1
|
Coelho JM, Fernandes TT, Alves SM, Nunes RG, Nogueira L, Oliveira A. Impact of walking on knee articular cartilage T2 values estimated with a dictionary-based approach - A pilot study. Radiography (Lond) 2025; 31:66-74. [PMID: 39541875 DOI: 10.1016/j.radi.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Walking is crucial for knee articular cartilage (KAC) health. Routine MRI sequences lack sensitivity for early cartilage changes, and the use of parametric T2 maps to study the effect of walking on KAC composition is limited. This study aimed to evaluate if quantitative T2 maps using an Echo Modulation Curve (EMC) matching algorithm can detect KAC T2 variations due to water content changes after walking. METHODS Seven asymptomatic volunteers (3 females, 4 males, mean age 28.3 years) without knee pathologies participated. Sagittal knee MRI scans were performed before and after a 9-min treadmill walk using a Modified Bruce protocol. T2-weighted Multi-Echo Spin-Echo KAC images were acquired at 3T. Tibiofemoral cartilage was segmented semi-automatically on three slices per knee, defining 39 KAC samples. Quantitative T2 maps were created using a dictionary-matching algorithm. Paired t-tests assessed exercise impact on KAC T2 values, independent t-tests compared group differences, and Friedman test with Bonferroni correction evaluated regional T2 changes. RESULTS Walking increased KAC T2 values (mean difference (md) 0.61 ± 1.71 ms; p = 0.016). Significant differences were observed in "normal" BMI group (md 0.69 ± 1.27 ms; p = 0.021). Regional analysis revealed significant differences in medial femur in males (md 0.9 ± 2.1 ms; p = 0.049) and lateral tibia in females (md 1.4 ± 2.5 ms; p = 0.046). The medial tibia showed significant differences across sub-regions (p = 0.026). CONCLUSION Quantitative T2 maps using the EMC matching algorithm detected consistent changes in KAC T2 values after a short walking period. IMPLICATIONS FOR PRACTICE EMC quantitative T2 maps effectively detected knee cartilage changes post-walking. This technique could improve cartilage hydration assessments, aiding early detection in at-risk patients. It also suggests potential for personalized monitoring and rehabilitation, advancing musculoskeletal imaging and non-invasive joint health monitoring.
Collapse
Affiliation(s)
- J M Coelho
- Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Clínica de Imagiologia Diagnóstica e de Intervenção, Porto, Portugal; Radiology Department, Escola Superior de Saúde / Instituto Politécnico do Porto, Porto, Portugal.
| | - T T Fernandes
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - S M Alves
- Escola Superior de Saúde / Instituto Politécnico do Porto, Porto, Portugal; Centre for Health Studies and Research of the University of Coimbra/Centre for Innovative Biomedicine and Biotechnology (CEISUC/CIBB), Coimbra, Portugal.
| | - R G Nunes
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - L Nogueira
- Escola Superior de Saúde / Instituto Politécnico do Porto, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal.
| | - A Oliveira
- Centro Hospitalar Universitário de Santo António, Unidade Local de Saúde de Santo António, Orthopedic Department, Porto, Portugal; ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| |
Collapse
|
2
|
Ayoub Y, Cheung SM, Maglan B, Senn N, Chan KS, He J. Differentiation of histological calcification classifications in breast cancer using ultrashort echo time and chemical shift-encoded imaging MRI. Front Oncol 2024; 14:1475090. [PMID: 39741975 PMCID: PMC11685069 DOI: 10.3389/fonc.2024.1475090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Ductal carcinoma in situ (DCIS) accounts for 25% of newly diagnosed breast cancer cases with only 14%-53% developing into invasive ductal carcinoma (IDC), but currently overtreated due to inadequate accuracy of mammography. Subtypes of calcification, discernible from histology, has been suggested to have prognostic value in DCIS, while the lipid composition of saturated and unsaturated fatty acids may be altered in de novo synthesis with potential sensitivity to the difference between DCIS and IDC. We therefore set out to examine calcification using ultra short echo time (UTE) MRI and lipid composition using chemical shift-encoded imaging (CSEI), as markers for histological calcification classification, in the initial ex vivo step towards in vivo application. Methods Twenty female patients, with mean age (range) of 57 (35-78) years, participated in the study. Intra- and peri-tumoural degree of calcification and peri-tumoural lipid composition were acquired on MRI using UTE and CSEI, respectively. Ex vivo imaging was conducted on the freshly excised breast tumour specimens immediately after surgery. Histopathological analysis was conducted to determine the calcification status, Nottingham Prognostic Index (NPI), and proliferative activity marker Ki-67. Results Intra-tumoural degree of calcification in malignant classification (1.05 ± 0.13) was significantly higher (p = 0.012) against no calcification classification (0.84 ± 0.09). Peri-tumoural degree of calcification in malignant classification (1.64 ± 0.10) was significantly higher (p = 0.033) against no calcification classification (1.41 ± 0.18). Peri-tumoural MUFA in malignant classification (0.40 ± 0.01) was significantly higher (p = 0.039) against no calcification classification (0.38 ± 0.02). Ki-67 showed significant negative correlation against peri-tumoural MUFA (p = 0.043, ρ = -0.457), significant positive correlation against SFA (p = 0.008, ρ = 0.577), and significant negative correlation against PUFA (p = 0.002, ρ = -0.653). Conclusion The intra- and peri-tumoural degree of calcification and peri-tumoural MUFA are sensitive to histological calcification classes supporting future investigation into DCIS prognosis.
Collapse
Affiliation(s)
- Yazan Ayoub
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Sai Man Cheung
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| | - Boddor Maglan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Nicholas Senn
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Kwok-Shing Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Jiabao He
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
3
|
Luo M, Liu Y, Liu WV, Ma M, Liao Y, Chen S, Zhang K. Quantitative magnetic resonance imaging of paraspinal muscles for assessing chronic non-specific low back pain in young adults: a prospective case-control study. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4544-4554. [PMID: 39455433 DOI: 10.1007/s00586-024-08535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE This study aimed to investigate the application of quantitative magnetic resonance imaging of paraspinal muscles in assessing the young CNLBP with unilateral symptom. METHODS This prospective study enrolled 107 young individuals with unilateral symptomatic CNLBP (56 cases) and a normal cohort (51 cases). All subjects underwent conventional lumbar sequences, T2 mapping, and IDEAL-IQ scans at 3T. T2 values and fat fraction (FF) of bilateral multifidus (mid-levels of L2-L5 vertebrae) and erector spinae (mid-levels of L1-L4 vertebrae) were measured. CNLBP severity, Japanese Orthopedic Association (JOA) score, and Visual Analogue Scale (VAS) score were recorded. Wilcoxon signed-rank tests were used to compare parameter differences between painful and non-painful sides in the case group. Mann-Whitney U tests were employed to evaluate differences between the case and normal group. Logistic regression analysis was conducted to identify predictive factors and to establish a combined model. RESULTS In the case group, erector spinae FF values (L4 level), erector spinae T2 values (L1, L2, and L4 levels), and multifidus T2 values (L4 and L5 levels) were higher on the painful side (P<0.05). Multifidus T2 values (L5 level) and FF values (L2-L5 levels) were higher in the case group compared to the normal group (P<0.05). The optimal performance in differentiating young CNLBP was the combination of L5 level multifidus T2 value with FF (AUC = 91.81%). Negative correlation existed between T2 values and FF of multifidus at L5 level and JOA scores (r=-0.41, P < 0.05), and positive correlation with VAS scores (r = 0.46, P < 0.05). CONCLUSION The combination of T2 value and FF may provide deeper insights into the pathological alterations of paraspinal muscles in young CNLBP, providing an important imaging basis for clinical judgment and preventive treatment of non-painful side in unilateral symptomatic patients.
Collapse
Affiliation(s)
- Muqing Luo
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China
| | - Yinqi Liu
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China
| | | | - Mengtian Ma
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China
| | - Yunjie Liao
- Department of Radiology, The Third xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | | | - Kun Zhang
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan Province, China.
| |
Collapse
|
4
|
Athertya JS, Suprana A, Lo J, Lombardi AF, Moazamian D, Chang EY, Du J, Ma Y. Quantitative ultrashort echo time MR imaging of knee osteochondral junction: An ex vivo feasibility study. NMR IN BIOMEDICINE 2024; 37:e5253. [PMID: 39197467 PMCID: PMC11657415 DOI: 10.1002/nbm.5253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Compositional changes can occur in the osteochondral junction (OCJ) during the early stages and progressive disease evolution of knee osteoarthritis (OA). However, conventional magnetic resonance imaging (MRI) sequences are not able to image these regions efficiently because of the OCJ region's rapid signal decay. The development of new sequences able to image and quantify OCJ region is therefore highly desirable. We developed a comprehensive ultrashort echo time (UTE) MRI protocol for quantitative assessment of OCJ region in the knee joint, including UTE variable flip angle technique for T1 mapping, UTE magnetization transfer (UTE-MT) modeling for macromolecular proton fraction (MMF) mapping, UTE adiabatic T1ρ (UTE-AdiabT1ρ) sequence for T1ρ mapping, and multi-echo UTE sequence for T2* mapping. B1 mapping based on the UTE actual flip angle technique was utilized for B1 correction in T1, MMF, and T1ρ measurements. Ten normal and one abnormal cadaveric human knee joints were scanned on a 3T clinical MRI scanner to investigate the feasibility of OCJ imaging using the proposed protocol. Volumetric T1, MMF, T1ρ, and T2* maps of the OCJ, as well as the superficial and full-thickness cartilage regions, were successfully produced using the quantitative UTE imaging protocol. Significantly lower T1, T1ρ, and T2* relaxation times were observed in the OCJ region compared with those observed in both the superficial and full-thickness cartilage regions, whereas MMF showed significantly higher values in the OCJ region. In addition, all four UTE biomarkers showed substantial differences in the OCJ region between normal and abnormal knees. These results indicate that the newly developed 3D quantitative UTE imaging techniques are feasible for T1, MMF, T1ρ, and T2* mapping of knee OCJ, representative of a promising approach for the evaluation of compositional changes in early knee OA.
Collapse
Affiliation(s)
- Jiyo S. Athertya
- Department of Radiology, University of California San Diego, CA, USA
| | - Arya Suprana
- Department of Radiology, University of California San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, CA, USA
| | - James Lo
- Department of Radiology, University of California San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Alecio F. Lombardi
- Department of Radiology, University of California San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, CA, USA
- Department of Bioengineering, University of California San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, CA, USA
| |
Collapse
|
5
|
Scanzello CR, Hasty KA, Chung CB, Griffin TM, Willet NJ, Krug H, Chu CQ, Ewart D, Jerban S, Baker JF, Duvall CL, Brunger JM, Burdick JA, Spindler KP, Drissi H. Teaming up to overcome challenges toward translation of new therapeutics for osteoarthritis. J Orthop Res 2024; 42:2659-2672. [PMID: 39103981 DOI: 10.1002/jor.25944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
As a leading global cause of musculoskeletal-related disability, osteoarthritis (OA) represents a public health urgency. Understanding of disease pathogenesis has advanced substantially in the past decade, yet no disease-modifying therapeutics have advanced to the clinic. To address this challenge, the CARE-AP (Cartilage Repair strategies to alleviate Arthritis Pain) collaborative research team was convened to bring together relevant multidisciplinary expertise and perspectives from across the VA research community nationwide. The first CARE-AP Annual Research Symposium took place (virtually) in February 2022 with roughly 90 participants. A number of innovative and therapeutic strategies were discussed, including siRNA approaches coupled with novel nanoparticle-based delivery systems, cellular engineering approaches to develop reparative cells that can probe the joint environment and respond to disease-specific cues, and novel biofabrication techniques to improve tissue engineering and effect "biological joint replacement." In addition, challenges and advances in rehabilitation approaches, imaging outcomes, and clinical studies were presented, which were integrated into a framework of recommendations for running "preclinical trials" to improve successful clinical translation.
Collapse
Affiliation(s)
- Carla R Scanzello
- Translational Musculoskeletal Research Center, Corp. Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Karen A Hasty
- Research Service 151, Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, Tennessee, USA
- Department of Orthopaedic Surgery and Biomedical Engineering, Campbell Clinic/University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Christine B Chung
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Timothy M Griffin
- Oklahoma City VA Health Care System, Oklahoma City, Oklahoma, USA
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Nick J Willet
- Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact, Department of Bioengineering, University of Oregon, Eugene, Oregon, USA
| | - Hollis Krug
- Rheumatology Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
- Division of Rheumatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cong-Qiu Chu
- Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Division of Arthritis and Rheumatic Diseases, Oregon Health Sciences University, Portland, Oregon, USA
| | - David Ewart
- Rheumatology Section, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
- Division of Rheumatology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Saeed Jerban
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Joshua F Baker
- Translational Musculoskeletal Research Center, Corp. Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado, USA
| | - Kurt P Spindler
- Department of Orthopaedic Surgery, Sports Medicine, Cleveland Clinic Florida, Coral Springs, Florida, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| |
Collapse
|
6
|
Moazamian D, Mohammadi HS, Athertya J, Daskareh M, Ma Y, Guma M, Covey DC, Yaksh T, Singh A, Kavanaugh A, Chung CB, Du J, Chang EY, Jerban S. Non-invasive evaluation of Achilles tendon and its enthesis using ultrashort echo time adiabatic T 1ρ (UTE-Adiab-T 1ρ) magnetic resonance imaging (MRI) in psoriatic arthritis. Eur J Radiol 2024; 183:111841. [PMID: 39667119 DOI: 10.1016/j.ejrad.2024.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE This cross-sectional study investigates the utility of the quantitative ultrashort echo time (UTE) adiabatic T1ρ (UTE-Adiab-T1ρ) magnetic resonance imaging (MRI) in detecting potential differences in Achilles tendons and entheses of patients with psoriatic arthritis disease (PsA) compared with asymptomatic volunteers. MATERIAL AND METHOD The Achilles tendons of forty-four PsA patients (59 ± 15 years old, 38 % female) and thirty-seven asymptomatic volunteers (32 ± 10 years old, 51 % female) were scanned on a 3 T clinical scanner in the sagittal plane using a 3-inch surface coil. The 3D UTE-Adiab-T1ρ sequences with fat saturation (FS) were used to measure UTE-Adiab-T1ρ. Tenderness of the tendons, the SF-12 health survey, and visual analog scale (VAS) were recorded for the patients. The Kruskal Wallis test was used to examine the differences in UTE-Adiab-T1ρ values between asymptomatic volunteers and patients, as well as subgroups of patients with pain in the Achilles tendon region and those treated with Biologics. Spearman's correlation coefficients were calculated between UTE-Adiab-T1ρ and patient evaluations. P values < 0.05 were considered significant. RESULTS UTE-Adiab-T1ρ was significantly higher for the PsA group compared with the asymptomatic group in the enthesis (11.4 ± 2.6 ms vs. 10.4 ± 2.4 ms) and tensile tendon regions (9.8 ± 2.8 ms vs. 7.7 ± 1.7 ms). PsA patients with active Achilles pain showed significantly lower T1ρ in the entheses compared with other patients (10.7 ± 2.6 ms vs. 11.7 ± 2.5 ms). PsA patients treated with Biologics showed significantly lower T1ρ values in the tendon compared with other patients (9.5 ± 2.5 ms vs. 10.3 ± 3.3 ms). The VAS score of patients showed a significant negative but weak correlation (R = -0.2) with UTE-Adiab-T1ρ of the enthesis. Correlations with SF-12 scores were not significant. CONCLUSION This study highlighted the UTE-Adiab-T1ρ sequence capability in evaluating tendons and entheses and their potential involvement in PsA disease or response to therapies.
Collapse
Affiliation(s)
- Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, USA.
| | | | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, CA, USA
| | - Mahyar Daskareh
- Department of Radiology, University of California, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, USA
| | - Monica Guma
- Department of Rheumatology, University of California, San Diego, CA, USA
| | - Dana C Covey
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Tony Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Abha Singh
- Department of Rheumatology, University of California, San Diego, CA, USA
| | - Arthur Kavanaugh
- Department of Rheumatology, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, USA.
| |
Collapse
|
7
|
Ziegelmayer S, Van AT, Weiss K, Marka AW, Lemke T, Scheuerer F, Huber T, Sauter A, Robison R, Gawlitza J, Makowski MR, Karampinos DC, Graf M. Leveraging Phase Information of 3D Isotropic Ultrashort Echo Time Pulmonary MRI for the Detection of Thoracic Lymphadenopathy: Toward an All-in-One Scan Solution. Invest Radiol 2024:00004424-990000000-00267. [PMID: 39680826 DOI: 10.1097/rli.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND Ultrashort echo time (UTE) allows imaging of tissues with short relaxation times, but it comes with the expense of long scan times. Magnitude images of UTE magnetic resonance imaging (MRI) are widely used in pulmonary imaging due to excellent parenchymal signal, but have insufficient contrast for other anatomical regions of the thorax. Our work investigates the value of UTE phase images (UTE-Ps)-generated simultaneously from the acquired UTE signal used for the magnitude images-for the detection of thoracic lymph nodes based on water-fat contrast. It employs an advanced imaging sequence and reconstruction allowing isotropic 3D UTE MRI in clinically acceptable scan times. METHODS In our prospective study, 42 patients with 136 lymph nodes had undergone venous computed tomography and pulmonary MRI scans with UTE within a 14-day interval. 3D isotropic UTE images were acquired using FLORET (fermat looped, orthogonally encoded trajectories). Background-corrected phase images (UTE-P) and magnitude images were reconstructed simultaneously from the UTE-Signal. Three radiologists performed a blinded reading in which all lymph nodes with a short-axis diameter (SAD) of at least 0.5 cm were detected. Detection rates and performance metrics of UTE-P for all lymph node regions and for pathologic (SAD ≥10 mm) and nonpathologic lymph nodes (SAD <10 mm) were calculated using computed tomography as a reference. The interreader agreement defined as the presence or absence of lymph nodes based on patient and region was calculated using Fleiss kappa (κ). FINDINGS In the phase images, pathologic lymph nodes in the mediastinal and hilar region were detected with a high diagnostic confidence due to the achieved water-fat contrast (average sensitivity, specificity, positive predictive value, and negative predictive value of 95.83% [confidence interval (CI), 92.76%-98.91%], 100%, 100%, and 99.32% [CI, 98.08%-100%]). Stepwise inclusion of all lymph node regions and nonpathologic lymph nodes was associated with a moderate decrease resulting in an average sensitivity, specificity, positive predictive value, and negative predictive value of 77.9% (CI, 70.9%-84.7%), 99.4% (CI, 98.7%-99.9%), 97.0% (CI, 93.4%-99.7%), and 94.7% (CI, 92.8%-96.4%) for the inclusion of all lymph nodes sizes and regions. Interreader agreement was almost perfect (κ = 0.92). CONCLUSIONS Pathological lymph nodes in the mediastinal and hilar region can be detected in phase-images with high diagnostic confidence, thanks to the ability of the phase images to depict water-fat contrast in combination with high spatial 3D resolution, extending the clinical applicability of UTE into the simultaneous assessment of lung parenchyma and lymph nodes.
Collapse
Affiliation(s)
- Sebastian Ziegelmayer
- From the Department of Diagnostic and Interventional Radiology, School of Medicine & Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany (S.Z., A.T.V., A.W.M., T.L., F.S., T.H., A.S., J.G., M.R.M., D.C.K., M.G.); Philips GmbH, Hamburg, Germany (K.W.); and Philips North America, Nashville, TN (R.R.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Feuerriegel GC, Marth AA, Goller SS, Hilbe M, Sommer S, Sutter R. Quantifying Tendon Degeneration Using Magic Angle Insensitive Ultra-Short Echo Time Magnetization Transfer: A Phantom Study in Bovine Tendons. Invest Radiol 2024; 59:691-698. [PMID: 38598670 PMCID: PMC11460758 DOI: 10.1097/rli.0000000000001074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES The aim of this study was to qualitatively and quantitatively assess changes in bovine flexor tendons before and after collagen degradation and at different angles in relation to the static B 0 field using 3-dimensional ultra-short echo time (UTE) magnetization transfer (MT) imaging within a clinically feasible acquisition time. MATERIALS AND METHODS Eight bovine flexor tendons were examined at 3 T magnetic resonance imaging including 3-dimensional UTE MT and UTE T2* research application sequences (acquired within 4:04 and 6:38 minutes, respectively) before and after enzyme-induced degradation. The tendons were divided into 2 groups: group 1 (controls) treated with phosphate-buffered saline and group 2 treated with collagenase I to induce collagen degeneration. Magnetic resonance imaging was repeated at 0, 27, 55, and 90 degrees to the B 0 field. To calculate quantitative tissue properties, all tendons were semiautomatically segmented, and changes in quantitative UTE T2* and UTE MT ratios (MTRs) were compared at different angles and between groups. In addition to descriptive statistics, the coefficient of variation was calculated to compare UTE MT and UTE T2* imaging. RESULTS Ultra-short echo time MTR showed a significantly lower coefficient of variation compared with UTE T2* values, indicating a more robust imaging method (UTE MTR 9.64%-11.25%, UTE T2* 18.81%-24.06%, P < 0.001). Both methods showed good performance in detecting degenerated tendons using histopathology as reference standard, with UTE MT imaging having a better area under the curve than UTE T2* mapping (0.918 vs 0.865). Falsely high UTE T2* values were detected at the 55 degrees acquisition angle, whereas UTE MTR values were robust, that is, insensitive to the MAE. CONCLUSIONS Ultra-short echo time MT imaging is a reliable method for quantifying tendon degeneration that is robust to the MAE and can be acquired in a clinically reasonable time.
Collapse
|
9
|
Lu X, Ma Y, Chang EY, Athertya J, Jang H, Jerban S, Covey DC, Bukata S, Chung CB, Du J. Deep Convolutional Neural Network for Dedicated Regions-of-Interest Based Multi-Parameter Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of the Knee Joint. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2126-2134. [PMID: 38548992 PMCID: PMC11522234 DOI: 10.1007/s10278-024-01089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 10/30/2024]
Abstract
We proposed an end-to-end deep learning convolutional neural network (DCNN) for region-of-interest based multi-parameter quantification (RMQ-Net) to accelerate quantitative ultrashort echo time (UTE) MRI of the knee joint with automatic multi-tissue segmentation and relaxometry mapping. The study involved UTE-based T1 (UTE-T1) and Adiabatic T1ρ (UTE-AdiabT1ρ) mapping of the knee joint of 65 human subjects, including 20 normal controls, 29 with doubtful-minimal osteoarthritis (OA), and 16 with moderate-severe OA. Comparison studies were performed on UTE-T1 and UTE-AdiabT1ρ measurements using 100%, 43%, 26%, and 18% UTE MRI data as the inputs and the effects on the prediction quality of the RMQ-Net. The RMQ-net was modified and retrained accordingly with different combinations of inputs. Both ROI-based and voxel-based Pearson correlation analyses were performed. High Pearson correlation coefficients were achieved between the RMQ-Net predicted UTE-T1 and UTE-AdiabT1ρ results and the ground truth for segmented cartilage with acceleration factors ranging from 2.3 to 5.7. With an acceleration factor of 5.7, the Pearson r-value achieved 0.908 (ROI-based) and 0.945 (voxel-based) for UTE-T1, and 0.733 (ROI-based) and 0.895 (voxel-based) for UTE-AdiabT1ρ, correspondingly. The results demonstrated that RMQ-net can significantly accelerate quantitative UTE imaging with automated segmentation of articular cartilage in the knee joint.
Collapse
Affiliation(s)
- Xing Lu
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA
| | - Yajun Ma
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA
| | - Eric Y Chang
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA
| | - Dana C Covey
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Susan Bukata
- Department of Orthopaedic Surgery, University of California, San Diego, CA, USA
| | - Christine B Chung
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, 9452 Medical Center Dr, San Diego, San Diego, CA, 92037, USA.
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
- Department of Bioengineering, University of California, San Diego, CA, USA.
| |
Collapse
|
10
|
Chung CB, Pathria MN, Resnick D. MRI in MSK: is it the ultimate examination? Skeletal Radiol 2024; 53:1727-1735. [PMID: 38277028 DOI: 10.1007/s00256-024-04601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Affiliation(s)
- Christine B Chung
- Department of Radiology, University of California, San Diego, CA, USA.
- Department of Radiology, Veterans Affairs Medical Center, San Diego, CA, USA.
| | - Mini N Pathria
- Department of Radiology, University of California, San Diego, CA, USA
| | - Donald Resnick
- Department of Radiology, University of California, San Diego, CA, USA
| |
Collapse
|
11
|
Shin SH, Moazamian D, Suprana A, Zeng C, Athertya JS, Carl M, Ma Y, Jang H, Du J. Yet more evidence that non-aqueous myelin lipids can be directly imaged with ultrashort echo time (UTE) MRI on a clinical 3T scanner: a lyophilized red blood cell membrane lipid study. Neuroimage 2024; 296:120666. [PMID: 38830440 PMCID: PMC11380916 DOI: 10.1016/j.neuroimage.2024.120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Direct imaging of semi-solid lipids, such as myelin, is of great interest as a noninvasive biomarker of neurodegenerative diseases. Yet, the short T2 relaxation times of semi-solid lipid protons hamper direct detection through conventional magnetic resonance imaging (MRI) pulse sequences. In this study, we examined whether a three-dimensional ultrashort echo time (3D UTE) sequence can directly acquire signals from membrane lipids. Membrane lipids from red blood cells (RBC) were collected from commercially available blood as a general model of the myelin lipid bilayer and subjected to D2O exchange and freeze-drying for complete water removal. Sufficiently high MR signals were detected with the 3D UTE sequence, which showed an ultrashort T2* of ∼77-271 µs and a short T1 of ∼189 ms for semi-solid RBC membrane lipids. These measurements can guide designing UTE-based sequences for direct in vivo imaging of membrane lipids.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Arya Suprana
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Chun Zeng
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | | | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Radiology Service, Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
12
|
Slawig A, Rothe M, Deistung A, Bohndorf K, Brill R, Graf S, Weng AM, Wohlgemuth WA, Gussew A. Ultra-short echo time (UTE) MR imaging: A brief review on technical considerations and clinical applications. ROFO-FORTSCHR RONTG 2024; 196:671-681. [PMID: 37995735 DOI: 10.1055/a-2193-1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Affiliation(s)
- Anne Slawig
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Maik Rothe
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Andreas Deistung
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Klaus Bohndorf
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
| | - Richard Brill
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
| | - Simon Graf
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Wurzburg, Wurzburg, Germany
| | - Walter A Wohlgemuth
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| | - Alexander Gussew
- University Clinic and Outpatient Clinic for Radiology, University Hospital Halle, Germany
- Halle MR Imaging Core Facility, Medical faculty, Martin Luther University Halle Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Markhardt BK, Hund S, Rosas HG, Symanski JS, Mao L, Spiker AM, Blankenbaker DG. Comparison of MRI and arthroscopy findings for transitional zone cartilage damage in the acetabulum of the hip joint. Skeletal Radiol 2024; 53:1303-1312. [PMID: 38225402 DOI: 10.1007/s00256-024-04563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
OBJECTIVE To assess the performance of morphologic and hypointense signal changes on MRI to predict grades and types of acetabular cartilage damage in the chondrolabral transitional zone (TZ) of the hip identified at arthroscopy. MATERIALS AND METHODS This retrospective single-center study reviewed conventional 3T MRI hip studies from individuals with symptomatic femoroacetabular impingement (FAI) and subsequent hip arthroscopy surgery within 6 months. Independent review was made by three radiologists for the presence of morphologic damage or a hypointense signal lesion in the TZ on MRI. Fleiss' kappa statistic was used to assess inter-reader agreement. The degree of TZ surfacing damage (modified Outerbridge grades 1-4) and presence of non-surfacing wave sign at arthroscopic surgery were collected. Relationship between sensitivity and lesion grade was examined. RESULTS One hundred thirty-six MRI hip studies from 40 males and 74 females were included (mean age 28.5 years, age range 13-54 years). MRI morphologic lesions had a sensitivity of 64.9-71.6% and specificity of 48.4-67.7% for arthroscopic surfacing lesions, with greater sensitivity seen for higher grade lesions. Low sensitivity was seen for wave sign lesions (34.5-51.7%). MRI hypointense signal lesions had a sensitivity of 26.3-62% and specificity of 43.8-78.0% for any lesion. Inter-reader agreement was moderate for morphologic lesions (k = 0.601) and poor for hypointense signal lesions (k = 0.097). CONCLUSION Morphologic cartilage damage in the TZ on MRI had moderate sensitivity for any cartilage lesion, better sensitivity for higher grade lesions, and poor sensitivity for wave sign lesions. The diagnostic value of hypointense signal lesions was uncertain.
Collapse
Affiliation(s)
- B Keegan Markhardt
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA.
| | - Samuel Hund
- Department of Radiology, Musculoskeletal Section, University of Kansas Medical Center, Kansas City, KS, USA
| | - Humberto G Rosas
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA
| | - John S Symanski
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA
| | - Lu Mao
- Departments of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea M Spiker
- Department of Orthopedic Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Donna G Blankenbaker
- Department of Radiology, Musculoskeletal Imaging and Intervention, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
14
|
Albano D, Viglino U, Esposito F, Rizzo A, Messina C, Gitto S, Fusco S, Serpi F, Kamp B, Müller-Lutz A, D’Ambrosi R, Sconfienza LM, Sewerin P. Quantitative and Compositional MRI of the Articular Cartilage: A Narrative Review. Tomography 2024; 10:949-969. [PMID: 39058044 PMCID: PMC11280587 DOI: 10.3390/tomography10070072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/01/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
This review examines the latest advancements in compositional and quantitative cartilage MRI techniques, addressing both their potential and challenges. The integration of these advancements promises to improve disease detection, treatment monitoring, and overall patient care. We want to highlight the pivotal task of translating these techniques into widespread clinical use, the transition of cartilage MRI from technical validation to clinical application, emphasizing its critical role in identifying early signs of degenerative and inflammatory joint diseases. Recognizing these changes early may enable informed treatment decisions, thereby facilitating personalized medicine approaches. The evolving landscape of cartilage MRI underscores its increasing importance in clinical practice, offering valuable insights for patient management and therapeutic interventions. This review aims to discuss the old evidence and new insights about the evaluation of articular cartilage through MRI, with an update on the most recent literature published on novel quantitative sequences.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, 20122 Milan, Italy
| | - Umberto Viglino
- Unit of Radiology, Ospedale Evangelico Internazionale, 16100 Genova, Italy;
| | - Francesco Esposito
- Division of Radiology, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Aldo Rizzo
- Postgraduate School of Diagnostic and Interventional Radiology, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy;
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Stefano Fusco
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Serpi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Benedikt Kamp
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (B.K.); (A.M.-L.)
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (B.K.); (A.M.-L.)
| | - Riccardo D’Ambrosi
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy; (C.M.); (S.G.); (S.F.); (F.S.); (R.D.); (L.M.S.)
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Philipp Sewerin
- Rheumazentrum Ruhrgebiet, Ruhr University Bochum, 44649 Herne, Germany;
- Department and Hiller-Research-Unit for Rheumatology, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Athertya JS, Statum S, Chen X, Du K, Shin SH, Jerban S, Chung CB, Chang EY, Ma Y. Evaluation of spine disorders using high contrast imaging of the cartilaginous endplate. Front Physiol 2024; 15:1394189. [PMID: 38860112 PMCID: PMC11163041 DOI: 10.3389/fphys.2024.1394189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Introduction: Many spine disorders are caused by disc degeneration or endplate defects. Because nutrients entering the avascular disc are channeled through the cartilaginous endplate (CEP), structural and compositional changes in the CEP may block this solute channel, thereby hindering disc cell function. Therefore, imaging the CEP region is important to improve the diagnostic accuracy of spine disorders. Methods: A clinically available T1-weighted and fat-suppressed spoiled gradient recalled-echo (FS-SPGR) sequence was optimized for high-contrast CEP imaging, which utilizes the short T1 property of the CEP. The FS-SPGR scans with and without breath-hold were performed for comparison on healthy subjects. Then, the FS-SPGR sequence which produced optimal image quality was employed for patient scans. In this study, seven asymptomatic volunteers and eight patients with lower back pain were recruited and scanned on a 3T whole-body MRI scanner. Clinical T2-weighted fast spin-echo (T2w-FSE) and T1-weighted FSE (T1w-FSE) sequences were also scanned for comparison. Results: For the asymptomatic volunteers, the FS-SPGR scans under free breathing conditions with NEX = 4 showed much higher contrast-to-noise ratio values between the CEP and bone marrow fat (BMF) (CNRCEP-BMF) (i.e., 7.8 ± 1.6) and between the CEP and nucleus pulposus (NP) (CNRCEP-NP) (i.e., 6.1 ± 1.2) compared to free breathing with NEX = 1 (CNRCEP-BMF: 4.0 ± 1.1 and CNRCEP-NP: 2.5 ± 0.9) and breath-hold condition with NEX = 1 (CNRCEP-BMF: 4.2 ± 1.3 and CNRCEP-NP: 2.8 ± 1.3). The CEP regions showed bright linear signals with high contrast in the T1-weighted FS-SPGR images in the controls, while irregularities of the CEP were found in the patients. Discussion: We have developed a T1-weighted 3D FS-SPGR sequence to image the CEP that is readily translatable to clinical settings. The proposed sequence can be used to highlight the CEP region and shows promise for the detection of intervertebral disc abnormalities.
Collapse
Affiliation(s)
- Jiyo S. Athertya
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Sheronda Statum
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Xiaojun Chen
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Kevin Du
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Soo Hyun Shin
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
16
|
Athertya JS, Lo J, Chen X, Shin SH, Malhi BS, Jerban S, Ji Y, Sedaghat S, Yoshioka H, Du J, Guma M, Chang EY, Ma Y. High contrast cartilaginous endplate imaging in spine using three dimensional dual-inversion recovery prepared ultrashort echo time (3D DIR-UTE) sequence. Skeletal Radiol 2024; 53:881-890. [PMID: 37935923 PMCID: PMC10973042 DOI: 10.1007/s00256-023-04503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE To investigate the feasibility and application of a novel imaging technique, a three-dimensional dual adiabatic inversion recovery prepared ultrashort echo time (3D DIR-UTE) sequence, for high contrast assessment of cartilaginous endplate (CEP) imaging with head-to-head comparisons between other UTE imaging techniques. METHOD The DIR-UTE sequence employs two narrow-band adiabatic full passage (AFP) pulses to suppress signals from long T2 water (e.g., nucleus pulposus (NP)) and bone marrow fat (BMF) independently, followed by multispoke UTE acquisition to detect signals from the CEP with short T2 relaxation times. The DIR-UTE sequence, in addition to three other UTE sequences namely, an IR-prepared and fat-saturated UTE (IR-FS-UTE), a T1-weighted and fat-saturated UTE sequence (T1w-FS-UTE), and a fat-saturated UTE (FS-UTE) was used for MR imaging on a 3 T scanner to image six asymptomatic volunteers, six patients with low back pain, as well as a human cadaveric specimen. The contrast-to-noise ratio of the CEP relative to the adjacent structures-specifically the NP and BMF-was then compared from the acquired images across the different UTE sequences. RESULTS For asymptomatic volunteers, the DIR-UTE sequence showed significantly higher contrast-to-noise ratio values between the CEP and BMF (CNRCEP-BMF) (19.9 ± 3.0) and between the CEP and NP (CNRCEP-NP) (23.1 ± 1.7) compared to IR-FS-UTE (CNRCEP-BMF: 17.3 ± 1.2 and CNRCEP-NP: 19.1 ± 1.8), T1w-FS-UTE (CNRCEP-BMF: 9.0 ± 2.7 and CNRCEP-NP: 10.4 ± 3.5), and FS-UTE (CNRCEP-BMF: 7.7 ± 2.2 and CNRCEP-NP: 5.8 ± 2.4) for asymptomatic volunteers (all P-values < 0.001). For the spine sample and patients with low back pain, the DIR-UTE technique detected abnormalities such as irregularities and focal defects in the CEP regions. CONCLUSION The 3D DIR-UTE sequence is able to provide high-contrast volumetric CEP imaging for human spines on a clinical 3 T scanner.
Collapse
Affiliation(s)
- Jiyo S Athertya
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - James Lo
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Xiaojun Chen
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Soo Hyun Shin
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | | | - Saeed Jerban
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Yang Ji
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Sam Sedaghat
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Hiroshi Yoshioka
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
| | - Jiang Du
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Monica Guma
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Medicine Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Eric Y Chang
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
17
|
Jerban S, Moazamian D, Ma Y, Afsahi AM, Dwek S, Athertya J, Malhi B, Jang H, Woods G, Chung CB, Du J, Chang EY. Fast dual-echo estimation of apparent long T2 fraction using ultrashort echo time magnetic resonance imaging in tibialis tendons and its osteoporosis-related differences in women. Quant Imaging Med Surg 2024; 14:3146-3156. [PMID: 38617168 PMCID: PMC11007502 DOI: 10.21037/qims-23-1341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/09/2024] [Indexed: 04/16/2024]
Abstract
Background Tendon and bone comprise a critical interrelating unit. Bone loss, including that seen with osteopenia (OPe) or osteoporosis (OPo), may be associated with a reduction in tendon quality, though this remains incompletely investigated. Clinical magnetic resonance imaging (MRI) sequences cannot directly detect signals from tendons because of the very short T2. Clinical MRI may detect high-graded abnormalities by changes in the adjacent structures like bone. However, ultrashort echo time MRI (UTE-MRI) can capture high signals from all tendons. To determine if the long T2 fraction, as measured by a dual-echo UTE-MRI sequence, is a sensitive quantitative technique to the age- and bone-loss-related changes of the lower leg tendons. Methods This is a cross-sectional study conducted between January 2018 to February 2020 in the lower legs of 14 female patients with OPe [72±6 years old, body mass index (BMI) =25.8±6.2 kg/m2] and 31 female patients with OPo (73±6 years old, BMI=22.0±3.8 kg/m2), as well as 30 female subjects with normal bone (Normal, 35±18 years old, BMI =23.2±4.3 kg/m2), were imaged on a 3T clinical scanner using a dual-echo 3D Cones UTE sequence. We defined the apparent long T2 signal fraction (aFrac-LongT2) of tendons as the ratio between the signal at the second echo time (TE =2.2 ms) to the UTE signal. The average aFrac-LongT2 and the cross-sectional area were calculated for the anterior tibialis tendons (ATTs) and the posterior tibialis tendons (PTTs). The Kruskal-Wallis rank test was used to compare the differences in aFrac-LongT2 and the cross-sectional area of the tendons between the groups. Results The aFrac-LongT2 of the ATTs and PTTs were significantly higher in the OPo group compared with the Normal group (22.2% and 34.8% in the ATT and PTT, respectively, P<0.01). The cross-sectional area in the ATTs was significantly higher for the OPo group than in the Normal group (Normal/OPo difference was 28.7, P<0.01). Such a difference for PTTs did not reach the significance level. Mean aFrac-LongT2 and cross-sectional area in the OPe group were higher than the Normal group and lower than the OPo group. However, the differences did not show statistical significance, likely due to the higher BMI in the OPe group. Conclusions Dual-echo UTE-MRI is a rapid quantification technique, and aFrac-LongT2 values showed significant differences in tendons between Normal and OPo patients.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Amir Masoud Afsahi
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Bhavsimran Malhi
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Gina Woods
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, La Jolla, CA, USA
| |
Collapse
|
18
|
Moazamian D, Athertya JS, Dwek S, Lombardi AF, Mohammadi HS, Sedaghat S, Jang H, Ma Y, Chung CB, Du J, Jerban S, Chang EY. Achilles tendon and enthesis assessment using ultrashort echo time magnetic resonance imaging (UTE-MRI) T1 and magnetization transfer (MT) modeling in psoriatic arthritis. NMR IN BIOMEDICINE 2024; 37:e5040. [PMID: 37740595 PMCID: PMC10754405 DOI: 10.1002/nbm.5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
The purpose of this study is to investigate the use of ultrashort echo time (UTE) magnetic resonance imaging (MRI) techniques (T1 and magnetization transfer [MT] modeling) for imaging of the Achilles tendons and entheses in patients with psoriatic arthritis (PsA) compared with asymptomatic volunteers. The heels of twenty-six PsA patients (age 59 ± 15 years, 41% female) and twenty-seven asymptomatic volunteers (age 33 ± 11 years, 47% female) were scanned in the sagittal plane with UTE-T1 and UTE-MT modeling sequences on a 3-T clinical scanner. UTE-T1 and macromolecular proton fraction (MMF; the main outcome of MT modeling) were calculated in the tensile portions of the Achilles tendon and at the enthesis (close to the calcaneus bone). Mann-Whitney-U tests were used to examine statistically significant differences between the two cohorts. UTE-T1 in the entheses was significantly higher for the PsA group compared with the asymptomatic group (967 ± 145 vs. 872 ± 133 ms, p < 0.01). UTE-T1 in the tendons was also significantly higher for the PsA group (950 ± 145 vs. 850 ± 138 ms, p < 0.01). MMF in the entheses was significantly lower in the PsA group compared with the asymptomatic group (15% ± 3% vs. 18% ± 3%, p < 0.01). MMF in the tendons was also significantly lower in the PsA group compared with the asymptomatic group (17% ± 4% vs. 20% ± 5%, p < 0.01). Percentage differences in MMF between the asymptomatic and PsA groups (-16.6% and -15.0% for the enthesis and tendon, respectively) were higher than the T1 differences (10.8% and 11.7% for the enthesis and tendon, respectively). The results suggest higher T1 and lower MMF in the Achilles tendons and entheses in PsA patients compared with the asymptomatic group. This study highlights the potential of UTE-T1 and UTE-MT modeling for quantitative evaluation of entheses and tendons in PsA patients.
Collapse
Affiliation(s)
- Dina Moazamian
- Department of Radiology, University of California, San Diego, CA
| | - Jiyo S Athertya
- Department of Radiology, University of California, San Diego, CA
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, CA
| | | | | | - Sam Sedaghat
- Department of Radiology, University of California, San Diego, CA
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
19
|
Mlynárik V. Amyotrophic lateral sclerosis and the upper motor neurons: we do need more than meets the eye. Eur Radiol 2023; 33:7675-7676. [PMID: 37608094 DOI: 10.1007/s00330-023-10079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 08/24/2023]
Affiliation(s)
- Vladimír Mlynárik
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Vuillemin V, Guerini H, Thévenin F, Sibileau E, Corcos G, Khaled W, Zeitoun F, Morvan G. Bone Tissue in Magnetic Resonance Imaging: Contribution of New Zero Echo Time Sequences. Semin Musculoskelet Radiol 2023; 27:411-420. [PMID: 37748464 DOI: 10.1055/s-0043-1770771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The introduction of new ultrashort and zero echo time (ZTE) sequences is revolutionizing magnetic resonance imaging (MRI) and optimizing patient management. These sequences acquire signals in tissues with very short T2: mineralized bone, cortical bone, and calcium deposits. They can be added to a classic MRI protocol. ZTE MRI provides computed tomography-like contrast for bone.
Collapse
|
21
|
Sneag DB, Abel F, Potter HG, Fritz J, Koff MF, Chung CB, Pedoia V, Tan ET. MRI Advancements in Musculoskeletal Clinical and Research Practice. Radiology 2023; 308:e230531. [PMID: 37581501 PMCID: PMC10477516 DOI: 10.1148/radiol.230531] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 08/16/2023]
Abstract
Over the past decades, MRI has become increasingly important for diagnosing and longitudinally monitoring musculoskeletal disorders, with ongoing hardware and software improvements aiming to optimize image quality and speed. However, surging demand for musculoskeletal MRI and increased interest to provide more personalized care will necessitate a stronger emphasis on efficiency and specificity. Ongoing hardware developments include more powerful gradients, improvements in wide-bore magnet designs to maintain field homogeneity, and high-channel phased-array coils. There is also interest in low-field-strength magnets with inherently lower magnetic footprints and operational costs to accommodate global demand in middle- and low-income countries. Previous approaches to decrease acquisition times by means of conventional acceleration techniques (eg, parallel imaging or compressed sensing) are now largely overshadowed by deep learning reconstruction algorithms. It is expected that greater emphasis will be placed on improving synthetic MRI and MR fingerprinting approaches to shorten overall acquisition times while also addressing the demand of personalized care by simultaneously capturing microstructural information to provide greater detail of disease severity. Authors also anticipate increased research emphasis on metal artifact reduction techniques, bone imaging, and MR neurography to meet clinical needs.
Collapse
Affiliation(s)
- Darryl B. Sneag
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Frederik Abel
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Hollis G. Potter
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Jan Fritz
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Matthew F. Koff
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Christine B. Chung
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Valentina Pedoia
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| | - Ek T. Tan
- From the Department of Radiology and Imaging, Hospital for Special
Surgery, 535 E 70th St, New York, NY 10021 (D.B.S., F.A., H.G.P., M.F.K.,
E.T.T.); Department of Radiology, New York University Grossman School of
Medicine, New York, NY (J.F.); Department of Radiology, University of California
San Diego, La Jolla, Calif (C.B.C.); Radiology Service, Veterans Affairs San
Diego Healthcare System, La Jolla, Calif (C.B.C.); and Department of Radiology
and Biomedical Imaging, University of California San Francisco, San Francisco,
Calif (V.P.)
| |
Collapse
|
22
|
Jones BC, Wehrli FW, Kamona N, Deshpande RS, Vu BTD, Song HK, Lee H, Grewal RK, Chan TJ, Witschey WR, MacLean MT, Josselyn NJ, Iyer SK, Al Mukaddam M, Snyder PJ, Rajapakse CS. Automated, calibration-free quantification of cortical bone porosity and geometry in postmenopausal osteoporosis from ultrashort echo time MRI and deep learning. Bone 2023; 171:116743. [PMID: 36958542 PMCID: PMC10121925 DOI: 10.1016/j.bone.2023.116743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Assessment of cortical bone porosity and geometry by imaging in vivo can provide useful information about bone quality that is independent of bone mineral density (BMD). Ultrashort echo time (UTE) MRI techniques of measuring cortical bone porosity and geometry have been extensively validated in preclinical studies and have recently been shown to detect impaired bone quality in vivo in patients with osteoporosis. However, these techniques rely on laborious image segmentation, which is clinically impractical. Additionally, UTE MRI porosity techniques typically require long scan times or external calibration samples and elaborate physics processing, which limit their translatability. To this end, the UTE MRI-derived Suppression Ratio has been proposed as a simple-to-calculate, reference-free biomarker of porosity which can be acquired in clinically feasible acquisition times. PURPOSE To explore whether a deep learning method can automate cortical bone segmentation and the corresponding analysis of cortical bone imaging biomarkers, and to investigate the Suppression Ratio as a fast, simple, and reference-free biomarker of cortical bone porosity. METHODS In this retrospective study, a deep learning 2D U-Net was trained to segment the tibial cortex from 48 individual image sets comprised of 46 slices each, corresponding to 2208 training slices. Network performance was validated through an external test dataset comprised of 28 scans from 3 groups: (1) 10 healthy, young participants, (2) 9 postmenopausal, non-osteoporotic women, and (3) 9 postmenopausal, osteoporotic women. The accuracy of automated porosity and geometry quantifications were assessed with the coefficient of determination and the intraclass correlation coefficient (ICC). Furthermore, automated MRI biomarkers were compared between groups and to dual energy X-ray absorptiometry (DXA)- and peripheral quantitative CT (pQCT)-derived BMD. Additionally, the Suppression Ratio was compared to UTE porosity techniques based on calibration samples. RESULTS The deep learning model provided accurate labeling (Dice score 0.93, intersection-over-union 0.88) and similar results to manual segmentation in quantifying cortical porosity (R2 ≥ 0.97, ICC ≥ 0.98) and geometry (R2 ≥ 0.82, ICC ≥ 0.75) parameters in vivo. Furthermore, the Suppression Ratio was validated compared to established porosity protocols (R2 ≥ 0.78). Automated parameters detected age- and osteoporosis-related impairments in cortical bone porosity (P ≤ .002) and geometry (P values ranging from <0.001 to 0.08). Finally, automated porosity markers showed strong, inverse Pearson's correlations with BMD measured by pQCT (|R| ≥ 0.88) and DXA (|R| ≥ 0.76) in postmenopausal women, confirming that lower mineral density corresponds to greater porosity. CONCLUSION This study demonstrated feasibility of a simple, automated, and ionizing-radiation-free protocol for quantifying cortical bone porosity and geometry in vivo from UTE MRI and deep learning.
Collapse
Affiliation(s)
- Brandon C Jones
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Felix W Wehrli
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nada Kamona
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Rajiv S Deshpande
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Brian-Tinh Duc Vu
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Hee Kwon Song
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Hyunyeol Lee
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Rasleen Kaur Grewal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Trevor Jackson Chan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, 210 South 33(rd) St, Philadelphia, PA 19104, United States of America.
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Matthew T MacLean
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| | - Nicholas J Josselyn
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America; Department of Data Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States of America.
| | - Srikant Kamesh Iyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America
| | - Mona Al Mukaddam
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Peter J Snyder
- Department of Medicine, Division of Endocrinology, Perelman School of Medicine, University of Pennsylvania, Perelman Center for Advanced Medicine, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States of America.
| | - Chamith S Rajapakse
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 1 Founders Building, 3400 Spruce St, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
23
|
Jang H, Athertya J, Jerban S, Ma Y, Lombardi AF, Chung CB, Chang EY, Du J. Correction of B 0 and linear eddy currents: Impact on morphological and quantitative ultrashort echo time double echo steady state (UTE-DESS) imaging. NMR IN BIOMEDICINE 2023; 36:e4939. [PMID: 36965076 PMCID: PMC10518369 DOI: 10.1002/nbm.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/10/2023]
Abstract
The purpose of the current study was to investigate the effects of B0 and linear eddy currents on ultrashort echo time double echo steady state (UTE-DESS) imaging and to determine whether eddy current correction (ECC) effectively resolves imaging artifacts caused by eddy currents. 3D UTE-DESS sequences based on either projection radial or spiral cones trajectories were implemented on a 3-T clinical MR scanner. An off-isocentered thin-slice excitation approach was used to measure eddy currents. The measurements were repeated four times using two sets of tested gradient waveforms with opposite polarities and two different slice locations to measure B0 and linear eddy currents simultaneously. Computer simulation was performed to investigate the eddy current effect. Finally, a phantom experiment, an ex vivo experiment with human synovium and ankle samples, and an in vivo experiment with human knee joints, were performed to demonstrate the effects of eddy currents and ECC in UTE-DESS imaging. In a computer simulation, the two echoes (S+ and S-) in UTE-DESS imaging exhibited strong distortion at different orientations in the presence of B0 and linear eddy currents, resulting in both image degradation as well as misalignment of pixel location between the two echoes. The same phenomenon was observed in the phantom, ex vivo, and in vivo experiments, where the presence of eddy currents degraded S+, S-, echo subtraction images, and T2 maps. The implementation of ECC dramatically improved both the image quality and image registration between the S+ and S- echoes. It was concluded that ECC is crucial for reliable morphological and quantitative UTE-DESS imaging.
Collapse
Affiliation(s)
- Hyungseok Jang
- Department of Radiology, University of California, San Diego, USA
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, USA
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, USA
| | | | - Christine B Chung
- Department of Radiology, University of California, San Diego, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, USA
| | - Jiang Du
- Department of Radiology, University of California, San Diego, USA
- Radiology Service, Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Bioengineering, University of California, San Diego, USA
| |
Collapse
|
24
|
Jerban S, Ma Y, Moazamian D, Athertya J, Dwek S, Jang H, Woods G, Chung CB, Chang EY, Du J. MRI-based porosity index (PI) and suppression ratio (SR) in the tibial cortex show significant differences between normal, osteopenic, and osteoporotic female subjects. Front Endocrinol (Lausanne) 2023; 14:1148345. [PMID: 37025410 PMCID: PMC10070867 DOI: 10.3389/fendo.2023.1148345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Ultrashort echo time (UTE) MRI enables quantitative assessment of cortical bone. The signal ratio in dual-echo UTE imaging, known as porosity index (PI), as well as the signal ratio between UTE and inversion recovery UTE (IR-UTE) imaging, known as the suppression ratio (SR), are two rapid UTE-based bone evaluation techniques developed to reduce the time demand and cost in future clinical studies. The goal of this study was to investigate the performance of PI and SR in detecting bone quality differences between subjects with osteoporosis (OPo), osteopenia (OPe), and normal bone (Normal). Methods Tibial midshaft of fourteen OPe (72 ± 6 years old), thirty-one OPo (72 ± 6 years old), and thirty-seven Normal (36 ± 19 years old) subjects were scanned using dual-echo UTE and IR-UTE sequences on a clinical 3T scanner. Measured PI, SR, and bone thickness were compared between OPo, OPe, and normal bone (Normal) subjects using the Kruskal-Wallis test by ranks. Spearman's rank correlation coefficients were calculated between dual-energy x-ray absorptiometry (DEXA) T-score and UTE-MRI results. Results PI was significantly higher in the OPo group compared with the Normal (24.1%) and OPe (16.3%) groups. SR was significantly higher in the OPo group compared with the Normal (41.5%) and OPe (21.8%) groups. SR differences between the OPe and Normal groups were also statistically significant (16.2%). Cortical bone was significantly thinner in the OPo group compared with the Normal (22.0%) and OPe (13.0%) groups. DEXA T-scores in subjects were significantly correlated with PI (R=-0.32), SR (R=-0.50), and bone thickness (R=0.51). Discussion PI and SR, as rapid UTE-MRI-based techniques, may be useful tools to detect and monitor bone quality changes, in addition to bone morphology, in individuals affected by osteoporosis.
Collapse
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, CA, United States
| | - Yajun Ma
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Dina Moazamian
- Department of Radiology, University of California, San Diego, CA, United States
| | - Jiyo Athertya
- Department of Radiology, University of California, San Diego, CA, United States
| | - Sophia Dwek
- Department of Radiology, University of California, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Gina Woods
- Department of Medicine, University of California, San Diego, CA, United States
| | - Christine B. Chung
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Jiang Du
- Department of Radiology, University of California, San Diego, CA, United States
- Radiology Service, Department of Research, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
25
|
Ultrashort echo time magnetization transfer imaging of knee cartilage and meniscus after long-distance running. Eur Radiol 2023:10.1007/s00330-023-09462-x. [PMID: 36814033 DOI: 10.1007/s00330-023-09462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 01/22/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE To assess the detection of changes in knee cartilage and meniscus of amateur marathon runners before and after long-distance running using a 3D ultrashort echo time MRI sequence with magnetization transfer preparation (UTE-MT). METHODS We recruited 23 amateur marathon runners (46 knees) in this prospective cohort study. MRI scans using UTE-MT and UTE-T2* sequences were performed pre-race, 2 days post-race, and 4 weeks post-race. UTE-MT ratio (UTE-MTR) and UTE-T2* were measured for knee cartilage (eight subregions) and meniscus (four subregions). The sequence reproducibility and inter-rater reliability were also investigated. RESULTS Both the UTE-MTR and UTE-T2* measurements showed good reproducibility and inter-rater reliability. For most subregions of cartilage and meniscus, the UTE-MTR values decreased 2 days post-race and increased after 4 weeks of rest. Conversely, the UTE-T2* values increased 2 days post-race and decreased after 4 weeks. The UTE-MTR values in lateral tibial plateau, central medial femoral condyle, and medial tibial plateau showed a significant decrease at 2 days post-race compared to the other two time points (p < 0.05). By comparison, no significant UTE-T2* changes were found for any cartilage subregions. For meniscus, the UTE-MTR values in medial posterior horn and lateral posterior horn regions at 2 days post-race were significantly lower than those at pre-race and 4 weeks post-race (p < 0.05). By comparison, only the UTE-T2* values in medial posterior horn showed a significant difference. CONCLUSIONS UTE-MTR is a promising method for the detection of dynamic changes in knee cartilage and meniscus after long-distance running. KEY POINTS • Long-distance running causes changes in the knee cartilage and meniscus. • UTE-MT monitors dynamic changes of knee cartilage and meniscal non-invasively. • UTE-MT is superior to UTE-T2* in monitoring dynamic changes in knee cartilage and meniscus.
Collapse
|
26
|
Tolpadi AA, Bharadwaj U, Gao KT, Bhattacharjee R, Gassert FG, Luitjens J, Giesler P, Morshuis JN, Fischer P, Hein M, Baumgartner CF, Razumov A, Dylov D, van Lohuizen Q, Fransen SJ, Zhang X, Tibrewala R, de Moura HL, Liu K, Zibetti MVW, Regatte R, Majumdar S, Pedoia V. K2S Challenge: From Undersampled K-Space to Automatic Segmentation. Bioengineering (Basel) 2023; 10:bioengineering10020267. [PMID: 36829761 PMCID: PMC9952400 DOI: 10.3390/bioengineering10020267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) offers strong soft tissue contrast but suffers from long acquisition times and requires tedious annotation from radiologists. Traditionally, these challenges have been addressed separately with reconstruction and image analysis algorithms. To see if performance could be improved by treating both as end-to-end, we hosted the K2S challenge, in which challenge participants segmented knee bones and cartilage from 8× undersampled k-space. We curated the 300-patient K2S dataset of multicoil raw k-space and radiologist quality-checked segmentations. 87 teams registered for the challenge and there were 12 submissions, varying in methodologies from serial reconstruction and segmentation to end-to-end networks to another that eschewed a reconstruction algorithm altogether. Four teams produced strong submissions, with the winner having a weighted Dice Similarity Coefficient of 0.910 ± 0.021 across knee bones and cartilage. Interestingly, there was no correlation between reconstruction and segmentation metrics. Further analysis showed the top four submissions were suitable for downstream biomarker analysis, largely preserving cartilage thicknesses and key bone shape features with respect to ground truth. K2S thus showed the value in considering reconstruction and image analysis as end-to-end tasks, as this leaves room for optimization while more realistically reflecting the long-term use case of tools being developed by the MR community.
Collapse
Affiliation(s)
- Aniket A. Tolpadi
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Correspondence:
| | - Upasana Bharadwaj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kenneth T. Gao
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rupsa Bhattacharjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Felix G. Gassert
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Johanna Luitjens
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Radiology, Klinikum Großhadern, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Paula Giesler
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jan Nikolas Morshuis
- Cluster of Excellence Machine Learning, University of Tübingen, 72076 Tübingen, Germany
| | - Paul Fischer
- Cluster of Excellence Machine Learning, University of Tübingen, 72076 Tübingen, Germany
| | - Matthias Hein
- Cluster of Excellence Machine Learning, University of Tübingen, 72076 Tübingen, Germany
| | | | - Artem Razumov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry Dylov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Quintin van Lohuizen
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Stefan J. Fransen
- Department of Radiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Xiaoxia Zhang
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Radhika Tibrewala
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Hector Lise de Moura
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kangning Liu
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcelo V. W. Zibetti
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ravinder Regatte
- Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| | - Valentina Pedoia
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
27
|
Deininger-Czermak E, Gascho D, Franckenberg S, Kälin P, Blüthgen C, Villefort C, Thali MJ, Guggenberger R. Added value of ultra-short echo time and fast field echo using restricted echo-spacing MR imaging in the assessment of the osseous cervical spine. LA RADIOLOGIA MEDICA 2023; 128:234-241. [PMID: 36637741 PMCID: PMC9938813 DOI: 10.1007/s11547-023-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
PURPOSE To evaluate the added value of ultra-short echo time (UTE) and fast field echo resembling a CT using restricted echo-spacing (FRACTURE) MR sequences in the assessment of the osseous cervical spine using CT as reference. MATERIALS AND METHODS Twenty-seven subjects underwent postmortem CT and MRI within 48 h. Datasets were anonymized and analyzed retrospectively by two radiologists. Morphological cervical spine alterations were rated on CT, UTE and FRACTURE images. Afterward, neural foraminal stenosis was graded on standard MR and again after viewing additional UTE/FRACTURE sequences. To evaluate interreader and intermodality reliability, intra-class correlation coefficients (ICC) and for stenosis grading Wilcoxon-matched-pairs testing with multiple comparison correction were calculated. RESULTS Moderate interreader reliability (ICC = 0.48-0.71) was observed concerning morphological findings on all modalities. Intermodality reliability was good between modalities regarding degenerative vertebral and joint alterations (ICC = 0.69-0.91). Compared to CT neural stenosis grades were more often considered as nonsignificant on all analyzed MR sequences. Neural stenosis grading scores differed also significantly between specific bone imaging sequences, UTE and FRACTURE, to standard MR sequences. However, no significant difference was observed between UTE and FRACTURE sequences. CONCLUSION Compared to CT as reference, UTE or FRACTURE sequence added to standard MR sequences can deliver comparable information on osseous cervical spine status. Both led to changes in clinically significant stenosis gradings when added to standard MR, mainly reducing the severity of neural foramina stenosis.
Collapse
Affiliation(s)
- Eva Deininger-Czermak
- Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland. .,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| | - Dominic Gascho
- grid.7400.30000 0004 1937 0650Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Sabine Franckenberg
- grid.7400.30000 0004 1937 0650Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland ,grid.412004.30000 0004 0478 9977Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pascal Kälin
- grid.412004.30000 0004 0478 9977Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Christian Blüthgen
- grid.412004.30000 0004 0478 9977Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Christina Villefort
- grid.412373.00000 0004 0518 9682Orthopedic Surgery, Balgrist University Hospital, Zurich, Switzerland
| | - Michael J. Thali
- grid.7400.30000 0004 1937 0650Department of Forensic Medicine and Imaging, Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Roman Guggenberger
- grid.412004.30000 0004 0478 9977Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
28
|
Ma Y, Jang H, Jerban S, Chang EY, Chung CB, Bydder GM, Du J. Making the invisible visible-ultrashort echo time magnetic resonance imaging: Technical developments and applications. APPLIED PHYSICS REVIEWS 2022; 9:041303. [PMID: 36467869 PMCID: PMC9677812 DOI: 10.1063/5.0086459] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) uses a large magnetic field and radio waves to generate images of tissues in the body. Conventional MRI techniques have been developed to image and quantify tissues and fluids with long transverse relaxation times (T2s), such as muscle, cartilage, liver, white matter, gray matter, spinal cord, and cerebrospinal fluid. However, the body also contains many tissues and tissue components such as the osteochondral junction, menisci, ligaments, tendons, bone, lung parenchyma, and myelin, which have short or ultrashort T2s. After radio frequency excitation, their transverse magnetizations typically decay to zero or near zero before the receiving mode is enabled for spatial encoding with conventional MR imaging. As a result, these tissues appear dark, and their MR properties are inaccessible. However, when ultrashort echo times (UTEs) are used, signals can be detected from these tissues before they decay to zero. This review summarizes recent technical developments in UTE MRI of tissues with short and ultrashort T2 relaxation times. A series of UTE MRI techniques for high-resolution morphological and quantitative imaging of these short-T2 tissues are discussed. Applications of UTE imaging in the musculoskeletal, nervous, respiratory, gastrointestinal, and cardiovascular systems of the body are included.
Collapse
Affiliation(s)
- Yajun Ma
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Hyungseok Jang
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, California 92037, USA
| | | | | | - Graeme M Bydder
- Department of Radiology, University of California, San Diego, California 92037, USA
| | - Jiang Du
- Author to whom correspondence should be addressed:. Tel.: (858) 246-2248, Fax: (858) 246-2221
| |
Collapse
|
29
|
Afsahi AM, Sedaghat S, Moazamian D, Afsahi G, Athertya JS, Jang H, Ma YJ. Articular Cartilage Assessment Using Ultrashort Echo Time MRI: A Review. Front Endocrinol (Lausanne) 2022; 13:892961. [PMID: 35692400 PMCID: PMC9178905 DOI: 10.3389/fendo.2022.892961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/14/2022] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage is a major component of the human knee joint which may be affected by a variety of degenerative mechanisms associated with joint pathologies and/or the aging process. Ultrashort echo time (UTE) sequences with a TE less than 100 µs are capable of detecting signals from both fast- and slow-relaxing water protons in cartilage. This allows comprehensive evaluation of all the cartilage layers, especially for the short T2 layers which include the deep and calcified zones. Several ultrashort echo time (UTE) techniques have recently been developed for both morphological imaging and quantitative cartilage assessment. This review article summarizes the current catalog techniques based on UTE Magnetic Resonance Imaging (MRI) that have been utilized for such purposes in the human knee joint, such as T1, T2∗ , T1ρ, magnetization transfer (MT), double echo steady state (DESS), quantitative susceptibility mapping (QSM) and inversion recovery (IR). The contrast mechanisms as well as the advantages and disadvantages of these techniques are discussed.
Collapse
Affiliation(s)
- Amir Masoud Afsahi
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Sam Sedaghat
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Dina Moazamian
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, United States
| | - Ghazaleh Afsahi
- Department of Biotechnology Research, BioSapien, San Diego, CA, United States
| | - Jiyo S. Athertya
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Hyungseok Jang
- Department of Radiology, University of California San Diego, San Diego, CA, United States
| | - Ya-Jun Ma
- Department of Radiology, University of California San Diego, San Diego, CA, United States
- *Correspondence: Ya-Jun Ma,
| |
Collapse
|
30
|
Jerban S, Oei EHG, Ding J. Editorial: Cartilage assessment using quantitative MRI. Front Endocrinol (Lausanne) 2022; 13:1092354. [PMID: 36523591 PMCID: PMC9745309 DOI: 10.3389/fendo.2022.1092354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Saeed Jerban
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
- *Correspondence: Saeed Jerban,
| | - Edwin H. G. Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center (MC), University Medical Center, Rotterdam, Netherlands
| | - Jianping Ding
- Department of Radiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|