1
|
Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants (Basel) 2023; 12:antiox12040856. [PMID: 37107229 PMCID: PMC10135105 DOI: 10.3390/antiox12040856] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE–protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Zlatko Marusic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Skolik R, Geldenhuys W, Konkle M, Menze M. Biochemical Control of the Mitochondrial Protein MitoNEET by Biological Thiols and Lipid-derived Electrophiles. ADVANCES IN REDOX RESEARCH 2023; 7:100059. [PMID: 39364216 PMCID: PMC11448853 DOI: 10.1016/j.arres.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
MitoNEET is a mitochondrial [2Fe-2S] protein known for its involvement in cellular metabolism, iron regulation, and oxidative stress. The protein has been associated with diseases ranging from diabetes to Parkinson's disease which has prompted development of compounds designed to selectively target mitoNEET. Unfortunately, drug development is limited due to a lack of understanding on the mechanistic level how mitoNEET integrates into pathophysiological processes. In particular, biological compounds that govern mitoNEET function are still ill defined. We demonstrate an oxygen-dependent reaction with biological thiols catalyzed by mitoNEET. Furthermore, we observed that formation of a covalently linked mitoNEET homodimer is controlled by both thiols and lipid-derived electrophiles. Finally, we demonstrate that reduced glutathione (L-GSH) regulates the reactivity of two lipid-derived biomarkers of oxidative stress, 4-HNE and 4-ONE, towards mitoNEET. We find that exposure to L-GSH prior to treatment with either of the electrophilic aldehydes prevents the formation of the covalently linked mitoNEET dimer. Meanwhile, addition of L-GSH after electrophile treatment recovers mitoNEET from the 4-HNE induced modification but not from the modification induced by 4-ONE. Our results collectively suggest that the thiol-electrophile redox balance governing ferroptotic cell death also controls mitoNEET's state at multiple biochemical levels. These results indicate a possible role for mitoNEET in thiol-mediated oxidative stress and may inform about development of probes designed to modulate mitoNEET activity to improve pathophysiological states.
Collapse
Affiliation(s)
- R.A Skolik
- Department of Biology, University of Louisville, Louisville, KY
| | - W.J. Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown WV
| | - M.E Konkle
- Department of Chemistry, Ball State University, Muncie, IN
| | - M.A. Menze
- Department of Biology, University of Louisville, Louisville, KY
| |
Collapse
|
3
|
N-Acetylcysteine Regenerates In Vivo Mercaptoalbumin. Antioxidants (Basel) 2022; 11:antiox11091758. [PMID: 36139832 PMCID: PMC9495570 DOI: 10.3390/antiox11091758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
Human serum albumin (HSA) represents the most abundant plasma protein, with relevant antioxidant activity due to the presence of the sulfhydryl group on cysteine at position 34 (Cys34), the latter being one of the major target sites for redox-dependent modifications leading to the formation of mixed disulfide linkages with low molecular weight thiols. Thiolated forms of HSA (Thio-HSA) may be useful as markers of an unbalanced redox state and as a potential therapeutic target. Indeed, we have previously reported that albumin Cys34 can be regenerated in vitro by N-Acetylcysteine (NAC) through a thiol-disulfide breaking mechanism, with a full recovery of the HSA antioxidant and antiplatelet activities. With this case study, we aimed to assess the ability of NAC to regenerate native mercaptoalbumin (HSA-SH) and the plasma antioxidant capacity in subjects with redox unbalance, after oral and intravenous administration. A placebo-controlled crossover study, single-blinded, was performed on six hypertensive subjects, randomized into two groups, on a one-to-one basis with NAC (600 mg/die) or a placebo, orally and intravenously administered. Albumin isoforms, HSA-SH, Thio-HSA, and glutathione levels were evaluated by means of mass spectrometry. The plasma antioxidant activity was assessed by a fluorimetric assay. NAC, orally administered, significantly decreased the Thio-HSA levels in comparison with the pre-treatment conditions (T0), reaching the maximal effect after 60 min (−24.7 ± 8%). The Thio-HSA reduction was accompanied by a concomitant increase in the native HSA-SH levels (+6.4 ± 2%). After intravenous administration of NAC, a significant decrease of the Thio-HSA with respect to the pre-treatment conditions (T0) was observed, with a maximal effect after 30 min (−68.9 ± 10.6%) and remaining significant even after 6 h. Conversely, no effect on the albumin isoforms was detected with either the orally or the intravenously administered placebo treatments. Furthermore, the total antioxidant activity of the plasma significantly increased after NAC infusion with respect to the placebo (p = 0.0089). Interestingly, we did not observe any difference in terms of total glutathione corrected for hemoglobin, ruling out any effect of NAC on the intracellular glutathione and supporting its role as a disulfide-breaking agent. This case study confirms the in vitro experiments and demonstrates for the first time that NAC is able to regenerate mercaptoalbumin in vivo, allowing us to hypothesize that the recovery of Cys34 content can modulate in vivo oxidative stress and, hopefully, have an effect in oxidative-based diseases.
Collapse
|
4
|
Grigoryan H, Imani P, Dudoit S, Rappaport SM. Extending the HSA-Cys34-Adductomics Pipeline to Modifications at Lys525. Chem Res Toxicol 2021; 34:2549-2557. [PMID: 34788011 DOI: 10.1021/acs.chemrestox.1c00311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We previously developed an adductomics pipeline that employed nanoflow liquid chromatography and high-resolution tandem mass spectrometry (nLC-HR-MS/MS) plus informatics to perform an untargeted detection of modifications to Cys34 in the tryptic T3 peptide of human serum albumin (HSA) (21ALVLIAFAQYLQQC34PFEDHVK41). In order to detect these peptide modifications without targeting specific masses, the pipeline interrogates MS2 ions that are signatures of the T3 peptide. The pipeline had been pilot-tested with archived plasma from healthy human subjects, and several of the 43 Cys34 adducts were highly associated with the smoking status. In the current investigation, we adapted the pipeline to include modifications to the ε-amino group of Lys525─a major glycation site in HSA─and thereby extend the coverage to products of Schiff bases that cannot be produced at Cys34. Because trypsin is generally unable to digest proteins at modified lysines, our pipeline detects miscleaved tryptic peptides with the sequence 525KQTALVELVK534. Adducts of both Lys525 and Cys34 are measured in a single nLC-HR-MS/MS run by increasing the mass range of precursor ions in MS1 scans and including both triply and doubly charged precursor ions for collision-induced dissociation fragmentation. For proof of principle, we applied the Cys34/Lys525 pipeline to archived plasma specimens from a subset of the same volunteer subjects used in the original investigation. Twelve modified Lys525 peptides were detected, including products of glycation (fructosyl-lysine plus advanced-glycated-end products), acetylation, and elimination of ammonia and water. Surprisingly, the carbamylated and glycated adducts were present at significantly lower levels in smoking subjects. By including a larger class of in vivo nucleophilic substitution reactions, the Cys34/Lys525 adductomics pipeline expands exposomic investigations of unknown human exposure to reactive electrophiles derived from both exogenous and endogenous sources.
Collapse
Affiliation(s)
- Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, United States
| | - Partow Imani
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California 94720, United States
| | - Sandrine Dudoit
- Division of Biostatistics, School of Public Health, University of California, Berkeley, California 94720, United States.,Department of Statistics, University of California, Berkeley, California 94720, United States
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
6
|
Demasi M, Augusto O, Bechara EJH, Bicev RN, Cerqueira FM, da Cunha FM, Denicola A, Gomes F, Miyamoto S, Netto LES, Randall LM, Stevani CV, Thomson L. Oxidative Modification of Proteins: From Damage to Catalysis, Signaling, and Beyond. Antioxid Redox Signal 2021; 35:1016-1080. [PMID: 33726509 DOI: 10.1089/ars.2020.8176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The systematic investigation of oxidative modification of proteins by reactive oxygen species started in 1980. Later, it was shown that reactive nitrogen species could also modify proteins. Some protein oxidative modifications promote loss of protein function, cleavage or aggregation, and some result in proteo-toxicity and cellular homeostasis disruption. Recent Advances: Previously, protein oxidation was associated exclusively to damage. However, not all oxidative modifications are necessarily associated with damage, as with Met and Cys protein residue oxidation. In these cases, redox state changes can alter protein structure, catalytic function, and signaling processes in response to metabolic and/or environmental alterations. This review aims to integrate the present knowledge on redox modifications of proteins with their fate and role in redox signaling and human pathological conditions. Critical Issues: It is hypothesized that protein oxidation participates in the development and progression of many pathological conditions. However, no quantitative data have been correlated with specific oxidized proteins or the progression or severity of pathological conditions. Hence, the comprehension of the mechanisms underlying these modifications, their importance in human pathologies, and the fate of the modified proteins is of clinical relevance. Future Directions: We discuss new tools to cope with protein oxidation and suggest new approaches for integrating knowledge about protein oxidation and redox processes with human pathophysiological conditions. Antioxid. Redox Signal. 35, 1016-1080.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda M Cerqueira
- CENTD, Centre of Excellence in New Target Discovery, Instituto Butantan, São Paulo, Brazil
| | - Fernanda M da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Denicola
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Fernando Gomes
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica and Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Luis E S Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Lía M Randall
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Leonor Thomson
- Laboratorios Fisicoquímica Biológica-Enzimología, Facultad de Ciencias, Instituto de Química Biológica, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Rojas Echeverri JC, Milkovska-Stamenova S, Hoffmann R. A Workflow towards the Reproducible Identification and Quantitation of Protein Carbonylation Sites in Human Plasma. Antioxidants (Basel) 2021; 10:antiox10030369. [PMID: 33804523 PMCID: PMC7999155 DOI: 10.3390/antiox10030369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/26/2023] Open
Abstract
Protein carbonylation, a marker of excessive oxidative stress, has been studied in the context of multiple human diseases related to oxidative stress. The variety of post-translational carbonyl modifications (carbonyl PTMs) and their low concentrations in plasma challenge their reproducible identification and quantitation. However, carbonyl-specific biotinylated derivatization tags (e.g., aldehyde reactive probe, ARP) allow for targeting carbonyl PTMs by enriching proteins and peptides carrying these modifications. In this study, an oxidized human serum albumin protein model (OxHSA) and plasma from a healthy donor were derivatized with ARP, digested with trypsin, and enriched using biotin-avidin affinity chromatography prior to nano reversed-phase chromatography coupled online to electrospray ionization tandem mass spectrometry with travelling wave ion mobility spectrometry (nRPC-ESI-MS/MS-TWIMS). The presented workflow addresses several analytical challenges by using ARP-specific fragment ions to reliably identify ARP peptides. Furthermore, the reproducible recovery and relative quantitation of ARP peptides were validated. Human serum albumin (HSA) in plasma was heavily modified by a variety of direct amino acid oxidation products and adducts from reactive carbonyl species (RCS), with most RCS modifications being detected in six hotspots, i.e., Lys10, Lys190, Lys199, Lys281, Lys432, and Lys525 of mature HSA.
Collapse
Affiliation(s)
- Juan Camilo Rojas Echeverri
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (J.C.R.E.); (S.M.-S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Sanja Milkovska-Stamenova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (J.C.R.E.); (S.M.-S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103 Leipzig, Germany; (J.C.R.E.); (S.M.-S.)
- Center for Biotechnology and Biomedicine, Universität Leipzig, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
8
|
In-Depth AGE and ALE Profiling of Human Albumin in Heart Failure: Ex Vivo Studies. Antioxidants (Basel) 2021; 10:antiox10030358. [PMID: 33673523 PMCID: PMC7997412 DOI: 10.3390/antiox10030358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), particularly carboxymethyl-lysine (CML), have been largely proposed as factors involved in the establishment and progression of heart failure (HF). Despite this evidence, the current literature lacks the comprehensive identification and characterization of the plasma AGEs/ALEs involved in HF (untargeted approach). This work provides the first ex vivo high-resolution mass spectrometry (HR-MS) profiling of AGEs/ALEs occurring in human serum albumin (HSA), the most abundant protein in plasma, characterized by several nucleophilic sites and thus representing the main protein substrate for AGE/ALE formation. A set of AGE/ALE adducts in pooled HF-HSA samples was defined, and a semi-quantitative analysis was carried out in order to finally select those presenting in increased amounts in the HF samples with respect to the control condition. These adducts were statistically confirmed by monitoring their content in individual HF samples by applying a targeted approach. Selected AGEs/ALEs proved to be mostly CML derivatives on Lys residues (i.e., CML-Lys12, CML-Lys378, CML-Lys402), and one deoxy-fructosyl derivative on the Lys 389 (DFK-Lys 389). The nature of CML adducts was finally confirmed using immunological methods and in vitro production of such adducts further confirmed by mass spectrometry.
Collapse
|
9
|
Altomare A, Baron G, Gianazza E, Banfi C, Carini M, Aldini G. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol 2021; 42:101899. [PMID: 33642248 PMCID: PMC8113032 DOI: 10.1016/j.redox.2021.101899] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive carbonyl species (RCS) formed by lipidperoxidation as free forms or as enzymatic and non-enzymatic conjugates are widely used as an index of oxidative stress. Besides general measurements based on derivatizing reactions, more selective and sensitive MS based analyses have been proposed in the last decade. Untargeted and targeted methods for the measurement of free RCS and adducts have been described and their applications to in vitro and ex vivo samples have permitted the identification of many biological targets, reaction mechanisms and adducted moieties with a particular relevance to RCS protein adducts. The growing interest in protein carbonylation can be explained by considering that protein adducts are now recognized as being involved in the damaging action of oxidative stress so that their measurement is performed not only to obtain an index of lipid peroxidation but also to gain a deeper insight into the molecular mechanisms of oxidative stress. The aim of the review is to discuss the most novel analytical approaches and their application for profiling reactive carbonyl species and their enzymatic and non-enzymatic metabolites as an index of lipid-oxidation and oxidative stress. Limits and perspectives will be discussed.
Collapse
Affiliation(s)
- Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
10
|
Abstract
Modification of endogenous proteins by drugs and drug metabolites are thought to be a cause of idiosyncratic adverse drug reactions (IADRs). Trimethoprim (TMP) is a commonly prescribed antibiotic that has been implicated in IADRs; however, there is no known mechanism by which this drug or its metabolites modify proteins. This study describes the results of screening trimethoprim and its primary metabolites for the ability to covalently modify human serum albumin (HSA). The first step of the screen was in vitro reactions of the compounds with HSA followed by western blotting with antisera specific to drug-modified proteins. Compounds with positive signal in the western blot were then screened using an untargeted peptide profiling method to discover modified peptides. This strategy identified two sites in HSA that are modified by incubation with a TMP metabolite, α-hydroxy trimethoprim (Cα-OH-TMP).
Collapse
|
11
|
Bein K, Birru RL, Wells H, Larkin TP, Cantrell PS, Fagerburg MV, Zeng X, Leikauf GD. Albumin Protects Lung Cells against Acrolein Cytotoxicity and Acrolein-Adducted Albumin Increases Heme Oxygenase 1 Transcripts. Chem Res Toxicol 2020; 33:1969-1979. [PMID: 32530271 DOI: 10.1021/acs.chemrestox.0c00146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Albumin is an abundant protein in the lung lining fluid that forms an interface between lung epithelial cells and the external environment. In the lung, albumin can be targeted for adduction by inhaled acrolein. Acrolein, an α,β-unsaturated aldehyde, reacts with biomolecules via Michael addition at the β-carbon or Schiff base formation at the carbonyl carbon. To gain insight into acrolein's mode of action, we investigated in vitro albumin-acrolein reactivity and the consequence of albumin adduction by acrolein on cytotoxicity and transcript changes in NCI-H441 and human airway epithelial cells (HAEC). Albumin protected NCI-H441 cells from acrolein toxicity. In addition, albumin inhibited acrolein-induced increase of transcripts associated with cellular stress response, activating transcription factor 3 (ATF3), and antioxidant response, heme oxygenase 1 (HMOX1) in HAEC cells. Acrolein-adducted albumin itself increased HMOX1 transcripts but not ATF3 transcripts. The HMOX1 transcript increase was inhibited by hydralazine, a carbonyl scavenger, suggesting that the carbonyl group of acrolein-adducted albumin mediated HMOX1 transcript increase. In acutely exposed C57BL/6J mice, bronchoalveolar lavage protein carbonylation increased. Acrolein-adducted albumin Cys34 was identified by nLC-MS/MS. These findings indicate that adduction of albumin by acrolein confers a cytoprotective function by scavenging free acrolein, decreasing a cellular stress response, and inducing an antioxidant gene response. Further, these results suggest that β-carbon reactivity may be required for acrolein's cytotoxicity and ATF3 transcript increase, and the carbonyl group of acrolein-adducted albumin can induce HMOX1 transcript increase.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Theodore P Larkin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Pamela S Cantrell
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Matthew V Fagerburg
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.,Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
12
|
Nakashima F, Shibata T, Uchida K. A unique mechanism for thiolation of serum albumins by disulphide molecules. J Biochem 2020; 167:165-171. [PMID: 31598674 DOI: 10.1093/jb/mvz084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Protein S-thiolation is a reversible oxidative modification that serves as an oxidative regulatory mechanism for certain enzymes and binding proteins with reactive cysteine residues. It is generally believed that the thiolation occurs at free sulphydryl group of cysteine residues. Meanwhile, despite the fact that disulphide linkages, serving structural and energetic roles in proteins, are stable and inert to oxidative modification, a recent study shows that the thiolation could also occur at protein disulphide linkages when human serum albumin (HSA) was treated with disulphide molecules, such as cystine and homocystine. A chain reaction mechanism has been proposed for the thiolation at disulphide linkages, in which free cysteine (Cys34) is involved in the reaction with disulphide molecules to form free thiols (cysteine or homocysteine) that further react with protein disulphide linkages to form the thiolated cysteine residues in the protein. This review focuses on the recent finding of this unique chain reaction mechanism of protein thiolation.
Collapse
Affiliation(s)
- Fumie Nakashima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123:979-990. [DOI: 10.1016/j.ijbiomac.2018.11.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 11/11/2018] [Indexed: 12/26/2022]
|
14
|
Cherkas A, Zarkovic N. 4-Hydroxynonenal in Redox Homeostasis of Gastrointestinal Mucosa: Implications for the Stomach in Health and Diseases. Antioxidants (Basel) 2018; 7:E118. [PMID: 30177630 PMCID: PMC6162398 DOI: 10.3390/antiox7090118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Maintenance of integrity and function of the gastric mucosa (GM) requires a high regeneration rate of epithelial cells during the whole life span. The health of the gastric epithelium highly depends on redox homeostasis, antioxidant defense, and activity of detoxifying systems within the cells, as well as robustness of blood supply. Bioactive products of lipid peroxidation, in particular, second messengers of free radicals, the bellwether of which is 4-hydroxynonenal (HNE), are important mediators in physiological adaptive reactions and signaling, but they are also thought to be implicated in the pathogenesis of numerous gastric diseases. Molecular mechanisms and consequences of increased production of HNE, and its protein adducts, in response to stressors during acute and chronic gastric injury, are well studied. However, several important issues related to the role of HNE in gastric carcinogenesis, tumor growth and progression, the condition of GM after eradication of Helicobacter pylori, or the relevance of antioxidants for HNE-related redox homeostasis in GM, still need more studies and new comprehensive approaches. In this regard, preclinical studies and clinical intervention trials are required, which should also include the use of state-of-the-art analytical techniques, such as HNE determination by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA), as well as modern mass-spectroscopy methods.
Collapse
Affiliation(s)
- Andriy Cherkas
- Department of Internal Medicine #1, Danylo Halystkyi Lviv National Medical University, 79010 Lviv, Ukraine.
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Institute "Rudjer Boskovic", HR-10000 Zagreb, Croatia.
| |
Collapse
|
15
|
Lee SH, Matsunaga A, Oe T. Inhibition effect of pyridoxamine on lipid hydroperoxide-derived modifications to human serum albumin. PLoS One 2018; 13:e0196050. [PMID: 29672562 PMCID: PMC5908094 DOI: 10.1371/journal.pone.0196050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/01/2018] [Indexed: 02/02/2023] Open
Abstract
Pyridoxamine (PM) is a promising drug candidate for treating various chronic conditions/diseases in which oxidative stress and carbonyl compounds are important factors affecting pathogenicity. These abilities of PM are mainly attributed to its inhibition of advanced glycation and lipoxidation end product formation, by scavenging reactive carbonyl species. PM might therefore prevent protein damage from lipid hydroperoxide-derived aldehydes such as 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) by trapping them. It was previously reported that PM reacts with ONE to produce pyrrolo-1,3-oxazine (PO8) through the formation of pyrido-1,3-oxazine (PO1/PO2). In this study, we found that ONE and HNE yield an identical product containing a pyrrole ring (PO7, PH2) upon reaction with PM. The structure of PO7/PH2 was shown by LC-MS and NMR analyses to be 1-(2-hydroxy-6-hydroxymethyl-3-methylpyridin-4-ylmethyl)-2-pentylpyrrole. PO1, PO7/PH2, and PO8 were the main stable PM-ONE/HNE adducts. In the incubation of human serum albumin (HSA) with ONE or HNE, Lys residues provided the most favorable modification sites for both aldehydes, and the number of HNE-modified sites was higher than that of ONE-modified sites. When HSA was allowed to react with a linoleic acid hydroperoxide in the presence of ascorbic acid, ONE modified more residues (10 Lys, 3 His, 2 Arg) than did HNE (8 His, 2 Lys), indicating the relative reactivity of aldehydes towards amino acid residues. Upon treatment with increasing concentrations of PM, the concentrations of ONE-modified HSA peptides, but not of HNE-modified peptides, were reduced significantly and dose-dependently. Concomitantly, the formation of PM-ONE adducts increased in a dose-dependent manner. The inhibition effect of PM was also confirmed in the cell system subjected to oxidative stress. Our results demonstrate that PM can inhibit lipid hydroperoxide-derived damage to proteins by trapping ONE preferentially, and the resulting PM-ONE adducts can be used as a dosimeter for ONE production to determine the levels of lipid peroxidation.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| | - Atsushi Matsunaga
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- * E-mail: (SHL); (TO)
| |
Collapse
|
16
|
Mol M, Regazzoni L, Altomare A, Degani G, Carini M, Vistoli G, Aldini G. Enzymatic and non-enzymatic detoxification of 4-hydroxynonenal: Methodological aspects and biological consequences. Free Radic Biol Med 2017; 111:328-344. [PMID: 28161307 DOI: 10.1016/j.freeradbiomed.2017.01.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
4-Hydroxynonenal (HNE), an electrophilic end-product deriving from lipid peroxidation, undergoes a heterogeneous set of biotransformations including enzymatic and non-enzymatic reactions. The former mostly involve red-ox reactions on the HNE oxygenated functions (phase I metabolism) and GSH conjugations (phase II) while the latter are due to the HNE capacity to spontaneously condense with nucleophilic sites within endogenous molecules such as proteins, nucleic acids and phospholipids. The overall metabolic fate of HNE has recently attracted great interest not only because it clearly determines the HNE disposal, but especially because the generated metabolites and adducts are not inactive molecules (as initially believed) but show biological activities even more pronounced than those of the parent compound as exemplified by potent pro-inflammatory stimulus induced by GSH conjugates. Similarly, several studies revealed that the non-enzymatic reactions, initially considered as damaging processes randomly involving all endogenous nucleophilic reactants, are in fact quite selective in terms of both reactivity of the nucleophilic sites and stability of the generated adducts. Even though many formed adducts retain the expected toxic consequences, some adducts exhibit well-defined beneficial roles as documented by the protective effects of sublethal concentrations of HNE against toxic concentrations of HNE. Clearly, future investigations are required to gain a more detailed understanding of the metabolic fate of HNE as well as to identify novel targets involved in the biological activity of the HNE metabolites. These studies are and will be permitted by the continuous progress in the analytical methods for the identification and quantitation of novel HNE metabolites as well as for proteomic analyses able to offer a comprehensive picture of the HNE-induced adducted targets. On these grounds, the present review will focus on the major enzymatic and non-enzymatic HNE biotransformations discussing both the molecular mechanisms involved and the biological effects elicited. The review will also describe the most important analytical enhancements that have permitted the here discussed advancements in our understanding of the HNE metabolic fate and which will permit in a near future an even better knowledge of this enigmatic molecule.
Collapse
Affiliation(s)
- Marco Mol
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Genny Degani
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
17
|
Łuczaj W, Gęgotek A, Skrzydlewska E. Antioxidants and HNE in redox homeostasis. Free Radic Biol Med 2017; 111:87-101. [PMID: 27888001 DOI: 10.1016/j.freeradbiomed.2016.11.033] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/11/2022]
Abstract
Under physiological conditions, cells are in a stable state known as redox homeostasis, which is maintained by the balance between continuous ROS/RNS generation and several mechanisms involved in antioxidant activity. ROS overproduction results in alterations in the redox homeostasis that promote oxidative damage to major components of the cell, including the biomembrane phospholipids. Lipid peroxidation subsequently generates a diverse set of products, including α,β-unsaturated aldehydes. Of these products, 4-hydroxy-2-nonenal (HNE) is the most studied aldehyde on the basis of its involvement in cellular physiology and pathology. This review summarizes the current knowledge in the field of HNE generation, metabolism, and detoxification, as well as its interactions with various cellular macromolecules (protein, phospholipid, and nucleic acid). The formation of HNE-protein adducts enables HNE to participate in multi-step regulation of cellular metabolic pathways that include signaling and transcription of antioxidant enzymes, pro-inflammatory factors, and anti-apoptotic proteins. The most widely described roles for HNE in the signaling pathways are associated with its activation of kinases, as well as transcription factors that are responsible for redox homeostasis (Ref-1, Nrf2, p53, NFκB, and Hsf1). Depending on its level, HNE exerts harmful or protective effects associated with the induction of antioxidant defense mechanisms. These effects make HNE a key player in maintaining redox homeostasis, as well as producing imbalances in this system that participate in aging and the development of pathological conditions.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222 Bialystok, Poland.
| |
Collapse
|
18
|
Takahashi R, Fujioka S, Oe T, Lee SH. Stable isotope labeling by fatty acids in cell culture (SILFAC) coupled with isotope pattern dependent mass spectrometry for global screening of lipid hydroperoxide-mediated protein modifications. J Proteomics 2017; 166:101-114. [PMID: 28735093 DOI: 10.1016/j.jprot.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 07/09/2017] [Indexed: 01/25/2023]
Abstract
Lipid hydroperoxide-mediated modifications of proteins are receiving increasing attention because of their possible involvement in various degenerative diseases. These biological effects are attributed to the ability of lipid peroxidation-derived aldehydes to react with the nucleophilic sites of proteins. Here we describe a methodology involving metabolic labeling coupled with mass spectrometry-based proteomic analysis that enables global screening of lipid hydroperoxide-mediated protein modifications in a cell system. The lipidome of MCF-7 cells was labeled by incubating the cells with 1.4μM [13C18]-linoleic acid (LA) until the LA to [13C18]-LA ratio became 1:1. This approach was termed SILFAC (stable isotope labeling by fatty acids in cell culture). Analysis of the cellular phospholipids indicated that [13C18]-LA was incorporated quantitatively. The labeled cells were subjected to oxidative stress using a calcium ionophore and l-ascorbic acid, which promote the generation of reactive aldehydes from cellular LA and [13C18]-LA. After protein extraction and digestion with trypsin, isotope pattern dependent MS was used to analyze peptides modified by 1:1 ratios of the 12C and 13C aldehyde isomers. Using the current methodology, we identified the major lipid hydroperoxide-mediated modifications to proteins in MCF-7 cells without the need for chemical labeling or further affinity purification. SIGNIFICANCE Lipid peroxidation-derived aldehydes (LPDAs) such as 4-oxo-2(E)-nonenal and 4-hydroxy-2(E)-nonenal can readily react with proteins and peptides to produce a variety of covalent modifications and cross-linkages, resulting in protein dysfunction and altered gene regulation. Various analytical approaches have therefore been developed to detect and characterize protein modifications mediated by LPDAs. However, most of the methods are not specific for LPDA modifications or designed for proteins modified by a target aldehyde. Here we describe the coupling of stable isotope labeling by fatty acids in cell culture (SILFAC) with an isotope pattern dependent MS-based proteomic strategy to provide a global screening tool for the identification of lipid hydroperoxide-mediated protein modifications.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Shuhei Fujioka
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
19
|
Elizalde-Velázquez A, Martínez-Rodríguez H, Galar-Martínez M, Dublán-García O, Islas-Flores H, Rodríguez-Flores J, Castañeda-Peñalvo G, Lizcano-Sanz I, Gómez-Oliván LM. Effect of amoxicillin exposure on brain, gill, liver, and kidney of common carp (Cyprinus carpio): The role of amoxicilloic acid. ENVIRONMENTAL TOXICOLOGY 2017; 32:1102-1120. [PMID: 27403921 DOI: 10.1002/tox.22307] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/05/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world due to its broad-spectrum activity against different bacterial strains as well as its use as a growth promoter in animal husbandry. Although residues of this antibacterial agent have been found in water bodies in diverse countries, there is not enough information on its potential toxicity to aquatic organisms such as the common carp Cyprinus carpio. This study aimed to evaluate AMX-induced oxidative stress in brain, gill, liver and kidney of C. carpio. Carp were exposed to three different concentrations of AMX (10 ng/L, 10 μg/L, 10 mg/L) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX), hydroperoxide content (HPC), protein carbonyl content (PCC) and activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Amoxicillin and its main degradation product amoxicilloic acid (AMA) were determined by high performance liquid chromatography coupled with electrochemical detection and UV detection (HPLC-EC-UV). Significant increases in LPX, HPC, and PCC (P < 0.05) were found in all study organs, particularly kidney, as well as significant changes in antioxidant enzymes activity. Amoxicilloic acid in water is concluded to induce oxidative stress in C. carpio, this damage being highest in kidney. The biomarkers used are effective for the assessment of the environmental impact of this agent on aquatic species. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1102-1120, 2017.
Collapse
Affiliation(s)
- Armando Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Héctor Martínez-Rodríguez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero. México, DF, México. C.P., 07738
| | - Octavio Dublán-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| | - Juana Rodríguez-Flores
- Departamento de Química Analítica y Tecnología de Los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072, Ciudad Real, Spain
| | - Gregorio Castañeda-Peñalvo
- Departamento de Química Analítica y Tecnología de Los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072, Ciudad Real, Spain
| | - Isabel Lizcano-Sanz
- Departamento de Química Analítica y Tecnología de Los Alimentos, Facultad de Ciencias y Tecnología Química, Universidad de Castilla la Mancha, Avenida Camilo José Cela 10, 13072, Ciudad Real, Spain
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, México
| |
Collapse
|
20
|
Sabbioni G, Turesky RJ. Biomonitoring Human Albumin Adducts: The Past, the Present, and the Future. Chem Res Toxicol 2017; 30:332-366. [PMID: 27989119 PMCID: PMC5241710 DOI: 10.1021/acs.chemrestox.6b00366] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Serum albumin (Alb) is the most abundant protein in blood plasma. Alb reacts with many carcinogens and/or their electrophilic metabolites. Studies conducted over 20 years ago showed that Alb forms adducts with the human carcinogens aflatoxin B1 and benzene, which were successfully used as biomarkers in molecular epidemiology studies designed to address the role of these chemicals in cancer risk. Alb forms adducts with many therapeutic drugs or their reactive metabolites such as β-lactam antibiotics, acetylsalicylic acid, acetaminophen, nonsteroidal anti-inflammatory drugs, chemotherapeutic agents, and antiretroviral therapy drugs. The identification and characterization of the adduct structures formed with Alb have served to understand the generation of reactive metabolites and to predict idiosyncratic drug reactions and toxicities. The reaction of candidate drugs with Alb is now exploited as part of the battery of screening tools to assess the potential toxicities of drugs. The use of gas chromatography-mass spectrometry, liquid chromatography, or liquid chromatography-mass spectrometry (LC-MS) enabled the identification and quantification of multiple types of Alb xenobiotic adducts in animals and humans during the past three decades. In this perspective, we highlight the history of Alb as a target protein for adduction to environmental and dietary genotoxicants, pesticides, and herbicides, common classes of medicinal drugs, and endogenous electrophiles, and the emerging analytical mass spectrometry technologies to identify Alb-toxicant adducts in humans.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, CH-6780 Airolo, Switzerland
- Alpine Institute of Chemistry and Toxicology, CH-6718 Olivone, Switzerland
- Walther-Straub-Institut für Pharmakologie
und Toxikologie, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | - Robert J. Turesky
- Masonic Cancer Center and Department of
Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Regazzoni LG, Grigoryan H, Ji Z, Chen X, Daniels SI, Huang D, Sanchez S, Tang N, Sillé FCM, Iavarone AT, Williams ER, Zhang L, Rappaport SM. Using lysine adducts of human serum albumin to investigate the disposition of exogenous formaldehyde in human blood. Toxicol Lett 2017; 268:26-35. [PMID: 28104429 DOI: 10.1016/j.toxlet.2017.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
Abstract
Formaldehyde is a human carcinogen that readily binds to nucleophiles, including proteins and DNA. To investigate whether exogenous formaldehyde produces adducts in extracellular fluids, we characterized modifications to human serum albumin (HSA) following incubation of whole blood, plasma, and saliva with formaldehyde at concentrations of 1, 10 and 100μM. The only HSA locus that showed the presence of formaldehyde modifications was Lys199. A N(6)-Lys adduct with added mass of 12Da, representing a putative intramolecular crosslink, was detected in biological fluids that had been incubated with formaldehyde but not in control fluids. An adduct representing N(6)-Lys formylation was detected in all fluids, but levels did not increase above control values over the tested range of formaldehyde concentrations. An adduct representing N(6)-Lys199 acetylation was also measured in all samples. We then applied the assay to repeated samples of human plasma from 6 nonsmoking volunteer subjects (from Berkeley, CA), and single samples of serum from 15 workers exposed to airborne formaldehyde at about 1.5ppm in a production facility and 15 control workers from Tianjin, China. Although all human plasma/serum samples contained basal levels of the products of N(6)-Lys formylation and acetylation, the putative crosslink product was not detected. Since the putative crosslink was observed in plasma incubated with formaldehyde at 1μM, this suggests that the endogenous concentration of formaldehyde in serum was much lower than reported in the literature. Furthermore, concentrations of the formyl adduct were not higher in workers exposed to formaldehyde at about 1.5ppm than in controls. Follow-up in vitro experiments with gaseous formaldehyde at 1.4ppm detected the putative crosslink in plasma but not whole blood. This combination of results suggests that N(6) formylation occurs within cells with subsequent release of adducted HSA to the systemic circulation. Comparing across human samples, levels of N(6)-Lys199 formyl adducts were present at similar concentrations in subjects from California and China (about 1mmol/mol HSA), but N(6)-Lys199 acetyl adducts were present at higher concentrations in Chinese subjects (0.34 vs. 0.13mmol/mol HSA).
Collapse
Affiliation(s)
- Luca G Regazzoni
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Zhiying Ji
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Sarah I Daniels
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Deyin Huang
- Institute of Occupational Health, School of Public Health, Tianjin Bohai Chemical Industry Group Co. Ltd., Tianjin, China
| | - Sylvia Sanchez
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Fenna C M Sillé
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences and Department of Chemistry, University of California, Berkeley, CA, United States
| | - Evan R Williams
- California Institute for Quantitative Biosciences and Department of Chemistry, University of California, Berkeley, CA, United States
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States.
| |
Collapse
|
22
|
Estévez M, Li Z, Soladoye OP, Van-Hecke T. Health Risks of Food Oxidation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:45-81. [PMID: 28427536 DOI: 10.1016/bs.afnr.2016.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The impact of dietary habits on our health is indisputable. Consumer's concern on aging and age-related diseases challenges scientists to underline the potential role of food on the extension and guarantee of lifespan and healthspan. While some dietary components and habits are generally regarded as beneficial for our health, some others are being found to exert potential toxic effects and hence, contribute to the onset of particular health disorders. Among the latter, lipid and protein oxidation products formed during food production, storage, processing, and culinary preparation have been recently identified as potentially harmful to humans. Upon intake, food components are further degraded and oxidized during the subsequent digestion phases and the pool of compounds formed in the lumen is in close contact with the lamina propria of the intestines. Some of these oxidation products have been found to promote inflammatory conditions in the gut (i.e., bowel diseases) and are also reasonably linked to the onset of carcinogenic processes. Upon intestinal uptake, some species are distributed by the bloodstream causing an increase in oxidative stress markers and impairment of certain physiological processes through alteration of specific gene expression pathways. This chapter summarizes the most recent discoveries on this topic with particular stress on challenges that we face in the near future: understanding the molecular basis of disease, the suitability of using living animals vs in vitro model systems and the necessity of using massive genomic techniques and versatile mass spectrometric technology.
Collapse
Affiliation(s)
- Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, Cáceres, Spain.
| | - Zhuqing Li
- The Laboratory of Food Nutrition and Functional Factors, Food Science and Technology, Jiangnan University, Wuxi, China
| | - Olugbenga P Soladoye
- Lacombe Research Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada; College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
23
|
Zhang H, Forman HJ. Signaling by 4-hydroxy-2-nonenal: Exposure protocols, target selectivity and degradation. Arch Biochem Biophys 2016; 617:145-154. [PMID: 27840096 DOI: 10.1016/j.abb.2016.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/20/2016] [Accepted: 11/09/2016] [Indexed: 01/26/2023]
Abstract
4-hydroxy-2-nonenal (HNE), a major non-saturated aldehyde product of lipid peroxidation, has been extensively studied as a signaling messenger. In these studies a wide range of HNE concentrations have been used, ranging from the unstressed plasma concentration to far beyond what would be found in actual pathophysiological condition. In addition, accumulating evidence suggest that signaling protein modification by HNE is specific with only those proteins with cysteine, histidine, and lysine residues located in certain sequence or environments adducted by HNE. HNE-signaling is further regulated through the turnover of HNE-signaling protein adducts through proteolytic process that involve proteasomes, lysosomes and autophagy. This review discusses the HNE concentrations and exposure modes used in signaling studies, the selectivity of the HNE-adduction site, and the turnover of signaling protein adducts.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA.
| | - Henry Jay Forman
- Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA
| |
Collapse
|
24
|
Aslebagh R, Pfeffer BA, Fliesler SJ, Darie CC. Mass spectrometry-based proteomics of oxidative stress: Identification of 4-hydroxy-2-nonenal (HNE) adducts of amino acids using lysozyme and bovine serum albumin as model proteins. Electrophoresis 2016; 37:2615-2623. [PMID: 27184861 DOI: 10.1002/elps.201600134] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 12/25/2022]
Abstract
Modification of proteins by 4-hydroxy-2-nonenal (HNE), a reactive by-product of ω6 polyunsaturated fatty acid oxidation, on specific amino acid residues is considered a biomarker for oxidative stress, as occurs in many metabolic, hereditary, and age-related diseases. HNE modification of amino acids can occur either via Michael addition or by formation of Schiff-base adducts. These modifications typically occur on cysteine (Cys), histidine (His), and/or lysine (Lys) residues, resulting in an increase of 156 Da (Michael addition) or 138 Da (Schiff-base adducts), respectively, in the mass of the residue. Here, we employed biochemical and mass spectrometry (MS) approaches to determine the MS "signatures" of HNE-modified amino acids, using lysozyme and BSA as model proteins. Using direct infusion of unmodified and HNE-modified lysozyme into an electrospray quadrupole time-of-flight mass spectrometer, we were able to detect up to seven HNE modifications per molecule of lysozyme. Using nanoLC-MS/MS, we found that, in addition to N-terminal amino acids, Cys, His, and Lys residues, HNE modification of arginine (Arg), threonine (Thr), tryptophan (Trp), and histidine (His) residues can also occur. These sensitive and specific methods can be applied to the study of oxidative stress to evaluate HNE modification of proteins in complex mixtures from cells and tissues under diseased versus normal conditions.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Bruce A Pfeffer
- Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.,Departments of Ophthalmology and Biochemistry, SUNY- University at Buffalo, Buffalo, NY, USA.,SUNY Eye Institute, Buffalo, NY, USA
| | - Steven J Fliesler
- Research Service, VA Western NY Healthcare System, Buffalo, NY, USA.,Departments of Ophthalmology and Biochemistry, SUNY- University at Buffalo, Buffalo, NY, USA.,SUNY Eye Institute, Buffalo, NY, USA
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA.
| |
Collapse
|
25
|
Ugur Z, Gronert S. A Robust Analytical Approach for the Identification of Specific Protein Carbonylation Sites: Metal-Catalyzed Oxidations of Human Serum Albumin. ANAL LETT 2016; 50:567-579. [PMID: 28303033 DOI: 10.1080/00032719.2016.1186171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The formation of protein carbonyls in the metal-catalyzed oxidation of human serum albumin (HSA) is characterized using a new analytical approach that involves tagging the modification site with multiple hydrazide reagents. Protein carbonyl formation at lysine and arginine residues was catalyzed with copper and iron ions, and the resulting oxidation patterns in HSA are contrasted. A total of 18 modification sites were identified with iron ion catalysis and 14 with copper ion catalysis. However, with the more stringent requirement of identification with at least two tagging reagents, the number of validated modification sites drops to 10 for iron and 9 for copper. Of the 14 total validated sites, there were only five in common for the two metal ions. The results illustrate the value of using multiple tagging agents and highlight the selective and specific nature of metal-catalyzed protein oxidations.
Collapse
Affiliation(s)
- Zafer Ugur
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Scott Gronert
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
26
|
Regazzoni L, Colombo S, Mazzolari A, Vistoli G, Carini M. Serum albumin as a probe for testing the selectivity of irreversible cysteine protease inhibitors: The case of vinyl sulfones. J Pharm Biomed Anal 2016; 124:294-302. [DOI: 10.1016/j.jpba.2016.02.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023]
|
27
|
Khan F, Moinuddin, Mir AR, Islam S, Alam K, Ali A. Immunochemical studies on HNE-modified HSA: Anti-HNE–HSA antibodies as a probe for HNE damaged albumin in SLE. Int J Biol Macromol 2016; 86:145-54. [DOI: 10.1016/j.ijbiomac.2016.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022]
|
28
|
Milic I, Kipping M, Hoffmann R, Fedorova M. Separation and characterization of oxidized isomeric lipid-peptide adducts by ion mobility mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1386-1392. [PMID: 26634972 DOI: 10.1002/jms.3713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Phospholipids are major components of cell membranes and lipoprotein complexes. They are prone to oxidation by endogenous and exogenous reactive oxygen species yielding a large variety of modified lipids including small aliphatic and phospholipid bound aldehydes and ketones. These carbonyls are strong electrophiles that can modify proteins and, thereby, alter their structures and functions triggering various pathophysiological conditions. The analysis of lipid-protein adducts by liquid chromatography-MS is challenged by their mixed chemical nature (polar peptide and hydrophobic lipid), low abundance in biological samples, and formation of multiple isomers. Thus, we investigated traveling wave ion mobility mass spectrometry (TWIMS) to analyze lipid-peptide adducts generated by incubating model peptides corresponding to the amphipathic β1 sheet sequence of apolipoprotein B-100 with 1-palmitoyl-2-(oxo-nonanoyl)-sn-glycerophosphatidylcholine (PONPC). The complex mixture of peptides, lipids, and peptide-lipid adducts was separated by TWIMS, which was especially important for the identification of two mono-PONPC-peptide isomers containing Schiff bases at different lysine residues. Moreover, TWIMS separated structural conformers of one peptide-lipid adduct possessing most likely different orientations of the hydrophobic sn-1 fatty acyl residue and head group of PONPC, relative to the peptide backbone.
Collapse
Affiliation(s)
- Ivana Milic
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
29
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
30
|
Moschini R, Peroni E, Rotondo R, Renzone G, Melck D, Cappiello M, Srebot M, Napolitano E, Motta A, Scaloni A, Mura U, Del-Corso A. NADP(+)-dependent dehydrogenase activity of carbonyl reductase on glutathionylhydroxynonanal as a new pathway for hydroxynonenal detoxification. Free Radic Biol Med 2015; 83:66-76. [PMID: 25680283 DOI: 10.1016/j.freeradbiomed.2015.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/15/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
An NADP(+)-dependent dehydrogenase activity on 3-glutathionyl-4-hydroxynonanal (GSHNE) was purified to electrophoretic homogeneity from a line of human astrocytoma cells (ADF). Proteomic analysis identified this enzymatic activity as associated with carbonyl reductase 1 (EC 1.1.1.184). The enzyme is highly efficient at catalyzing the oxidation of GSHNE (KM 33 µM, kcat 405 min(-1)), as it is practically inactive toward trans-4-hydroxy-2-nonenal (HNE) and other HNE-adducted thiol-containing amino acid derivatives. Combined mass spectrometry and nuclear magnetic resonance spectroscopy analysis of the reaction products revealed that carbonyl reductase oxidizes the hydroxyl group of GSHNE in its hemiacetal form, with the formation of the corresponding 3-glutathionylnonanoic-δ-lactone. The relevance of this new reaction catalyzed by carbonyl reductase 1 is discussed in terms of HNE detoxification and the recovery of reducing power.
Collapse
Affiliation(s)
- Roberta Moschini
- Biochemistry Unit, Department of Biology, University of Pisa, I-56123 Pisa, Italy
| | - Eleonora Peroni
- Biochemistry Unit, Department of Biology, University of Pisa, I-56123 Pisa, Italy
| | - Rossella Rotondo
- Biochemistry Unit, Department of Biology, University of Pisa, I-56123 Pisa, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, I-80147 Napoli, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, ICB-CNR, I-80078 Pozzuoli (Naples), Italy
| | - Mario Cappiello
- Biochemistry Unit, Department of Biology, University of Pisa, I-56123 Pisa, Italy
| | - Massimo Srebot
- Health Unit 5 Pisa, Gynecology and Obstetric Unit, Pontedera Hospital, 56025 Pontedera, Italy
| | | | - Andrea Motta
- Institute of Biomolecular Chemistry, ICB-CNR, I-80078 Pozzuoli (Naples), Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-CNR, I-80147 Napoli, Italy
| | - Umberto Mura
- Biochemistry Unit, Department of Biology, University of Pisa, I-56123 Pisa, Italy
| | - Antonella Del-Corso
- Biochemistry Unit, Department of Biology, University of Pisa, I-56123 Pisa, Italy.
| |
Collapse
|
31
|
Milic I, Melo T, Domingues MR, Domingues P, Fedorova M. Heterogeneity of peptide adducts with carbonylated lipid peroxidation products. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:603-612. [PMID: 25800198 DOI: 10.1002/jms.3568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Highly reactive lipid peroxidation-derived carbonyls (oxoLPP) modify protein nucleophiles via Michael addition or Schiff base formation. Once formed, Michael adducts can be further stabilized via cyclic hemiacetals with or without loss of water. Depending on the mechanism of their formation, peptide-oxoLPP can carry aldehyde or keto groups and thus be a part of the total protein carbonylation level. If a carbonyl function is lost during consecutive reactions, the oxoLPP-peptide adducts will not be detected using the common carbonyl labeling protocols. Because of the differences in adduct stabilities, it is possible to address the heterogeneity of peptide/protein-oxoLPP adducts by careful evaluation of tandem mass spectra of modified peptides. Here, we used hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of lysine, cysteine and histidine containing model peptides co-incubated with oxidized 1-palmitoyl-2-linoleoyl-sn-glycerophosphatidylcholine to characterize the collision-induced dissociation behavior of peptide-carbonyl adducts. Numerous modifications were detected based on the analysis of tandem mass spectra, including Schiff bases on lysine (two), Michael adducts on lysine (six), cysteine (eleven) and histidine (two), as well as 4-hydroxy-2-aldehydes derived dehydrated cyclic hemiacetals on cysteine (five) and histidine (one). Additionally, cysteine and histidine side chains were modified by lipid-bound aldehydes as Michael adducts and dehydrated hemiacetals. The tandem mass spectra revealed collision-induced dissociation characteristics specific for each class of oxoLPP-peptide adducts.
Collapse
Affiliation(s)
- Ivana Milic
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
32
|
Shoeb M, Ansari NH, Srivastava SK, Ramana KV. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr Med Chem 2014; 21:230-7. [PMID: 23848536 DOI: 10.2174/09298673113209990181] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/18/2013] [Accepted: 07/05/2013] [Indexed: 02/06/2023]
Abstract
Metastable aldehydes produced by lipid peroxidation act as 'toxic second messengers' that extend the injurious potential of free radicals. 4-hydroxy 2-nonenal (HNE), a highly toxic and most abundant stable end product of lipid peroxidation, has been implicated in the tissue damage, dysfunction, injury associated with aging and other pathological states such as cancer, Alzheimer, diabetes, cardiovascular and inflammatory complications. Further, HNE has been considered as a oxidative stress marker and it act as a secondary signaling molecule to regulates a number of cell signaling pathways. Biological activity of HNE depends on its intracellular concentration, which can differentially modulate cell death, growth and differentiation. Therefore, the mechanisms responsible for maintaining the intracellular levels of HNE are most important, not only in the defense against oxidative stress but also in the pathophysiology of a number of disease processes. In this review, we discussed the significance of HNE in mediating various disease processes and how regulation of its metabolism could be therapeutically effective.
Collapse
Affiliation(s)
- Mohammad Shoeb
- Department of Biochemistry and Molecular biology, University of Texas Medical Branch, Galveston, Texas -77555, USA.
| | | | | | | |
Collapse
|
33
|
Shuck SC, Wauchope OR, Rose KL, Kingsley PJ, Rouzer CA, Shell SM, Sugitani N, Chazin WJ, Zagol-Ikapitte I, Boutaud O, Oates JA, Galligan JJ, Beavers WN, Marnett LJ. Protein modification by adenine propenal. Chem Res Toxicol 2014; 27:1732-42. [PMID: 25211669 PMCID: PMC4203390 DOI: 10.1021/tx500218g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Base propenals are products of the
reaction of DNA with oxidants
such as peroxynitrite and bleomycin. The most reactive base propenal,
adenine propenal, is mutagenic in Escherichia coli and reacts with DNA to form covalent adducts; however, the reaction
of adenine propenal with protein has not yet been investigated. A
survey of the reaction of adenine propenal with amino acids revealed
that lysine and cysteine form adducts, whereas histidine and arginine
do not. Nε-Oxopropenyllysine, a
lysine–lysine cross-link, and S-oxopropenyl
cysteine are the major products. Comprehensive profiling of the reaction
of adenine propenal with human serum albumin and the DNA repair protein,
XPA, revealed that the only stable adduct is Nε-oxopropenyllysine. The most reactive sites for modification
in human albumin are K190 and K351. Three sites of modification of
XPA are in the DNA-binding domain, and two sites are subject to regulatory
acetylation. Modification by adenine propenal dramatically reduces
XPA’s ability to bind to a DNA substrate.
Collapse
Affiliation(s)
- Sarah C Shuck
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Biochemistry, ‡Chemistry, and §Pharmacology, ∥Mass Spectrometry Research Center, ⊥Center in Molecular Toxicology, #Center for Structural Biology, ∇Department of Medicine, Vanderbilt Institute of Chemical Biology, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol 2014; 27:1081-91. [PMID: 24911545 PMCID: PMC4106693 DOI: 10.1021/tx5001046] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 01/19/2023]
Abstract
Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause "type-2 alkene toxicity" through additive interactions. Finally, we propose that environmentally derived aldehydes can accelerate diseases by interacting with endogenous aldehydes generated during oxidative stress. This review provides a basis for understanding aldehyde mechanisms and environmental toxicity through the context of electronic structure, electrophilicity, and nucleophile target selectivity.
Collapse
Affiliation(s)
- Richard M. LoPachin
- Department
of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th Street, Bronx, New York 10467, United
States
| | - Terrence Gavin
- Department
of Chemistry, Iona College, New Rochelle, New York 10804, United States
| |
Collapse
|
35
|
Dong Q, Yan X, Kilpatrick LE, Liang Y, Mirokhin YA, Roth JS, Rudnick PA, Stein SE. Tandem mass spectral libraries of peptides in digests of individual proteins: Human Serum Albumin (HSA). Mol Cell Proteomics 2014; 13:2435-49. [PMID: 24889059 DOI: 10.1074/mcp.o113.037135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This work presents a method for creating a mass spectral library containing tandem spectra of identifiable peptide ions in the tryptic digestion of a single protein. Human serum albumin (HSA(1)) was selected for this purpose owing to its ubiquity, high level of characterization and availability of digest data. The underlying experimental data consisted of ∼3000 one-dimensional LC-ESI-MS/MS runs with ion-trap fragmentation. In order to generate a wide range of peptides, studies covered a broad set of instrument and digestion conditions using multiple sources of HSA and trypsin. Computer methods were developed to enable the reliable identification and reference spectrum extraction of all peptide ions identifiable by current sequence search methods. This process made use of both MS2 (tandem) spectra and MS1 (electrospray) data. Identified spectra were generated for 2918 different peptide ions, using a variety of manually-validated filters to ensure spectrum quality and identification reliability. The resulting library was composed of 10% conventional tryptic and 29% semitryptic peptide ions, along with 42% tryptic peptide ions with known or unknown modifications, which included both analytical artifacts and post-translational modifications (PTMs) present in the original HSA. The remaining 19% contained unexpected missed-cleavages or were under/over alkylated. The methods described can be extended to create equivalent spectral libraries for any target protein. Such libraries have a number of applications in addition to their known advantages of speed and sensitivity, including the ready re-identification of known PTMs, rejection of artifact spectra and a means of assessing sample and digestion quality.
Collapse
Affiliation(s)
- Qian Dong
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Xinjian Yan
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Lisa E Kilpatrick
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Yuxue Liang
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Yuri A Mirokhin
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Jeri S Roth
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Paul A Rudnick
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| | - Stephen E Stein
- From the ‡Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8362, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
36
|
Peng L, Turesky RJ. Optimizing proteolytic digestion conditions for the analysis of serum albumin adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a potential human carcinogen formed in cooked meat. J Proteomics 2014; 103:267-78. [PMID: 24698664 DOI: 10.1016/j.jprot.2014.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/08/2014] [Accepted: 03/21/2014] [Indexed: 01/05/2023]
Abstract
UNLABELLED Heterocyclic aromatic amines (HAAs) are carcinogens formed during the cooking of meats or arise in tobacco smoke. The genotoxic N-oxidized metabolites of HAAs bind to Cys residues of proteins to form arylsulfinamide adducts. However, these adducts are unstable and undergo hydrolysis during enzymatic digestion, and thus have been precluded as biomarkers of exposure to HAAs. Arylsulfinamide adducts of HAAs can undergo oxidation to form stable arylsulfonamide linkages, which are chemically stable and amenable for analysis. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a carcinogen present in cooked meat. We established a quantitative MS-based method to measure the sulfinamide adduct of PhIP formed at the cysteine(34) (Cys(34)) residue of human serum albumin (SA), following chemical oxidation of PhIP-modified SA with m-chloroperoxybenzoic acid. Different enzyme systems (trypsin; chymotrypsin; trypsin/chymotrypsin; proteinase K; pronase E; and pronase E/leucine aminopeptidase/prolidase) were evaluated for their proficiency of digestion of SA modified with PhIP. The strongest signal was observed for the L(31)QQC*PFEDHVK(41) peptide, by ultraperformance liquid chromatography and ion trap MS. A limit of quantification value was 0.3fmol of LQQC*PFEDHVK per μg SA, or 2.5 adducts per 10(5) SA molecules, when assaying 0.75μg of SA. BIOLOGICAL SIGNIFICANCE This article describes a mass spectrometric based method to characterize and measure human serum albumin (SA) adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a carcinogenic heterocyclic aromatic amine formed in cooked meats and tobacco smoke. PhIP undergoes metabolic activation to form reactive N-oxidized intermediates that bind to DNA and proteins. N-oxidized PhIP metabolites bind to the Cys(34) residue of SA to form a sulfinamide linkage. However, the linkage undergoes hydrolysis during proteolysis, precluding the employment of this adduct as a biomarker in human studies. We have shown that the sulfinamide linkage undergoes oxidation to form the [cysteine-S-yl-PhIP]-S-dioxide, a sulfonamide linked adduct which is stable toward proteolysis. The specificity and efficiency of several different proteases toward the digestion of the SA-Cys(34)-PhIP adduct were examined. The combination of trypsin and chymotrypsin produced the single-missed cleaved peptide LQQC*PFEDHVK in high yield. Moreover, denaturation and chemical reduction of the internal Cys disulfide bonds of SA were not required for the recovery of LQQC*PFEDHVK. The novel chemistry and proteomic approaches developed in this study may be applied to monitor biologically reactive N-oxidized intermediates of arylamines through their adduction products formed at nucleophilic Cys residues of proteins.
Collapse
Affiliation(s)
- Lijuan Peng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, ChangQing Garden, Hankou, Wuhan 430023, PR China; Division of Environmental Health Sciences,Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | - Robert J Turesky
- Division of Environmental Health Sciences,Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiology Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN 55455, USA.
| |
Collapse
|
37
|
Fedorova M, Bollineni RC, Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. MASS SPECTROMETRY REVIEWS 2014; 33:79-97. [PMID: 23832618 DOI: 10.1002/mas.21381] [Citation(s) in RCA: 338] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 05/23/2023]
Abstract
Protein carbonylation, one of the most harmful irreversible oxidative protein modifications, is considered as a major hallmark of oxidative stress-related disorders. Protein carbonyl measurements are often performed to assess the extent of oxidative stress in the context of cellular damage, aging and several age-related disorders. A wide variety of analytical techniques are available to detect and quantify protein-bound carbonyls generated by metal-catalyzed oxidation, lipid peroxidation or glycation/glycoxidation. Here we review current analytical approaches for protein carbonyl detection with a special focus on mass spectrometry-based techniques. The utility of several carbonyl-derivatization reagents, enrichment protocols and especially advanced mass spectrometry techniques are compared and discussed in detail. Furthermore, the mechanisms and biology of protein carbonylation are summarized based on recent high-throughput proteomics data.
Collapse
Affiliation(s)
- Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany; Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig, Deutscher Platz 5, D-04103, Leipzig, Germany
| | | | | |
Collapse
|
38
|
Abstract
Carnosine (β-alanyl-l-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also in other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine, collectively called the histidine-containing dipeptides. This review aims to decipher the physiological roles of carnosine, based on its biochemical properties. The latter include pH-buffering, metal-ion chelation, and antioxidant capacity as well as the capacity to protect against formation of advanced glycation and lipoxidation end-products. For these reasons, the therapeutic potential of carnosine supplementation has been tested in numerous diseases in which ischemic or oxidative stress are involved. For several pathologies, such as diabetes and its complications, ocular disease, aging, and neurological disorders, promising preclinical and clinical results have been obtained. Also the pathophysiological relevance of serum carnosinase, the enzyme actively degrading carnosine into l-histidine and β-alanine, is discussed. The carnosine system has evolved as a pluripotent solution to a number of homeostatic challenges. l-Histidine, and more specifically its imidazole moiety, appears to be the prime bioactive component, whereas β-alanine is mainly regulating the synthesis of the dipeptide. This paper summarizes a century of scientific exploration on the (patho)physiological role of carnosine and related compounds. However, far more experiments in the fields of physiology and related disciplines (biology, pharmacology, genetics, molecular biology, etc.) are required to gain a full understanding of the function and applications of this intriguing molecule.
Collapse
|
39
|
Colzani M, Aldini G, Carini M. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts. J Proteomics 2013; 92:28-50. [DOI: 10.1016/j.jprot.2013.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 01/28/2023]
|
40
|
Goto T, Murata K, Lee SH, Oe T. Complete amino acid sequencing and immunoaffinity clean-up can facilitate screening of various chemical modifications on human serum albumin. Anal Bioanal Chem 2013; 405:7383-95. [DOI: 10.1007/s00216-013-7146-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/10/2013] [Accepted: 06/13/2013] [Indexed: 01/07/2023]
|
41
|
Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics 2013; 92:110-31. [PMID: 23770299 DOI: 10.1016/j.jprot.2013.06.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 11/23/2022]
Abstract
Protein lipoxidation refers to the modification by electrophilic lipid oxidation products to form covalent adducts, which for many years has been considered as a deleterious consequence of oxidative stress. Oxidized lipids or phospholipids containing carbonyl moieties react readily with lysine to form Schiff bases; alternatively, oxidation products containing α,β-unsaturated moieties are susceptible to nucleophilic attack by cysteine, histidine or lysine residues to yield Michael adducts, overall corresponding to a large number of possible protein adducts. The most common detection methods for lipoxidized proteins take advantage of the presence of reactive carbonyl groups to add labels, or use antibodies. These methods have limitations in terms of specificity and identification of the modification site. The latter question is satisfactorily addressed by mass spectrometry, which enables the characterization of the adduct structure. This has allowed the identification of lipoxidized proteins in physiological and pathological situations. While in many cases lipoxidation interferes with protein function, causing inhibition of enzymatic activity and increased immunogenicity, there are a small number of cases where lipoxidation results in gain of function or activity. For certain proteins lipoxidation may represent a form of redox signaling, although more work is required to confirm the physiological relevance and mechanisms of such processes. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
|
42
|
Liu Q, Simpson DC, Gronert S. Carbonylation of mitochondrial aconitase with 4-hydroxy-2-(E)-nonenal: localization and relative reactivity of addition sites. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1144-54. [PMID: 23518448 DOI: 10.1016/j.bbapap.2013.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/30/2013] [Accepted: 03/07/2013] [Indexed: 12/30/2022]
Abstract
Mass spectrometry was used to investigate the effects of exposing mitochondrial aconitase (ACO2) to the membrane lipid peroxidation product, 4-hydroxy-2-(E)-nonenal (HNE). ACO2 was selected for this study because (1) it is known to be inactivated by HNE, (2) elevated concentrations of HNE-adducted ACO2 have been associated with disease states, (3) extensive structural information is available, and (4) the iron-sulfur cluster in ACO2 offers a critical target for HNE adduction. The aim of this study was to relate the inactivation of ACO2 by HNE to structural features. Initially, Western blotting and an enzyme activity assay were used to assess aggregate effects and then gel electrophoresis, in-gel digestion, and tandem mass spectrometry (MS/MS) were used to identify HNE addition sites. HNE addition reaction rates were determined for the most significant sites using the iTRAQ approach. The most reactive sites were Cys(358), Cys(421), and Cys(424), the three iron-sulfur cluster-coordinating cysteines, Cys(99), the closest non-ligated cysteine to the cluster, and Cys(565), which is located in the cleft leading to the active site. Interestingly, both enzyme activity assay and iTRAQ relative abundance plots appeared to be trending toward horizontal asymptotes, rather than completion.
Collapse
Affiliation(s)
- Qingyuan Liu
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | | |
Collapse
|
43
|
Pathophysiological relevance of aldehydic protein modifications. J Proteomics 2013; 92:239-47. [PMID: 23438936 DOI: 10.1016/j.jprot.2013.02.004] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 11/23/2022]
Abstract
There is growing body of evidence that oxidative stress, i.e. excess in production of reactive oxygen species, can lead to covalent modification of proteins with bioactive aldehydes that are mostly produced under lipid peroxidation of polyunsaturated fatty acids. Thus generated reactive aldehydes are considered as second messengers of free radicals because they react with major bioactive macromolecules, in particular with various humoral and cellular proteins changing their structure and functions. Therefore, the aldehydic-protein adducts, in particular those involving 4-hydroxy-2-nonenal, malondialdehyde and acrolein can be valuable biomarkers of numerous pathophysiological processes. The development of immunochemical methods is increasing the possibilities to study such non-enzymatic protein modifications, on the one hand, while on the other hand the increase of knowledge on bioactivities of the aldehydes and their protein adducts might lead to better prevention, diagnosis and treatments of pathophysiological processes associated with lipid peroxidation and oxidative stress in general. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
|
44
|
Rand AA, Mabury SA. Covalent binding of fluorotelomer unsaturated aldehydes (FTUALs) and carboxylic acids (FTUCAs) to proteins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1655-63. [PMID: 23256684 DOI: 10.1021/es303760u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fluorotelomer unsaturated carboxylic acids and aldehydes (FTUCAs and FTUALs) are intermediate compounds that form from the biotransformation of fluorotelomer-based compounds. Previous evidence that FTUCAs and FTUALs bind to biological nucleophiles has indicated that protein binding might give rise to toxicity resulting from protein function disruption. The current study assesses the reactivity of FTUALs and FTUCAs by probing the covalent interactions of FTUALs and FTUCAs with proteins present in rat liver microsomes and bovine blood plasma. The FTUALs exhibited significant levels of protein covalent binding, with binding levels ranging from 20.1 (±2.8)% to 71.3 (±19.5)% in microsomes and 24.0 (±1.5)% to 82.5 (±14.0)% in blood plasma. By contrast, the FTUCAs did not exhibit any apparent covalent binding. Bovine serum albumin (BSA) was extracted and isolated from the plasma after incubation of 8:2 FTUAL (5-100 μM). Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the stoichiometry of 8:2 FTUAL covalently bound to BSA; three measurable FTUAL adducts were formed with BSA. To compare the percent binding results from the FTUAL microsome incubation experiments, 8:2 FTOH was incubated in microsomes to determine the protein binding associated with the biotransformation of 8:2 FTOH. Results from this study showed that the biotransformation of 8:2 FTOH yielded 26.1 (±3.0)% binding, and was statistically similar to the percent binding associated with 8:2 FTUAL exposure (p > 0.05), indicating that the binding of 8:2 FTUAL to proteins might be a primary fate in the biotransformation of 8:2 FTOH.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | |
Collapse
|
45
|
Regazzoni L, Del Vecchio L, Altomare A, Yeum KJ, Cusi D, Locatelli F, Carini M, Aldini G. Human serum albumin cysteinylation is increased in end stage renal disease patients and reduced by hemodialysis: mass spectrometry studies. Free Radic Res 2013; 47:172-80. [DOI: 10.3109/10715762.2012.756139] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Protein haptenation by amoxicillin: High resolution mass spectrometry analysis and identification of target proteins in serum. J Proteomics 2012; 77:504-20. [DOI: 10.1016/j.jprot.2012.09.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/13/2012] [Accepted: 09/24/2012] [Indexed: 11/16/2022]
|
47
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
48
|
Comparing the efficiencies of hydrazide labels in the study of protein carbonylation in human serum albumin. Anal Bioanal Chem 2012; 404:1399-411. [PMID: 22811063 DOI: 10.1007/s00216-012-6235-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/19/2012] [Accepted: 06/27/2012] [Indexed: 01/19/2023]
Abstract
In this work, we establish a methodology for comparing the efficiencies of different hydrazide labels for detecting protein carbonyls. We have chosen acrolein-modified human serum albumin as a model. This system provides a convenient means of reproducibly generating carbonylated protein. Five hydrazide-based labels were tested. Three carry a biotin affinity tag, and the others are simple fatty acid hydrazides. For the biotin-based labels, the yield of the labeling reaction varies considerably, and the most commonly used label, biotin hydrazide, gives the lowest yield. The total tandem mass spectrometry (MS/MS) spectrum counts of modified peptides are similar for all of the biotin-based tags, indicating that factors beyond the labeling efficiency are important in determining the effectiveness of the label. In addition, there is a large variation in the number of spectra obtained for specific, modified peptides depending on the nature of the labeling group. This variation implies that the relative detectability of a particular modification site is highly dependent on the tagging reagent, and more importantly, titration schemes aimed at identifying the most reactive site based on its threshold concentration will be biased by the choice of tagging reagent. The fatty acid hydrazides are somewhat more effective than the biotin-based hydrazides in generating identifiable MS/MS spectra but offer no opportunity for enrichment. For the biotin-based tags, avidin affinity chromatography was used with the tryptic digests, and each tag led to similar enrichment levels.
Collapse
|
49
|
Rand AA, Mabury SA. In vitro interactions of biological nucleophiles with fluorotelomer unsaturated acids and aldehydes: fate and consequences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7398-7406. [PMID: 22582947 DOI: 10.1021/es3008485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fluorotelomer unsaturated aldehydes and acids (FTUALs and FTUCAs) are intermediate metabolites that form from the biotransformation of fluorotelomer-based chemicals. FTUALs and FTUCAs have been previously suggested to contribute to the toxicity associated with human exposure to fluorotelomer compounds by covalently binding to biological nucleophiles. However, the extent of their reactivity has only been assessed with glutathione. The purpose of the present study was to assess the reactivity of these intermediate metabolites with a series of nucleophilic amino acids and model proteins. In vitro experiments were carried out in an aqueous buffer system to determine the reactivity of nucleophilic amino acids with FTUCAs and FTUALs having varying fluorinated chain lengths. Using (19)F NMR spectroscopy to monitor the disappearance of the FTUCAs and FTUAL signals and the production of a fluoride signal, reaction rate constants were determined under pseudo-first-order conditions. The FTUCAs reacted only with cysteine with the following second order rate constants: 3.63 (± 1.37) × 10(-5) min(-1) mM(-1) (4:2 FTUCA), 1.19 (± 0.91) × 10(-5) min(-1) mM(-1) (6:2 FTUCA), and 4.56 (± 0.94) × 10(-5) min(-1) mM(-1) (8:2 FTUCA). The FTUALs were significantly more reactive than any of the FTUCAs with reactivity decreasing in the following order: cysteine >> histidine > lysine >> arginine. The following second-order rate constants were obtained: 5.7 (± 4.2) × 10(-4) min(-1) mM(-1) (histidine), 4.3 (± 1.4) × 10(-4) min(-1) mM(-1) (lysine), and 1.4 (± 0.73) × 10(-4) min(-1) mM(-1) (arginine). FTUCAs and FTUALs were also reacted with model proteins to assess their potential for forming covalent adducts. Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the stoichiometry of FTUCAs and FTUALs covalently bound to apomyoglobin (ApoMg) and human serum albumin (HSA). FTUCAs were not reactive, whereas two measurable FTUAL adducts were formed with both ApoMg and HSA at each of the FTUAL chain lengths (6:2, 8:2, and 10:2). This is the first study to probe the reactivity of FTUALs and FTUCAs with nucleophiles other than glutathione, further elucidating possible FTUAL and FTUCA fate within biological systems.
Collapse
Affiliation(s)
- Amy A Rand
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | | |
Collapse
|
50
|
Grigoryan H, Li H, Iavarone AT, Williams ER, Rappaport SM. Cys34 adducts of reactive oxygen species in human serum albumin. Chem Res Toxicol 2012; 25:1633-42. [PMID: 22591159 DOI: 10.1021/tx300096a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term exposures to reactive oxygen species (ROS) have been linked to scores of chronic diseases. This has motivated interest in oxidation products of the only free cysteine residue (Cys34) of human serum albumin (HSA) as possible biomarkers of ROS exposure. However, Cys34 oxidation products have not been detected in human serum or plasma. Using liquid chromatography-high resolution tandem mass spectrometry, we report accurate masses and molecular compositions of Cys34 oxidation products in the 2432 Da peptide resulting from tryptic digestion of HSA. Peptides containing the expected sulfinic (Cys-SO(2)H) and sulfonic (Cys-SO(3)H) acids, as well as an adduct representing addition of one oxygen atom and loss of two hydrogen atoms, were detected in four archived samples of human plasma and one fresh sample of human serum. We speculate that this latter adduct is a sulfinamide formed by intramolecular reaction between either the Cys34 sulfenic acid (Cys-SOH) or sulfinic acid (Cys-SO(2)H) and the adjacent glutamine residue (Gln33). All three Cys34 adducts were measured in the five human samples with levels decreasing in the order sulfinic acid > (proposed) sulfinamide > sulfonic acid. Parallel measurements of a negative control detected only small amounts of the Cys34 sulfonic acid and the (proposed) sulfinamide and did not detect the sulfinic acid.
Collapse
Affiliation(s)
- Hasmik Grigoryan
- Center for Exposure Biology, School of Public Health and College of Chemistry, University of California, 50 University Hall, Berkeley, CA 94720-7356, USA
| | | | | | | | | |
Collapse
|