1
|
Pandey A, Kaur J, Kaushal D. Transforming ENT Healthcare: Advancements and Implications of Artificial Intelligence. Indian J Otolaryngol Head Neck Surg 2024; 76:4986-4996. [PMID: 39376323 PMCID: PMC11456104 DOI: 10.1007/s12070-024-04885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 10/09/2024] Open
Abstract
This systematic literature review aims to study the role and impact of artificial intelligence (AI) in transforming Ear, Nose, and Throat (ENT) healthcare. It aims to compare and analyse literature that applied AI algorithms for ENT disease prediction and detection based on their effectiveness, methods, dataset, and performance. We have also discussed ENT specialists' challenges and AI's role in solving them. This review also discusses the challenges faced by AI researchers. This systematic review was completed using PRISMA guidelines. Data was extracted from several reputable digital databases, including PubMed, Medline, SpringerLink, Elsevier, Google Scholar, ScienceDirect, and IEEExplore. The search criteria included studies recently published between 2018 and 2024 related to the application of AI for ENT healthcare. After removing duplicate studies and quality assessments, we reviewed eligible articles and responded to the research questions. This review aims to provide a comprehensive overview of the current state of AI applications in ENT healthcare. Among the 3257 unique studies, 27 were selected as primary studies. About 62.5% of the included studies were effective in providing disease predictions. We found that Pretrained DL models are more in application than CNN algorithms when employed for ENT disease predictions. The accuracy of models ranged between 75 and 97%. We also observed the effectiveness of conversational AI models such as ChatGPT in the ENT discipline. The research in AI for ENT is advancing rapidly. Most of the models have achieved accuracy above 90%. However, the lack of good-quality data and data variability limits the overall ability of AI models to perform better for ENT disease prediction. Further research needs to be conducted while considering factors such as external validation and the issue of class imbalance.
Collapse
Affiliation(s)
- Ayushmaan Pandey
- Department of Computer Science and Engineering, Dr B R Ambedkar National Institute of Technology, G. T. Road, Jalandhar, Punjab 144008 India
| | - Jagdeep Kaur
- Department of Computer Science and Engineering, Dr B R Ambedkar National Institute of Technology, G. T. Road, Jalandhar, Punjab 144008 India
| | - Darwin Kaushal
- Department of Otorhinolaryngology and Head Neck Surgery, All India Institute of Medical Sciences, Vijaypur, Jammu, Jammu and Kashmir 180001 India
| |
Collapse
|
2
|
Wang CK, Wang TW, Yang YX, Wu YT. Deep Learning for Nasopharyngeal Carcinoma Segmentation in Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Bioengineering (Basel) 2024; 11:504. [PMID: 38790370 PMCID: PMC11118180 DOI: 10.3390/bioengineering11050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Nasopharyngeal carcinoma is a significant health challenge that is particularly prevalent in Southeast Asia and North Africa. MRI is the preferred diagnostic tool for NPC due to its superior soft tissue contrast. The accurate segmentation of NPC in MRI is crucial for effective treatment planning and prognosis. We conducted a search across PubMed, Embase, and Web of Science from inception up to 20 March 2024, adhering to the PRISMA 2020 guidelines. Eligibility criteria focused on studies utilizing DL for NPC segmentation in adults via MRI. Data extraction and meta-analysis were conducted to evaluate the performance of DL models, primarily measured by Dice scores. We assessed methodological quality using the CLAIM and QUADAS-2 tools, and statistical analysis was performed using random effects models. The analysis incorporated 17 studies, demonstrating a pooled Dice score of 78% for DL models (95% confidence interval: 74% to 83%), indicating a moderate to high segmentation accuracy by DL models. Significant heterogeneity and publication bias were observed among the included studies. Our findings reveal that DL models, particularly convolutional neural networks, offer moderately accurate NPC segmentation in MRI. This advancement holds the potential for enhancing NPC management, necessitating further research toward integration into clinical practice.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan; (C.-K.W.)
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Ya-Xuan Yang
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| |
Collapse
|
3
|
Tsilivigkos C, Athanasopoulos M, Micco RD, Giotakis A, Mastronikolis NS, Mulita F, Verras GI, Maroulis I, Giotakis E. Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review. J Clin Med 2023; 12:6973. [PMID: 38002588 PMCID: PMC10672270 DOI: 10.3390/jcm12226973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, the field of medicine has witnessed significant progress in artificial intelligence (AI), the Internet of Medical Things (IoMT), and deep learning (DL) systems. Otorhinolaryngology, and imaging in its various subspecialties, has not remained untouched by this transformative trend. As the medical landscape evolves, the integration of these technologies becomes imperative in augmenting patient care, fostering innovation, and actively participating in the ever-evolving synergy between computer vision techniques in otorhinolaryngology and AI. To that end, we conducted a thorough search on MEDLINE for papers published until June 2023, utilizing the keywords 'otorhinolaryngology', 'imaging', 'computer vision', 'artificial intelligence', and 'deep learning', and at the same time conducted manual searching in the references section of the articles included in our manuscript. Our search culminated in the retrieval of 121 related articles, which were subsequently subdivided into the following categories: imaging in head and neck, otology, and rhinology. Our objective is to provide a comprehensive introduction to this burgeoning field, tailored for both experienced specialists and aspiring residents in the domain of deep learning algorithms in imaging techniques in otorhinolaryngology.
Collapse
Affiliation(s)
- Christos Tsilivigkos
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Michail Athanasopoulos
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Riccardo di Micco
- Department of Otolaryngology and Head and Neck Surgery, Medical School of Hannover, 30625 Hannover, Germany;
| | - Aris Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Nicholas S. Mastronikolis
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Georgios-Ioannis Verras
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Ioannis Maroulis
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Evangelos Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| |
Collapse
|
4
|
Wu Q, Wang X, Liang G, Luo X, Zhou M, Deng H, Zhang Y, Huang X, Yang Q. Advances in Image-Based Artificial Intelligence in Otorhinolaryngology-Head and Neck Surgery: A Systematic Review. Otolaryngol Head Neck Surg 2023; 169:1132-1142. [PMID: 37288505 DOI: 10.1002/ohn.391] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To update the literature and provide a systematic review of image-based artificial intelligence (AI) applications in otolaryngology, highlight its advances, and propose future challenges. DATA SOURCES Web of Science, Embase, PubMed, and Cochrane Library. REVIEW METHODS Studies written in English, published between January 2020 and December 2022. Two independent authors screened the search results, extracted data, and assessed studies. RESULTS Overall, 686 studies were identified. After screening titles and abstracts, 325 full-text studies were assessed for eligibility, and 78 studies were included in this systematic review. The studies originated from 16 countries. Among these countries, the top 3 were China (n = 29), Korea (n = 8), the United States, and Japan (n = 7 each). The most common area was otology (n = 35), followed by rhinology (n = 20), pharyngology (n = 18), and head and neck surgery (n = 5). Most applications of AI in otology, rhinology, pharyngology, and head and neck surgery mainly included chronic otitis media (n = 9), nasal polyps (n = 4), laryngeal cancer (n = 12), and head and neck squamous cell carcinoma (n = 3), respectively. The overall performance of AI in accuracy, the area under the curve, sensitivity, and specificity were 88.39 ± 9.78%, 91.91 ± 6.70%, 86.93 ± 11.59%, and 88.62 ± 14.03%, respectively. CONCLUSION This state-of-the-art review aimed to highlight the increasing applications of image-based AI in otorhinolaryngology head and neck surgery. The following steps will entail multicentre collaboration to ensure data reliability, ongoing optimization of AI algorithms, and integration into real-world clinical practice. Future studies should consider 3-dimensional (3D)-based AI, such as 3D surgical AI.
Collapse
Affiliation(s)
- Qingwu Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinyue Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guixian Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin Luo
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huiyi Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yana Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuekun Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qintai Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Allergy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Hua HL, Li S, Xu Y, Chen SM, Kong YG, Yang R, Deng YQ, Tao ZZ. Differentiation of eosinophilic and non-eosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning. Clin Otolaryngol 2023; 48:330-338. [PMID: 36200353 DOI: 10.1111/coa.13988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/12/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to develop deep learning (DL) models for differentiating between eosinophilic chronic rhinosinusitis (ECRS) and non-ECRS (NECRS) on preoperative CT. DESIGN Axial spiral CT images were pre-processed and used to build the dataset. Two semantic segmentation models based on U-net and Deeplabv3 were trained to segment the sinus area on CT images. All patient images were segmented using the better-performing segmentation model and used for training and testing of the transferred efficientnet_b0, resnet50, inception_resnet_v2, and Xception neural networks. Additionally, we evaluated the performances of the models trained using each image and each patient as a unit. PARTICIPANTS A total of 878 chronic rhinosinusitis (CRS) patients undergoing nasal endoscopic surgery at Renmin Hospital of Wuhan University (Hubei, China) between October 2016 to June 2021 were included. MAIN OUTCOME MEASURES The precision of each model was assessed based on the receiver operating characteristic curve. Further, we analyzed the confusion matrix and accuracy of each model. RESULTS The Dice coefficients of U-net and Deeplabv3 were 0.953 and 0.961, respectively. The average area under the curve and mean accuracy values of the four networks were 0.848 and 0.762 for models trained using a single image as a unit, while the corresponding values for models trained using each patient as a unit were 0.893 and 0.853, respectively. CONCLUSIONS Combining semantic segmentation with classification networks could effectively distinguish between patients with ECRS and those with NECRS based on preoperative sinus CT images. Furthermore, labeling each patient to build a dataset for classification may be more reliable than labeling each medical image.
Collapse
Affiliation(s)
- Hong-Li Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Song Li
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shi-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yong-Gang Kong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Rui Yang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Department of Otolaryngology-Head and Neck Surgery, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
6
|
van Staalduinen EK. Editorial for “Anatomical
Partition‐Based
Deep Learning: An Automatic Nasopharyngeal Magnetic Resonance Image Recognition Scheme”. J Magn Reson Imaging 2022; 56:1230-1231. [DOI: 10.1002/jmri.28119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/11/2022] Open
|