1
|
Colleran R, Fitzgerald S, Rai H, McGovern L, Byrne RJ, Mansur A, Cradock A, Lavery R, Bisset J, McKeogh S, Cantwell G, O'Ciardha D, Wilson H, Begossi N, Blake N, Fitzgibbon M, McNulty J, Széplaki G, Heffernan E, Hannan M, O'Donnell JS, Byrne RA. Symptom burden, coagulopathy and heart disease after acute SARS-CoV-2 infection in primary practice. Sci Rep 2024; 14:21229. [PMID: 39261512 PMCID: PMC11390729 DOI: 10.1038/s41598-024-71535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
SETANTA (Study of HEarT DiseAse and ImmuNiTy After COVID-19 in Ireland) study aimed to investigate symptom burden and incidence of cardiac abnormalities after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 and to correlate these results with biomarkers of immunological response and coagulation. SETANTA was a prospective, single-arm observational cross-sectional study condcuted in a primary practice setting, and prospectively registered with ClinicalTrials.gov (identifier: NCT04823182). Patients with recent COVID-19 infection (≥ 6 weeks and ≤ 12 months) were prospectively enrolled. Primary outcomes of interest were markers of cardiac injury detected by cardiac magnetic resonance imaging (CMR), which included left ventricular ejection fraction, late gadolinium enhancement and pericardial abnormalities, as well as relevant biomarkers testing immunological response and coagulopathy. 100 patients (n = 129 approached) were included, amongst which 64% were female. Mean age of the total cohort was 45.2 years. The median (interquartile range) time interval between COVID-19 infection and enrolment was 189 [125, 246] days. 83% of participants had at least one persistent symptom, while 96% had positive serology for prior SARS-CoV-2 infection. Late gadolinium enhancement, pericardial effusion, was present in 2.2% and 8.3% respectively, while left ventricular ejection fraction was below the normal reference limit in 17.4% of patients. Von Willebrand factor antigen was elevated in 32.7% of patients and Fibrinogen and D-Dimer levels were found to be elevated in 10.2% and 11.1% of patients, respectively. In a cohort of primary practice patients recently recovered from SARS-CoV-2 infection, prevalence of persistent symptoms and markers of abnormal coagulation were high, despite a lower frequency of abnormalities on CMR compared with prior reports of patients assessed in a hospital setting.Trial Registration: Clinicaltrials.gov, NCT04823182 (prospectively registered on 30th March 2021).
Collapse
Affiliation(s)
- Roisin Colleran
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Sean Fitzgerald
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Himanshu Rai
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laurna McGovern
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Andrea Cradock
- School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | - Gordon Cantwell
- Drs Cantwell and Spillane Practice, Family and General Medicine, Dublin, Ireland
| | - Darach O'Ciardha
- Institute of Population Health, Trinity College Dublin, Dublin, Ireland
| | - Hannah Wilson
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nicoletta Begossi
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nial Blake
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Gábor Széplaki
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Emma Heffernan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - Margaret Hannan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Robert A Byrne
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland.
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
2
|
Bhatt N, Orbach A, Biswas L, Strauss BH, Connelly K, Ghugre NR, Wright GA, Roifman I. Evaluating a novel accelerated free-breathing late gadolinium enhancement imaging sequence for assessment of myocardial injury. Magn Reson Imaging 2024; 108:40-46. [PMID: 38309379 DOI: 10.1016/j.mri.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Cardiac magnetic resonance imaging (MRI), including late gadolinium enhancement (LGE), plays an important role in the diagnosis and prognostication of ischemic and non-ischemic myocardial injury. Conventional LGE sequences require patients to perform multiple breath-holds and require long acquisition times. In this study, we compare image quality and assessment of myocardial LGE using an accelerated free-breathing sequence to the conventional standard-of-care sequence. METHODS In this prospective cohort study, a total of 41 patients post Coronavirus 2019 (COVID-19) infection were included. Studies were performed on a 1.5 Tesla scanner with LGE imaging acquired using a conventional inversion recovery rapid gradient echo (conventional LGE) sequence followed by the novel accelerated free-breathing (FB-LGE) sequence. Image quality was visually scored (ordinal scale from 1 to 5) and compared between conventional and free-breathing sequences using the Wilcoxon rank sum test. Presence of per-segment LGE was identified according to the American Heart Association 16-segment myocardial model and compared across both conventional LGE and FB-LGE sequences using a two-sided chi-square test. The perpatient LGE extent was also evaluated using both sequences and compared using the Wilcoxon rank sum test. Interobserver variability in detection of per-segment LGE and per-patient LGE extent was evaluated using Cohen's kappa statistic and interclass correlation (ICC), respectively. RESULTS The mean acquisition time for the FB-LGE sequence was 17 s compared to 413 s for the conventional LGE sequence (P < 0.001). Assessment of image quality was similar between both sequences (P = 0.19). There were no statistically significant differences in LGE assessed using the FB-LGE versus conventional LGE on a per-segment (P = 0.42) and per-patient (P = 0.06) basis. Interobserver variability in LGE assessment for FB-LGE was good for per-segment (= 0.71) and per-patient extent (ICC = 0.92) analyses. CONCLUSIONS The accelerated FB-LGE sequence performed comparably to the conventional standard-of-care LGE sequence in a cohort of patients post COVID-19 infection in a fraction of the time and without the need for breath-holding. Such a sequence could impact clinical practice by increasing cardiac MRI throughput and accessibility for frail or acutely ill patients unable to perform breath-holding.
Collapse
Affiliation(s)
- Nitish Bhatt
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ady Orbach
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Labonny Biswas
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Bradley H Strauss
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kim Connelly
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Nilesh R Ghugre
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Graham A Wright
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Idan Roifman
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|