumour analysis, mainly relying on extending tumour segmentation by a predefined fixed size. We present a novel, adaptive method to investigate the zone of transition, bestriding tumour and peritumour, thought of as an annular-like shaped area, and detected by analysing gradient variations along tumour edges. For method validation, we applied it on two datasets (hepatocellular carcinoma and locally advanced rectal cancer) imaged by different modalities and exploited the zone of transition regions as well as the peritumour ones derived by adopting the literature approach for building predictive models. To measure the zone of transition's benefits, we compared the predictivity of models relying on both "standard" and novel peritumour regions. The main comparison metrics were informedness, specificity and sensitivity. As regards hepatocellular carcinoma, having circular and regular shape, all models showed similar performance (informedness = 0.69, sensitivity = 84%, specificity = 85%). As regards locally advanced rectal cancer, with jagged contours, the zone of transition led to the best informedness of 0.68 (sensitivity = 89%, specificity = 79%). The zone of transition advantages include detecting the peritumour adaptively, even when not visually noticeable, and minimizing the risk (higher in the literature approach) of including adjacent diverse structures, which was clearly highlighted during image gradient analysis.
Collapse
Affiliation(s)
- Margherita Mottola
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, 40126 Bologna, Italy;
| | - Rita Golfieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Alessandro Bevilacqua
- Department of Computer Science and Engineering (DISI), University of Bologna, 40126 Bologna, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, 40125 Bologna, Italy
| |
Collapse
|
16
|
Wang W, Liang H, Zhang Z, Xu C, Wei D, Li W, Qian Y, Zhang L, Liu J, Lei D. Comparing three-dimensional and two-dimensional deep-learning, radiomics, and fusion models for predicting occult lymph node metastasis in laryngeal squamous cell carcinoma based on CT imaging: a multicentre, retrospective, diagnostic study. EClinicalMedicine 2024; 67:102385. [PMID: 38261897 PMCID: PMC10796944 DOI: 10.1016/j.eclinm.2023.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024] Open
Abstract
Background The occult lymph node metastasis (LNM) of laryngeal squamous cell carcinoma (LSCC) affects the treatment and prognosis of patients. This study aimed to comprehensively compare the performance of the three-dimensional and two-dimensional deep learning models, radiomics model, and the fusion models for predicting occult LNM in LSCC. Methods In this retrospective diagnostic study, a total of 553 patients with clinical N0 stage LSCC, who underwent surgical treatment without distant metastasis and multiple primary cancers, were consecutively enrolled from four Chinese medical centres between January 01, 2016 and December 30, 2020. The participant data were manually retrieved from medical records, imaging databases, and pathology reports. The study cohort was divided into a training set (n = 300), an internal test set (n = 89), and two external test sets (n = 120 and 44, respectively). The three-dimensional deep learning (3D DL), two-dimensional deep learning (2D DL), and radiomics model were developed using CT images of the primary tumor. The clinical model was constructed based on clinical and radiological features. Two fusion strategies were utilized to develop the fusion model: the feature-based DLRad_FB model and the decision-based DLRad_DB model. The discriminative ability and correlation of 3D DL, 2D DL and radiomics features were analysed comprehensively. The performances of the predictive models were evaluated based on the pathological diagnosis. Findings The 3D DL features had superior discriminative ability and lower internal redundancy compared to 2D DL and radiomics features. The DLRad_DB model achieved the highest AUC (0.89-0.90) among all the study sets, significantly outperforming the clinical model (AUC = 0.73-0.78, P = 0.0001-0.042, Delong test). Compared to the DLRad_DB model, the AUC values for the DLRad_FB, 3D DL, 2D DL, and radiomics models were 0.82-0.84 (P = 0.025-0.46), 0.86-0.89 (P = 0.75-0.97), 0.83-0.86 (P = 0.029-0.66), and 0.79-0.82 (P = 0.0072-0.10), respectively in the study sets. Additionally, the DLRad_DB model exhibited the best sensitivity (82-88%) and specificity (79-85%) in the test sets. Interpretation The decision-based fusion model DLRad_DB, which combines 3D DL, 2D DL, radiomics, and clinical data, can be utilized to predict occult LNM in LSCC. This has the potential to minimize unnecessary lymph node dissection and prophylactic radiotherapy in patients with cN0 disease. Funding National Natural Science Foundation of China, Natural Science Foundation of Shandong Province.
Collapse
Affiliation(s)
- Wenlun Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
| | - Hui Liang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji’nan 250014, Shandong, China
| | - Zhouyi Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
| | - Chenyang Xu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
| | - Lihong Zhang
- Department of Otorhinolaryngology Head & Neck Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Jun Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
| |
Collapse
|
17
|
Ling X, Alexander GS, Molitoris J, Choi J, Schumaker L, Mehra R, Gaykalova DA, Ren L. Identification of CT-based non-invasive radiomic biomarkers for overall survival prediction in oral cavity squamous cell carcinoma. Sci Rep 2023; 13:21774. [PMID: 38066047 PMCID: PMC10709435 DOI: 10.1038/s41598-023-48048-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
This study addresses the limited non-invasive tools for Oral Cavity Squamous Cell Carcinoma (OSCC) survival prediction by identifying Computed Tomography (CT)-based biomarkers to improve prognosis prediction. A retrospective analysis was conducted on data from 149 OSCC patients, including CT radiomics and clinical information. An ensemble approach involving correlation analysis, score screening, and the Sparse-L1 algorithm was used to select functional features, which were then used to build Cox Proportional Hazards models (CPH). Our CPH achieved a 0.70 concordance index in testing. The model identified two CT-based radiomics features, Gradient-Neighboring-Gray-Tone-Difference-Matrix-Strength (GNS) and normalized-Wavelet-LLL-Gray-Level-Dependence-Matrix-Large-Dependence-High-Gray-Level-Emphasis (HLE), as well as stage and alcohol usage, as survival biomarkers. The GNS group with values above 14 showed a hazard ratio of 0.12 and a 3-year survival rate of about 90%. Conversely, the GNS group with values less than or equal to 14 had a 49% survival rate. For normalized HLE, the high-end group (HLE > - 0.415) had a hazard ratio of 2.41, resulting in a 3-year survival rate of 70%, while the low-end group (HLE ≤ - 0.415) had a 36% survival rate. These findings contribute to our knowledge of how radiomics can be used to predict the outcome so that treatment plans can be tailored for patients people with OSCC to improve their survival.
Collapse
Affiliation(s)
- Xiao Ling
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory S Alexander
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jason Molitoris
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jinhyuk Choi
- Department of Breast Surgery, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Lisa Schumaker
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ranee Mehra
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| | - Lei Ren
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
19
|
Vidiri A, Marzi S, Piludu F, Lucchese S, Dolcetti V, Polito E, Mazzola F, Marchesi P, Merenda E, Sperduti I, Pellini R, Covello R. Magnetic resonance imaging-based prediction models for tumor stage and cervical lymph node metastasis of tongue squamous cell carcinoma. Comput Struct Biotechnol J 2023; 21:4277-4287. [PMID: 37701020 PMCID: PMC10493896 DOI: 10.1016/j.csbj.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose To evaluate the ability of preoperative MRI-based measurements to predict the pathological T (pT) stage and cervical lymph node metastasis (CLNM) via machine learning (ML)-driven models trained in oral tongue squamous cell carcinoma (OTSCC). Materials and methods 108 patients with a new diagnosis of OTSCC were enrolled. The preoperative MRI study included post-contrast high-resolution T1-weighted images acquired in all patients. MRI-based depth of invasion (DOI) and tumor dimension-together with shape-based and intensity-based features-were extracted from the lesion volume segmentation. The entire dataset was randomly divided into a training set and a validation set, and the performances of different types of ML algorithms were evaluated and compared. Results MRI-based DOI and tumor dimension together with several shape-based and intensity-based signatures significantly discriminated the pT stage and LN status. The overall accuracy of the model for predicting the pT stage was 0.86 (95%CI, 0.78-0.92) and 0.81 (0.64-0.91) in the training and validation sets, respectively. There was no improvement in the model performance upon including shape-based and intensity-based features. The model for predicting CLNM based on DOI and tumor dimensions had a fair accuracy of 0.68 (0.57-0.78) and 0.69 (0.51-0.84) in the training and validation sets, respectively. The shape-based and intensity-based signatures have shown potential for improving the model sensitivity, with a comparable accuracy. Conclusion MRI-based models driven by ML algorithms could stratify patients with OTSCC according to the pT stages. They had a moderate ability to predict cervical lymph node metastasis.
Collapse
Affiliation(s)
- Antonello Vidiri
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
| | - Simona Marzi
- Medical Physics Laboratory, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 0 0144 Rome, Italy
| | - Francesca Piludu
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
| | - Sonia Lucchese
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
- Scuola di Specializzazione in Radiodiagnostica, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy
| | - Vincenzo Dolcetti
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
- Scuola di Specializzazione in Radiodiagnostica, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy
| | - Eleonora Polito
- Radiology and Diagnostic Imaging Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome,Italy
| | - Francesco Mazzola
- Department of Otolaryngology and Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Paolo Marchesi
- Department of Otolaryngology and Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Elisabetta Merenda
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Isabella Sperduti
- Biostatistics Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Raul Pellini
- Department of Otolaryngology and Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
20
|
Lin Z, Wang T, Li Q, Bi Q, Wang Y, Luo Y, Feng F, Xiao M, Gu Y, Qiang J, Li H. Development and validation of MRI-based radiomics model to predict recurrence risk in patients with endometrial cancer: a multicenter study. Eur Radiol 2023; 33:5814-5824. [PMID: 37171486 DOI: 10.1007/s00330-023-09685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES To develop a fusion model based on clinicopathological factors and MRI radiomics features for the prediction of recurrence risk in patients with endometrial cancer (EC). METHODS A total of 421 patients with histopathologically proved EC (101 recurrence vs. 320 non-recurrence EC) from four medical centers were included in this retrospective study, and were divided into the training (n = 235), internal validation (n = 102), and external validation (n = 84) cohorts. In total, 1702 radiomics features were respectively extracted from areas with different extensions for each patient. The extreme gradient boosting (XGBoost) classifier was applied to establish the clinicopathological model (CM), radiomics model (RM), and fusion model (FM). The performance of the established models was assessed by the discrimination, calibration, and clinical utility. Kaplan-Meier analysis was conducted to further determine the prognostic value of the models by evaluating the differences in recurrence-free survival (RFS) between the high- and low-risk patients of recurrence. RESULTS The FMs showed better performance compared with the models based on clinicopathological or radiomics features alone but with a reduced tendency when the peritumoral area (PA) was extended. The FM based on intratumoral area (IA) [FM (IA)] had the optimal performance in predicting the recurrence risk in terms of the ROC, calibration curve, and decision curve analysis. Kaplan-Meier survival curves showed that high-risk patients of recurrence defined by FM (IA) had a worse RFS than low-risk ones of recurrence. CONCLUSIONS The FM integrating intratumoral radiomics features and clinicopathological factors could be a valuable predictor for the recurrence risk of EC patients. CLINICAL RELEVANCE STATEMENT An accurate prediction based on our developed FM (IA) for the recurrence risk of EC could facilitate making an individualized therapeutic decision and help avoid under- or over-treatment, therefore improving the prognosis of patients. KEY POINTS • The fusion model combined clinicopathological factors and radiomics features exhibits the highest performance compared with the clinicopathological model and radiomics model. • Although higher values of area under the curve were observed for all fusion models, the performance tended to decrease with the extension of the peritumoral region. • Identifying patients with different risks of recurrence, the developed models can be used to facilitate individualized management.
Collapse
Affiliation(s)
- Zijing Lin
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ting Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiong Li
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center/Cancer Hospital, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiu Bi
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yaoxin Wang
- Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Yingwei Luo
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center/Cancer Hospital, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Feng Feng
- Department of Radiology, Nantong Tumor Hospital, Nantong University, Nantong, 226361, China
| | - Meiling Xiao
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jinwei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Haiming Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Jiang S, Locatello LG, Maggiore G, Gallo O. Radiomics-Based Analysis in the Prediction of Occult Lymph Node Metastases in Patients with Oral Cancer: A Systematic Review. J Clin Med 2023; 12:4958. [PMID: 37568363 PMCID: PMC10419487 DOI: 10.3390/jcm12154958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Tumor extension and metastatic cervical lymph nodes' (LNs) number and dimensions are major prognostic factors in patients with oral squamous cell carcinoma (OSCC). Radiomics-based models are being integrated into clinical practice in the prediction of LN status prior to surgery in order to optimize the treatment, yet their value is still debated. METHODS A systematic review of the literature was conducted according to the PRISMA guideline. Baseline study characteristics, and methodological items were extracted and summarized. RESULTS A total of 10 retrospective studies were included into the present study, each of them exploiting a single imaging modality. Data from a cohort of 1489 patients were analyzed: the highest AUC value was 99.5%, ACC ranges from 68% to 97.5%, and sensibility and specificity were over 0.65 and 0.70, respectively. CONCLUSION Radiomics may be a noninvasive tool to predict occult LN metastases (LNM) in OSCC patients prior to treatment; further prospective studies are warranted to create a reproducible and reliable method for the detection of LNM in OSCC.
Collapse
Affiliation(s)
- Serena Jiang
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Luca Giovanni Locatello
- Department of Otorhinolaryngology, University Hospital “Santa Maria Della Misericordia”, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy;
| | - Giandomenico Maggiore
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Oreste Gallo
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
22
|
Corti A, De Cecco L, Cavalieri S, Lenoci D, Pistore F, Calareso G, Mattavelli D, de Graaf P, Leemans CR, Brakenhoff RH, Ravanelli M, Poli T, Licitra L, Corino V, Mainardi L. MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures. Biomark Res 2023; 11:69. [PMID: 37455307 DOI: 10.1186/s40364-023-00494-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND . At present, the prognostic prediction in advanced oral cavity squamous cell carcinoma (OCSCC) is based on the tumor-node-metastasis (TNM) staging system, and the most used imaging modality in these patients is magnetic resonance image (MRI). With the aim to improve the prediction, we developed an MRI-based radiomic signature as a prognostic marker for overall survival (OS) in OCSCC patients and compared it with published gene expression signatures for prognosis of OS in head and neck cancer patients, replicated herein on our OCSCC dataset. METHODS For each patient, 1072 radiomic features were extracted from T1 and T2-weighted MRI (T1w and T2w). Features selection was performed, and an optimal set of five of them was used to fit a Cox proportional hazard regression model for OS. The radiomic signature was developed on a multi-centric locally advanced OCSCC retrospective dataset (n = 123) and validated on a prospective cohort (n = 108). RESULTS The performance of the signature was evaluated in terms of C-index (0.68 (IQR 0.66-0.70)), hazard ratio (HR 2.64 (95% CI 1.62-4.31)), and high/low risk group stratification (log-rank p < 0.001, Kaplan-Meier curves). When tested on a multi-centric prospective cohort (n = 108), the signature had a C-index of 0.62 (IQR 0.58-0.64) and outperformed the clinical and pathologic TNM stage and six out of seven gene expression prognostic signatures. In addition, the significant difference of the radiomic signature between stages III and IVa/b in patients receiving surgery suggests a potential association of MRI features with the pathologic stage. CONCLUSIONS Overall, the present study suggests that MRI signatures, containing non-invasive and cost-effective remarkable information, could be exploited as prognostic tools.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors, Department of Research, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Pistore
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppina Calareso
- Radiology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Pim de Graaf
- Amsterdam UMC location Vrije Universiteit, Radiology and Nuclear Medicine, de Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - C René Leemans
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Amsterdam UMC location Vrije Universiteit, Otolaryngology-Head and Neck Surgery, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Marco Ravanelli
- Unit of Radiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, ASST Spedali Civili of Brescia, University of Brescia, Brescia, Italy
| | - Tito Poli
- Maxillo-Facial Surgery Division, Head and Neck Department, University Hospital of Parma, Parma, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli studi di Milano, Milan, Italy
| | - Valentina Corino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Cardiotech Lab, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
23
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
24
|
Mossinelli C, Tagliabue M, Ruju F, Cammarata G, Volpe S, Raimondi S, Zaffaroni M, Isaksson JL, Garibaldi C, Cremonesi M, Corso F, Gaeta A, Emili I, Zorzi S, Alterio D, Marvaso G, Pepa M, De Fiori E, Maffini F, Preda L, Benazzo M, Jereczek-Fossa BA, Ansarin M. The role of radiomics in tongue cancer: A new tool for prognosis prediction. Head Neck 2023; 45:849-861. [PMID: 36779382 DOI: 10.1002/hed.27299] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/08/2022] [Accepted: 12/27/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Radiomics represents an emerging field of precision-medicine. Its application in head and neck is still at the beginning. METHODS Retrospective study about magnetic resonance imaging (MRI) based radiomics in oral tongue squamous cell carcinoma (OTSCC) surgically treated (2010-2019; 79 patients). All preoperative MRIs include different sequences (T1, T2, DWI, ADC). Tumor volume was manually segmented and exported to radiomic-software, to perform feature extraction. Statistically significant variables were included in multivariable analysis and related to survival endpoints. Predictive models were elaborated (clinical, radiomic, clinical-radiomic models) and compared using C-index. RESULTS In almost all clinical-radiomic models radiomic-score maintained statistical significance. In all cases C-index was higher in clinical-radiomic models than in clinical ones. ADC provided the best fit to the models (C-index 0.98, 0.86, 0.84 in loco-regional recurrence, cause-specific mortality, overall survival, respectively). CONCLUSION MRI-based radiomics in OTSCC represents a promising noninvasive method of precision medicine, improving prognosis prediction before surgery.
Collapse
Affiliation(s)
- Chiara Mossinelli
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| | - Marta Tagliabue
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesca Ruju
- Division of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giulio Cammarata
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy
| | - Stefania Volpe
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy
| | - Mattia Zaffaroni
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Cristina Garibaldi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Federica Corso
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy.,Department of Mathematics (DMAT), Politecnico di Milano, Milan, Italy.,Centre for Health Data Science (CHDS), Human Techonopole
| | - Aurora Gaeta
- Department of Experimental Oncology, IEO European Institute of Experimental Oncology IRCCS, Milan, Italy
| | - Ilaria Emili
- Division of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, Italy.,ASST Centro Specialistico Ortopedico Traumatologico G. Pini/C.T.O, Milan, Italy
| | - Stefano Zorzi
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giulia Marvaso
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elvio De Fiori
- Division of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fausto Maffini
- Division of Pathology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Preda
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy.,Division of Radiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Benazzo
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy.,Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mohssen Ansarin
- Department of Otorhinolaryngology and Head and Neck Surgery, European Institute of Oncology, IRCCS, Milan, Italy
| |
Collapse
|
25
|
Liu J, Song L, Zhou J, Yu M, Hu Y, Zhang J, Song P, Ye Y, Wang J, Feng G, Guo H, An P. Prediction of Prognosis of Tongue Squamous Cell Carcinoma Based on Clinical MR Imaging Data Modeling. Technol Cancer Res Treat 2023; 22:15330338231207006. [PMID: 37872687 PMCID: PMC10594972 DOI: 10.1177/15330338231207006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
Objective: Tongue squamous cell carcinoma (TSCC) is one of the most common and poor prognosis head and neck tumors. The purpose of this study is to establish a model for predicting TSCC prognosis based on clinical and MR radiomics data and to develop a nomogram. Methods: A retrospective analysis was performed on the clinical and imaging data of 211 patients with pathologically confirmed TSCC who underwent radical surgery at xx hospital from February 2011 to January 2020. Patients were divided into a study group (recurrence, metastasis, and death, n = 76) and a control group (normal survival, n = 135) according to 1 to 6 years of follow-up. A training set and a test set were established based on a ratio of 7:3 and a time point. In the training set, 3 prediction models (clinical data model, imaging model, and combined model) were established based on the MR radiomics score (Radscore) combined with clinical features. The predictive performance of these models was compared using the Delong curve, and the clinical net benefit of the model was tested using the decision curve. Then, the external validation of the model was performed in the test set, and a nomogram for predicting TSCC prognosis was developed. Results: Univariate analysis confirmed that betel nut consumption, spicy hot pot or pickled food, unclean oral sex, drug use, platelet/lymphocyte ratio (PLR), neutrophil/lymphocyte ratio (NLR), depth of invasion (DOI), low differentiation, clinical stage, and Radscore were factors that affected TSCC prognosis (P < .05). In the test set, the combined model based on these factors had the highest predictive performance for TSCC prognosis (area under curve (AUC) AUC: 0.870, 95% CI [0.761-0.942]), which was significantly higher than the clinical model (AUC: 0.730, 95% CI [0.602-0.835], P = .033) and imaging model (AUC: 0.765, 95% CI [0.640-0.863], P = .074). The decision curve also confirmed the higher clinical net benefit of the combined model, and these results were validated in the test set. The nomogram developed based on the combined model received good evaluation in clinical application. Conclusion: MR-LASSO extracted texture parameters can help improve the performance of TSCC prognosis models. The combined model and nomogram provide support for postoperative clinical treatment management of TSCC.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lina Song
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jingran Zhou
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Mengxing Yu
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan Hu
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junyan Zhang
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Ping Song
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yingjian Ye
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Gynaecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jinsong Wang
- Depatment of Radiology and Pathology, Hubei Province Clinical Research Center of Parkinson's Disease, Xiangyang Key Laboratory of Movement Disorders, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei Province, China
- Department of Gynaecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Guoyan Feng
- Department of Pharmacy and Laboratory, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Hongyan Guo
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Provincial Clinical Research Center for Accurate Fetus Malformation Diagnosis, Hubei University of Medicine, Xiangyang, Hubei Province, China
| | - Peng An
- Department of Radiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Gynaecology and Obstetrics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
26
|
Lin Y, Tang M, Liu Y, Jiang M, He S, Zeng D, Cui MY. A narrative review on machine learning in diagnosis and prognosis prediction for tongue squamous cell carcinoma. Transl Cancer Res 2022; 11:4409-4415. [PMID: 36644177 PMCID: PMC9834582 DOI: 10.21037/tcr-22-1669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/07/2022] [Indexed: 12/28/2022]
Abstract
Background Tongue squamous cell carcinoma (TSCC) is the most common subtype of oral cavity squamous cell carcinoma (OCSCC), and it also has the worst prognosis. It is crucial to find an effective way to solve the challenges in diagnosis and prognosis prediction for TSCC. Machine learning (ML) has been widely used in medical research and has shown good performance. It can be used for feature extraction, feature selection, model construction, etc. Radiomics and deep learning (DL), the new components of ML, have also been utilized to explore the relationship between image features and diseases. The current study aimed to highlight the importance of ML as a potential method for addressing the challenges in diagnosis and prognosis prediction of TSCC by reviewing studies on ML in TSCC. Methods The studies on ML in TSCC in PubMed, Scopus, Web of Science, and China National Knowledge Infrastructure published between the dates of inception of these databases and April 30, 2022, were reviewed. Key Content and Findings ML (including radiomics and DL) which was used in diagnosis and prognosis prediction for TSCC, has shown promising performance. Conclusions Despite its limitations, ML is still a potential approach that can help to deal with the challenges in diagnosis and prognosis prediction for TSCC. Nevertheless, more efforts are needed to enhance the usefulness of ML in this field.
Collapse
Affiliation(s)
- Yingyu Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mimi Tang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Liu
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Mengjie Jiang
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shuangshuang He
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Donglin Zeng
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Min-Yi Cui
- Department of Radiology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
27
|
Shi L, Wang L, Wu C, Wei Y, Zhang Y, Chen J. Preoperative Prediction of Lymph Node Metastasis of Pancreatic Ductal Adenocarcinoma Based on a Radiomics Nomogram of Dual-Parametric MRI Imaging. Front Oncol 2022; 12:927077. [PMID: 35875061 PMCID: PMC9298539 DOI: 10.3389/fonc.2022.927077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
PurposeThis study aims to uncover and validate an MRI-based radiomics nomogram for detecting lymph node metastasis (LNM) in pancreatic ductal adenocarcinoma (PDAC) patients prior to surgery.Materials and MethodsWe retrospectively collected 141 patients with pathologically confirmed PDAC who underwent preoperative T2-weighted imaging (T2WI) and portal venous phase (PVP) contrast-enhanced T1-weighted imaging (T1WI) scans between January 2017 and December 2021. The patients were randomly divided into training (n = 98) and validation (n = 43) cohorts at a ratio of 7:3. For each sequence, 1037 radiomics features were extracted and analyzed. After applying the gradient-boosting decision tree (GBDT), the key MRI radiomics features were selected. Three radiomics scores (rad-score 1 for PVP, rad-score 2 for T2WI, and rad-score 3 for T2WI combined with PVP) were calculated. Rad-score 3 and clinical independent risk factors were combined to construct a nomogram for the prediction of LNM of PDAC by multivariable logistic regression analysis. The predictive performances of the rad-scores and the nomogram were assessed by the area under the operating characteristic curve (AUC), and the clinical utility of the radiomics nomogram was assessed by decision curve analysis (DCA).ResultsSix radiomics features of T2WI, eight radiomics features of PVP and ten radiomics features of T2WI combined with PVP were found to be associated with LNM. Multivariate logistic regression analysis showed that rad-score 3 and MRI-reported LN status were independent predictors. In the training and validation cohorts, the AUCs of rad-score 1, rad-score 2 and rad-score 3 were 0.769 and 0.751, 0.807 and 0.784, and 0.834 and 0.807, respectively. The predictive value of rad-score 3 was similar to that of rad-score 1 and rad-score 2 in both the training and validation cohorts (P > 0.05). The radiomics nomogram constructed by rad-score 3 and MRI-reported LN status showed encouraging clinical benefit, with an AUC of 0.845 for the training cohort and 0.816 for the validation cohort.ConclusionsThe radiomics nomogram derived from the rad-score based on MRI features and MRI-reported lymph status showed outstanding performance for the preoperative prediction of LNM of PDAC.
Collapse
Affiliation(s)
- Lin Shi
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ling Wang
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Cuiyun Wu
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yuguo Wei
- Precision Health Institution, General Electric Healthcare, Hangzhou, China
| | - Yang Zhang
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junfa Chen
- Cancer Center, Department of Radiology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Junfa Chen,
| |
Collapse
|
28
|
Nissan N, Bauer E, Moss Massasa EE, Sklair-Levy M. Breast MRI during pregnancy and lactation: clinical challenges and technical advances. Insights Imaging 2022; 13:71. [PMID: 35397082 PMCID: PMC8994812 DOI: 10.1186/s13244-022-01214-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breast experiences substantial changes in morphology and function during pregnancy and lactation which affects its imaging properties and may reduce the visibility of a concurrent pathological process. The high incidence of benign gestational-related entities may further add complexity to the clinical and radiological evaluation of the breast during the period. Consequently, pregnancy-associated breast cancer (PABC) is often a delayed diagnosis and carries a poor prognosis. This state-of-the-art pictorial review illustrates how despite currently being underutilized, technical advances and new clinical evidence support the use of unenhanced breast MRI during pregnancy and both unenhanced and dynamic-contrast enhanced (DCE) during lactation, to serve as effective supplementary modalities in the diagnostic work-up of PABC.
Collapse
Affiliation(s)
- Noam Nissan
- Radiology Department, Sheba Medical Center, 5265601, Tel Hashomer, Israel.
- Sackler Medicine School, Tel Aviv University, Tel Aviv, Israel.
| | - Ethan Bauer
- Sackler Medicine School, New-York Program, Tel Aviv University, Tel Aviv, Israel
| | - Efi Efraim Moss Massasa
- Joint Medicine School Program of Sheba Medical Center, St. George's, University of London and the University of Nicosia, Sheba Medical Center, Tel Hashomer, Israel
| | - Miri Sklair-Levy
- Radiology Department, Sheba Medical Center, 5265601, Tel Hashomer, Israel
- Sackler Medicine School, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Shi Z, Ma C, Huang X, Cao D. Magnetic Resonance Imaging Radiomics-Based Nomogram From Primary Tumor for Pretreatment Prediction of Peripancreatic Lymph Node Metastasis in Pancreatic Ductal Adenocarcinoma: A Multicenter Study. J Magn Reson Imaging 2022; 55:823-839. [PMID: 34997795 DOI: 10.1002/jmri.28048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Determining the absence or presence of peripancreatic lymph nodal metastasis (PLNM) is important to the pathologic staging, prognostication, and guidance of treatment in pancreatic ductal adenocarcinoma (PDAC) patients. Computed tomography and MRI had a poor sensitivity and diagnostic accuracy in the assessment of PLNM. PURPOSES To develop and validate a 3 T MRI primary tumor radiomics-based nomogram from multicenter datasets for pretreatment prediction of the PLNM in PDAC patients. STUDY TYPE Retrospective. SUBJECTS A total of 251 patients (156 men and 95 women; mean age, 60.85 ± 8.23 years) with histologically confirmed pancreatic ductal adenocarcinoma from three hospitals. FIELD STRENGTH AND SEQUENCES A 3.0 T and fat-suppressed T1-weighted imaging. ASSESSMENT Quantitative imaging features were extracted from fat-suppressed T1-weighted (FS T1WI) images at the arterial phase. STATISTICAL TESTS Normally distributed data were compared by using t-tests, while the Mann-Whitney U test was used to evaluate non-normally distributed data. The diagnostic performances of the preoperative and postoperative nomograms were assessed in the external validation cohort with the area under receiver operating characteristics curve (AUC), calibration curve, and decision curve analysis (DCA). AUCs were compared with the De Long test. A p value below 0.05 was considered to be statistically significant. RESULTS The AUCs of magnetic resonance imaging (MRI) Rad-score were 0.868 (95% confidence level [CI]: 0.613-0.852) and 0.772 (95% CI: 0.659-0.879) in the training and internal validation cohort, respectively. The preoperative and postoperative nomograms could accurately predict PLNM in the training cohort (AUC = 0.909 and 0.851) and were validated in both the internal and external cohorts (AUC = 0.835 and 0.805, 0.808 and 0.733, respectively). DCA indicated that the two novel nomograms are of similar clinical usefulness. DATA CONCLUSION Pre-/postoperative nomograms and the constructed radiomics signature from primary tumor based on FS T1WI of arterial phase could serve as a potential tool to predict PLNM in patients with PDAC. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhenshan Shi
- Department of Radiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Chengle Ma
- Department of Radiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Xinming Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350005, China
| | - Dairong Cao
- Department of Radiology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| |
Collapse
|