1
|
Sharma R, Nath PC, Lodh BK, Mukherjee J, Mahata N, Gopikrishna K, Tiwari ON, Bhunia B. Rapid and sensitive approaches for detecting food fraud: A review on prospects and challenges. Food Chem 2024; 454:139817. [PMID: 38805929 DOI: 10.1016/j.foodchem.2024.139817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Precise and reliable analytical techniques are required to guarantee food quality in light of the expanding concerns regarding food safety and quality. Because traditional procedures are expensive and time-consuming, quick food control techniques are required to ensure product quality. Various analytical techniques are used to identify and detect food fraud, including spectroscopy, chromatography, DNA barcoding, and inotrope ratio mass spectrometry (IRMS). Due to its quick findings, simplicity of use, high throughput, affordability, and non-destructive evaluations of numerous food matrices, NI spectroscopy and hyperspectral imaging are financially preferred in the food business. The applicability of this technology has increased with the development of chemometric techniques and near-infrared spectroscopy-based instruments. The current research also discusses the use of several multivariate analytical techniques in identifying food fraud, such as principal component analysis, partial least squares, cluster analysis, multivariate curve resolutions, and artificial intelligence.
Collapse
Affiliation(s)
- Ramesh Sharma
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India; Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu-641062, India.
| | - Pinku Chandra Nath
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| | - Bibhab Kumar Lodh
- Department of Chemical Engineering, National Institute of Technology, Agartala-799046, India.
| | - Jayanti Mukherjee
- Department of Pharmaceutical Chemistry, CMR College of Pharmacy, Hyderabad- 501401, Telangana, India.
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur-713209.
| | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, New Delhi, 110016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bio Engineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
2
|
de Castilho Alves Morais EM, Mendes TV, Arnoni ED, Gorup LF, Rosa MA, Moreira AJ, Figueiredo EC. Magnetic particle spray mass spectrometry for the determination of beta-blockers in plasma samples. Mikrochim Acta 2024; 191:620. [PMID: 39320493 DOI: 10.1007/s00604-024-06698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024]
Abstract
Magnetic particle spray mass spectrometry (MPS-MS), an innovative ambient ionization technique proposed by our research group, was employed to determine beta-blockers in human plasma samples. A dispersive solid phase extraction of atenolol, metoprolol, labetalol, propranolol, nadolol, and pindolol was carried out using magnetic molecularly imprinted polymer (M-MIP) particles that were attached to the tip of a metal probe, which was placed in the mass spectrometer inlet. A solvent (1% formic acid in methanol) was dispensed on the particles, and the Taylor cone was formed around them (in high voltage). The analytes were desorbed/ionized and determined by a triple quadrupole mass spectrometer. M-MIP was synthesized with oxprenolol as a pseudo-template, demonstrating good selectivity to beta-blockers compared with no-analog molecules, with an adsorption process occurring in monolayers, according to isotherm studies. Kinetic experiments indicated chemisorption as the predominant M-MIP/analyte interaction. The analytical curves were linear (R2 > 0.98), and the limit of quantification was 3 µg L-1 for all the analytes. Limits of detection ranged from 0.64 to 2.41 µg L-1. Precisions (relative standard deviation) and accuracies (relative error) ranged from 3.95 to 21.20% and -17.05 to 18.93%, respectively. MPS-MS proved to be a simple, sensitive, and advantageous technique compared with conventional approaches. The analyses were fast, requiring no chromatographic separation and without ionic suppression. The method is aligned with green chemistry principles, requiring minimal sample, solvent, and sorbent amounts. MPS-MS successfully integrates sample preparation and ambient ionization mass spectrometry and holds great potential for application with other sorbents, samples, and analytes.
Collapse
Affiliation(s)
| | - Tássia Venga Mendes
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Estela Domingos Arnoni
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Luiz Fernando Gorup
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
- Department of Chemistry, Interdiscipli5nary Laboratory of Electrochemistry and Ceramics (LIEC), Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
- School of Chemistry and Food Science, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mariana Azevedo Rosa
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Ailton José Moreira
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| | - Eduardo Costa Figueiredo
- Laboratory of Toxicant and Drug Analyses, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
3
|
Kim Y, Jeon Y, Na M, Hwang SJ, Yoon Y. Recent Trends in Chemical Sensors for Detecting Toxic Materials. SENSORS (BASEL, SWITZERLAND) 2024; 24:431. [PMID: 38257524 PMCID: PMC10821350 DOI: 10.3390/s24020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Industrial development has led to the widespread production of toxic materials, including carcinogenic, mutagenic, and toxic chemicals. Even with strict management and control measures, such materials still pose threats to human health. Therefore, convenient chemical sensors are required for toxic chemical monitoring, such as optical, electrochemical, nanomaterial-based, and biological-system-based sensors. Many existing and new chemical sensors have been developed, as well as new methods based on novel technologies for detecting toxic materials. The emergence of material sciences and advanced technologies for fabrication and signal-transducing processes has led to substantial improvements in the sensing elements for target recognition and signal-transducing elements for reporting interactions between targets and sensing elements. Many excellent reviews have effectively summarized the general principles and applications of different types of chemical sensors. Therefore, this review focuses on chemical sensor advancements in terms of the sensing and signal-transducing elements, as well as more recent achievements in chemical sensors for toxic material detection. We also discuss recent trends in biosensors for the detection of toxic materials.
Collapse
Affiliation(s)
| | | | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (Y.K.); (Y.J.); (M.N.); (S.-J.H.)
| |
Collapse
|
4
|
Guo X, Wang X, Tian C, Dai J, Zhao Z, Duan Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023; 264:124721. [PMID: 37271004 DOI: 10.1016/j.talanta.2023.124721] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Mass spectrometry imaging (MSI) is a novel molecular imaging technology that collects molecular information from the surface of samples in situ. The spatial distribution and relative content of various compounds can be visualized simultaneously with high spatial resolution. The prominent advantages of MSI promote the active development of ionization technology and its broader applications in diverse fields. This article first gives a brief introduction to the vital parts of the processes during MSI. On this basis, provides a comprehensive overview of the most relevant MS-based imaging techniques from their mechanisms, pros and cons, and applications. In addition, a critical issue in MSI, matrix effects is also discussed. Then, the representative applications of MSI in biological, forensic, and environmental fields in the past 5 years have been summarized, with a focus on various types of analytes (e.g., proteins, lipids, polymers, etc.) Finally, the challenges and further perspectives of MSI are proposed and concluded.
Collapse
Affiliation(s)
- Xing Guo
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Xin Wang
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China
| | - Caiyan Tian
- College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Jianxiong Dai
- Aliben Science and Technology Company Limited, Chengdu, 610064, PR China
| | | | - Yixiang Duan
- College of Chemistry and Material Science, Northwest University, Xi'an, 710069, PR China; Research Center of Analytical Instrumentation, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
5
|
Ivanova B. Stochastic Dynamic Mass Spectrometric Quantitative and Structural Analyses of Pharmaceutics and Biocides in Biota and Sewage Sludge. Int J Mol Sci 2023; 24:6306. [PMID: 37047279 PMCID: PMC10094044 DOI: 10.3390/ijms24076306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Mass spectrometric innovations in analytical instrumentation tend to be accompanied by the development of a data-processing methodology, expecting to gain molecular-level insights into real-life objects. Qualitative and semi-quantitative methods have been replaced routinely by precise, accurate, selective, and sensitive quantitative ones. Currently, mass spectrometric 3D molecular structural methods are attractive. As an attempt to establish a reliable link between quantitative and 3D structural analyses, there has been developed an innovative formula [DSD″,tot=∑inDSD″,i=∑in2.6388.10-17×Ii2¯-Ii¯2] capable of the exact determination of the analyte amount and its 3D structure. It processed, herein, ultra-high resolution mass spectrometric variables of paracetamol, atenolol, propranolol, and benzalkonium chlorides in biota, using mussel tissue and sewage sludge. Quantum chemistry and chemometrics were also used. Results: Data on mixtures of antibiotics and surfactants in biota and the linear dynamic range of concentrations 2-80 ng.(mL)-1 and collision energy CE = 5-60 V are provided. Quantitative analysis of surfactants in biota via calibration equation ln[D″SD] = f(conc.) yields the exact parameter |r| = 0.99991, examining the peaks of BAC-C12 at m/z 212.209 ± 0.1 and 211.75 ± 0.15 for tautomers of fragmentation ions. Exact parameter |r| = 1 has been obtained, correlating the theory and experiments in determining the 3D molecular structures of ions of paracetamol at m/z 152, 158, 174, 301, and 325 in biota.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|
6
|
Qin M, Qian Y, Huang L, Zhong C, Li M, Yu J, Chen H. Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals. Front Pharmacol 2023; 14:1110900. [PMID: 36713836 PMCID: PMC9880169 DOI: 10.3389/fphar.2023.1110900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Extraction electrospray ionization mass spectrometry (EESI-MS), due to the unique configuration of its ionization module, enables the effective ionization of trace molecules of interest in samples containing complex matrices with high sensitivity, high selectivity and high responding speed without requiring sample pretreatment, and allows high-energy molecular species to undergo specially designed reactions for advanced functionalization. The typical effects of operating conditions on the analytical performance of extraction electrospray ionization mass spectrometry for various pharmaceutical compounds, pharmaceutical preparations and herbal materials were systematically reviewed. The application prospect of extraction electrospray ionization in molecular functionalization for advanced drug discovery is also briefly introduced.
Collapse
Affiliation(s)
- Manman Qin
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Yuqing Qian
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lu Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chao Zhong
- Key Laboratory for Pharmacology and Translational Research of Traditional Chinese Medicine of Nanchang, Centre for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Nanchang, Jiangxi, China
| | - Mingdong Li
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jun Yu
- Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Huanwen Chen
- Mass Spectrometry Laboratory for BioSample Analysis, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,*Correspondence: Huanwen Chen,
| |
Collapse
|
7
|
Xiang Z, Zheng Y, Huang Y, Shi J, Zhang Z. Focusing Plasma Desorption/Ionization Mass Spectrometry. Anal Chem 2022; 94:17090-17101. [PMID: 36444961 DOI: 10.1021/acs.analchem.2c03237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A plasma-based source named focusing plasma desorption/ionization (FPDI) is described, which applies a high direct current voltage between a metal wire inside a polymeric hollow truncated cone and a piece of a one-sided coated conducting paper substrate. The conducting paper acts as both the counter electrode and the sample carrier. Upon the generation of a visible plasma beam, it would directly ionize the samples spotted on the conducting paper substrate or located around the plasma beam. The signal intensity of target analytes in mass spectrometric analysis is dependent highly on whether the conducting paper substrate is grounded or not, the type of conducting paper substrate, the inside diameter of the polymeric hollow truncated cone tip, the metal wire tip-to-polymer tip distance, the polymer tip-to-paper substrate distance, the applied voltage, and the helium flow rate. Based on the experimental observation, a plausible mechanism is proposed for the generation of the plasma beam from FPDI. Compared to the available low-temperature plasma, flowing atmospheric-pressure afterglow, and helium plasma ionization sources, FPDI has demonstrated higher sensitivity and better compatibility with commercial mass spectrometers without any extra power supplies. As a proof of concept, FPDI coupled with a mass spectrometer has also been applied for the discrimination of different brands of gasoline and determination of solid tablets and pesticides with limits of detection in the range of 2.2 to 30.7 ng mL-1.
Collapse
Affiliation(s)
- Zhicheng Xiang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Yajun Zheng
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Yajie Huang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Jun Shi
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| | - Zhiping Zhang
- School of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710065, China
| |
Collapse
|
8
|
Ma Z, Gao Y, Chu F, Tong Y, He Y, Li Y, Gao Z, Chen W, Zhang S, Pan Y. Tip-assisted ambient electric arc ionization mass spectrometry for rapid detection of trace organophosphorus pesticides in strawberries. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
|
10
|
McCullough BJ, Hopley CJ. Results of the first and second British Mass Spectrometry Society interlaboratory studies on ambient mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35 Suppl 2:e8534. [PMID: 31334890 DOI: 10.1002/rcm.8534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE As the popularity of ambient ionisation grows, so too does the importance of understanding its capabilities and limitations. The British Mass Spectrometry Society Special Interest Group on Ambient Ionisation has carried out two studies into the use of ambient ionisation, the results of which are presented here. METHODS The first study (study 1) examined the detection and quantitation capabilities of ambient ionisation while the second examined repeatability and robustness. For study 1 participants were sent a range of samples including two calibration sample sets and asked to analyse them. For study 2, two samples containing the same eight-component mixture were provided (one in solvent, one in matrix); participants were asked to analyse these samples multiple times, over multiple days to allow assessment of repeatability. RESULTS Study 1 showed that small, polar compounds were well detected by the participants while lower polarity compounds were less well detected. For many samples the introduction method appeared to be a significant factor in the observed spectra. The quantitation study gave good results but revealed significant variability. For study 2 the mean repeatabilities were 65% in solvent and 88% in matrix. The inclusion of an internal standard was shown to greatly improve repeatability. CONCLUSIONS Ambient ionisation is capable of ionising a wide range of compounds with good precision and excellent repeatability; however, in order to obtain such data care must be taken with the experimental design. The data can be significantly improved with a well-chosen internal standard.
Collapse
Affiliation(s)
- Bryan J McCullough
- National Measurement Laboratory, LGC, Queens Road, Teddington, TW11 0LY, UK
| | | |
Collapse
|
11
|
Mi D, Cui J, Kuang S, Dong X, Lu H. Facile Atmospheric Generation of Water Radical Cations via
TiO
2
‐Nanoneedle Arrays for Aromatic Hydrocarbon Detection Based on Corona Discharge. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dongbo Mi
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 China
| | - Jinhaojie Cui
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 China
| | - Siliang Kuang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun 130012 China
| | - Xiaofeng Dong
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation East China University of Technology Nanchang 330013 China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
12
|
Beneito-Cambra M, Gilbert-López B, Moreno-González D, Bouza M, Franzke J, García-Reyes JF, Molina-Díaz A. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4831-4852. [PMID: 33000770 DOI: 10.1039/d0ay01474e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ambient mass spectrometry refers to the family of techniques that allows ions to be generated from condensed phase samples under ambient conditions and then, collected and analysed by mass spectrometry. One of their key advantages relies on their ability to allow the analysis of samples with minimal to no sample workup. This feature maps well to the requirements of food safety testing, in particular, those related to the fast determination of pesticide residues in foods. This review discusses the application of different ambient ionization methods for the qualitative and (semi)quantitative determination of pesticides in foods, with the focus on different specific methods used and their ionization mechanisms. More popular techniques used are those commercially available including desorption electrospray ionization (DESI-MS), direct analysis on real time (DART-MS), paper spray (PS-MS) and low-temperature plasma (LTP-MS). Several applications described with ambient MS have reported limits of quantitation approaching those of reference methods, typically based on LC-MS and generic sample extraction procedures. Some of them have been combined with portable mass spectrometers thus allowing "in situ" analysis. In addition, these techniques have the ability to map surfaces (ambient MS imaging) to unravel the distribution of agrochemicals on crops.
Collapse
Affiliation(s)
- Miriam Beneito-Cambra
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Desorption atmospheric pressure chemical ionization: A review. Anal Chim Acta 2020; 1130:146-154. [DOI: 10.1016/j.aca.2020.05.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/27/2023]
|
14
|
Brown HM, McDaniel TJ, Fedick PW, Mulligan CC. The current role of mass spectrometry in forensics and future prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3974-3997. [PMID: 32720670 DOI: 10.1039/d0ay01113d] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) techniques are highly prevalent in crime laboratories, particularly those coupled to chromatographic separations like gas chromatography (GC) and liquid chromatography (LC). These methods are considered "gold standard" analytical techniques for forensic analysis and have been extensively validated for producing prosecutorial evidentiary data. However, factors such as growing evidence backlogs and problematic evidence types (e.g., novel psychoactive substance (NPS) classes) have exposed limitations of these stalwart techniques. This critical review serves to delineate the current role of MS methods across the broad sub-disciplines of forensic science, providing insight on how governmental steering committees guide their implementation. Novel, developing techniques that seek to broaden applicability and enhance performance will also be highlighted, from unique modifications to traditional hyphenated MS methods to the newer "ambient" MS techniques that show promise for forensic analysis, but need further validation before incorporation into routine forensic workflows. This review also expounds on how recent improvements to MS instrumental design, scan modes, and data processing could cause a paradigm shift in how the future forensic practitioner collects and processes target evidence.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | | | | | | |
Collapse
|
15
|
Strmeň T, Vrkoslav V, Bosáková Z, Cvačka J. Atmospheric pressure chemical ionization mass spectrometry at low flow rates: Importance of ion source housing. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8722. [PMID: 31912928 DOI: 10.1002/rcm.8722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/01/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Hyphenation of atmospheric pressure chemical ionization (APCI) mass spectrometry with capillary and micro high-performance liquid chromatography (HPLC) is attractive for many applications, but reliable ion sources dedicated to these conditions are still missing. There are a number of aspects to consider when designing such an ion source, including the susceptibility of the ionization processes to ambient conditions. Here we discuss the importance of ion source housing for APCI at low flow rates. METHODS Selected compounds dissolved in various solvents were used to study ionization reactions at 10 μL/min flow rate. APCI spectra were generated using the Ion Max-S source (Thermo Fisher Scientific) operated with or without the ion source housing. RESULTS The APCI spectra of most compounds measured in the open and enclosed ion sources were markedly different. The differences were explained by water and oxygen molecules that entered the plasma region of the open ion source. Water tended to suppress charge transfer processes while oxygen diminished electron capture reactions and prevented the formation of acetonitrile-related radical cations useful for localizing double bonds in lipids. The effects associated with the ion source housing were significantly less important for compounds that are easy to protonate or deprotonate. CONCLUSIONS The use of ion source housing prevented alternative ionization channels leading to unwanted or unexpected ions. Compared with the conventional flow rate mode (1 mL/min), the effects of ambient air components were significantly higher at 10 μL/min, emphasizing the need for ion source housing in APCI sources dedicated to low flow rates.
Collapse
Affiliation(s)
- Timotej Strmeň
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Vladimír Vrkoslav
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Zuzana Bosáková
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
- Department of Analytical Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, CZ-128 43, Prague 2, Czech Republic
| |
Collapse
|
16
|
Perraud V, Li X, Smith JN, Finlayson-Pitts BJ. Novel ionization reagent for the measurement of gas-phase ammonia and amines using a stand-alone atmospheric pressure gas chromatography (APGC) source. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8561. [PMID: 31429122 DOI: 10.1002/rcm.8561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Contaminants present in ambient air or in sampling lines can interfere with the target analysis through overlapping peaks or causing a high background. This study presents a positive outcome from the unexpected presence of N-methyl-2-pyrrolidone, released from a PALL HEPA filter, in the analysis of atmospherically relevant gas-phase amines using chemical ionization mass spectrometry. METHODS Gas-phase measurements were performed using a triple quadrupole mass spectrometer equipped with a modified atmospheric pressure gas chromatography (APGC) source which allows sampling of the headspace above pure amine standards. Gas-phase N-methyl-2-pyrrolidone (NMP) emitted from a PALL HEPA filter located in the inlet stream served as the ionizing agent. RESULTS This study demonstrates that some alkylamines efficiently form a [NMP + amine+H]+ cluster with NMP upon chemical ionization at atmospheric pressure. The extent of cluster formation depends largely on the proton affinity of the amine compared with that of NMP. Aromatic amines (aniline, pyridine) and diamines (putrescine) were shown not to form cluster ions with NMP. CONCLUSIONS The use of NMP as an ionizing agent with stand-alone APGC provided high sensitivity for ammonia and the smaller amines. The main advantages, in addition to sensitivity, are direct sampling into the APGC source and avoiding uptake on sampling lines which can be a significant problem with ammonia and amines.
Collapse
Affiliation(s)
- Véronique Perraud
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Xiaoxiao Li
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - James N Smith
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | | |
Collapse
|
17
|
van Geenen FAMG, Claassen FW, Franssen MCR, Zuilhof H, Nielen MWF. Laser Ablation Electrospray Ionization Hydrogen/Deuterium Exchange Ambient Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:249-256. [PMID: 32031404 PMCID: PMC7053432 DOI: 10.1021/jasms.9b00082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Identification and confirmation of known as well as unknown (bio)chemical entities in ambient mass spectrometry (MS) and MS imaging (MSI) mostly involve accurate mass determination, often in combination with MS/MS or MSn work flows. To further improve structural assignment, additional molecular information is required. Here we present an ambient hydrogen/deuterium exchange (HDX) laser ablation electrospray ionization (LAESI) MS method in which, apart from the accurate mass and MS/MS data, the number of exchangeable protons in (un)known molecules is obtained. While eventually presenting ambient HDX-LAESI-MSI, samples were not preincubated with deuterated solvents, but instead HDX occurred following fusion of ablated sample material with microdroplets generated by ESI of deuterated solvents. Therefore, the degree of HDX was first studied following ablation of nondeuterated sample solutions of melamine and monosaccharides. From these experiments, it was concluded that the set-up used could provide meaningful HDX data in support of molecular structure elucidation by significantly reducing the number of structure options from a measured elemental composition. This reduction was demonstrated with an unknown accurate m/z value obtained in the analysis of an orange slice, reducing the possible number of molecular structures having the same elemental composition by 87% due to the number of H/D exchanges observed. Next, deuterated and nondeuterated MS/MS experiments showed the number of exchangeable protons in the substructures from deuterated neutral losses in the product ion spectra, confirming the compound to be arginine. Finally, the potential of ambient HDX-LAESI-MSI was demonstrated by the imaging of (secondary) plant metabolites in a Phalaenopsis petal.
Collapse
Affiliation(s)
- Fred A. M. G. van Geenen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
- TI-COAST, Science Park 904,
1098 XH Amsterdam, The Netherlands
- Institute for Molecules and Materials, FELIX Laboratory,
Radboud University, Toernooiveld 7c, 6525 ED Nijmegen,
The Netherlands
| | - Frank W. Claassen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
- School of Pharmaceutical Sciences and Technology,
Tianjin University, 92 Weijin Road, Tianjin 300072,
P.R. China
| | - Michel W. F. Nielen
- Laboratory of Organic Chemistry,
Wageningen University, Stippeneng 4, 6708 WE Wageningen,
The Netherlands
- Wageningen Food Safety Research (WFSR),
Wageningen University & Research, P.O. Box 230, 6700 AE
Wageningen, The Netherlands
- E-mail:
| |
Collapse
|
18
|
Potential of Recent Ambient Ionization Techniques for Future Food Contaminant Analysis Using (Trans)Portable Mass Spectrometry. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01666-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractIn food analysis, a trend towards on-site testing of quality and safety parameters is emerging. So far, on-site testing has been mainly explored by miniaturized optical spectroscopy and ligand-binding assay approaches such as lateral flow immunoassays and biosensors. However, for the analysis of multiple parameters at regulatory levels, mass spectrometry (MS) is the method of choice in food testing laboratories. Thanks to recent developments in ambient ionization and upcoming miniaturization of mass analyzers, (trans)portable mass spectrometry may be added to the toolkit for on-site testing and eventually compete with multiplex immunoassays in mixture analysis. In this study, we preliminary evaluated a selection of recent ambient ionization techniques for their potential in simplified testing of selected food contaminants such as pesticides, veterinary drugs, and natural toxins, aiming for a minimum in sample preparation while maintaining acceptable sensitivity and robustness. Matrix-assisted inlet ionization (MAI), handheld desorption atmospheric pressure chemical ionization (DAPCI), transmission-mode direct analysis in real time (TM-DART), and coated blade spray (CBS) were coupled to both benchtop Orbitrap and compact quadrupole single-stage mass analyzers, while CBS was also briefly studied on a benchtop triple-quadrupole MS. From the results, it can be concluded that for solid and liquid sample transmission configurations provide the highest sensitivity while upon addition of a stationary phase, such as in CBS, even low μg/L levels in urine samples can be achieved provided the additional selectivity of tandem mass spectrometry is exploited.
Collapse
|
19
|
Rapid Determination of the Freshness of Lotus Seeds Using Surface Desorption Atmospheric Pressure Chemical Ionization-Mass Spectrometry with Multivariate Analyses. J FOOD QUALITY 2019. [DOI: 10.1155/2019/1628796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to explore a new method to detect the freshness of lotus seeds, the lotus seeds stored for 0, 1, 2, and 3 years, respectively, were used as experimental materials and analyzed by DAPCI-MS (desorption atmospheric pressure chemical ionization-mass spectrometry). The obtained data were processed by principal component analysis (PCA) and backpropagation artificial neural networks (BP-ANNs). The result showed that DAPCI-MS could obtain abundant chemical material information from the slice surface of lotus seeds. The BP-ANNs model could be applied not only to distinguish fresh and aged lotus seeds with the testing set accuracies of 95.0% and 91.7%, respectively, but also to classify lotus seeds with different storage times with the testing set accuracies of 90.0%, 85.0%, 85.0%, and 90.0%, respectively. The paper developed a fast, convenient, and accurate method for the freshness detection of lotus seed and would provide reliable reference value for rapid authentication of food freshness by the rapid mass spectrometry technique.
Collapse
|
20
|
|
21
|
Smith BL, Hughes DM, Badu-Tawiah AK, Eccles R, Goodall I, Maher S. Rapid Scotch Whisky Analysis and Authentication using Desorption Atmospheric Pressure Chemical Ionisation Mass Spectrometry. Sci Rep 2019; 9:7994. [PMID: 31142757 PMCID: PMC6541643 DOI: 10.1038/s41598-019-44456-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023] Open
Abstract
Whisky, as a high value product, is often adulterated, with adverse economic effects for both producers and consumers as well as potential public health impacts. Here we report the use of DAPCI-MS to analyse and chemically profile both genuine and counterfeit whisky samples employing a novel 'direct from the bottle' methodology with zero sample pre-treatment, zero solvent requirement and almost no sample usage. 25 samples have been analysed from a collection of blended Scotch whisky (n = 15) and known counterfeit whisky products (n = 10). Principal component analysis has been applied to dimensionally reduce the data and discriminate between sample groups. Additional chemometric modelling, a partial least squares regression, has correctly classified samples with 92% success rate. DAPCI-MS shows promise for simple, fast and accurate counterfeit detection with potential for generic aroma profiling and process quality monitoring applications.
Collapse
Affiliation(s)
- Barry L Smith
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK
| | - David M Hughes
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | | | - Rebecca Eccles
- The Scotch Whisky Research Institute, The Robertson Trust Building, Edinburgh, UK
| | - Ian Goodall
- The Scotch Whisky Research Institute, The Robertson Trust Building, Edinburgh, UK
| | - Simon Maher
- Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
22
|
Costa C, van Es EM, Sears P, Bunch J, Palitsin V, Mosegaard K, Bailey MJ. Exploring Rapid, Sensitive and Reliable Detection of Trace Explosives Using Paper Spray Mass Spectrometry (PS‐MS). PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201800320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Catia Costa
- Ion Beam CentreUniversity of Surrey Guildford, Surrey GU2 7XH UK
| | - Elsje M. van Es
- National Physical Laboratory Teddington, Middlesex TW11 0LW UK
| | - Patrick Sears
- Defence Science and Technology Laboratory Sevenoaks, Kent TN14 7BP UK
| | - Josephine Bunch
- National Physical Laboratory Teddington, Middlesex TW11 0LW UK
| | | | - Kirsten Mosegaard
- Department of ChemistryUniversity of Surrey Guildford, Surrey GU2 7XH UK
| | - Melanie J. Bailey
- Department of ChemistryUniversity of Surrey Guildford, Surrey GU2 7XH UK
| |
Collapse
|
23
|
Kulyk DS, Sahraeian T, Wan Q, Badu-Tawiah AK. Reactive Olfaction Ambient Mass Spectrometry. Anal Chem 2019; 91:6790-6799. [PMID: 31030519 DOI: 10.1021/acs.analchem.9b00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chemical ionization of organic compounds with negligible vapor pressures (VP) is achieved at atmospheric pressure when the proximal sample is exposed to corona discharge. The vapor-phase analyte is produced through a reactive olfaction process, which is determined to include electrostatic charge induction in the proximal condensed-phase sample, resulting in the liberation of free particles. With no requirement for physical contact, a new contained nano-atmospheric pressure chemical ionization (nAPCI) source was developed that allowed direct mass spectrometry analysis of complex mixtures at a sample consumption rate less than nmol/min. The contained nAPCI source was applied to analyze a wide range of samples including the detection of 1 ng/mL cocaine in serum and 200 pg/mL caffeine in raw urine, as well as the differentiation of chemical composition of perfumes and beverages. Polar (e.g., carminic acid; estimated VP 5.1 × 10-25 kPa) and nonpolar (e.g., vitamin D2; VP 8.5 × 10-11 kPa) compounds were successfully ionized by the contained nAPCI ion source under ambient conditions, with the corresponding ion types of 78 other organic compounds characterized.
Collapse
Affiliation(s)
- Dmytro S Kulyk
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Taghi Sahraeian
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Qiongqiong Wan
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
24
|
Han J, Liu W, Su R, Zhu L, Wu D, Xu J, Liu A, Zhang H, Kou W, Zhang X, Yang S. Coupling of micro-solid-phase extraction and internal extractive electrospray ionization mass spectrometry for ultra-sensitive detection of 1-hydroxypyrene and papaverine in human urine samples. Anal Bioanal Chem 2019; 411:3281-3290. [PMID: 30989270 DOI: 10.1007/s00216-019-01794-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023]
Abstract
Quantification of ultra-trace analytes in complex biological samples using micro-solid-phase extraction followed by direct detection with internal extractive electrospray ionization mass spectrometry (μSPE-iEESI-MS) was demonstrated. 1-Hydroxypyrene (1-OHP) and papaverine at attomole levels in human raw urine samples were analyzed under negative and positive ion detection mode, respectively. The μSPE was simply prepared by packing a disposable syringe filter with octadecyl carbon chain (C18)-bonded micro silica particles, which were then treated as the "bulk sample" after the analytes were efficiently enriched by the C18 particles. Under the optimized experimental conditions, the analytes were readily eluted by isopropanol/water (80/20, V/V) at a high voltage of ± 4.0 kV, producing analyte ions under ambient conditions. The limit of detection (LOD) was 0.02 pg/L (9.2 amol) for 1-hydroxypyrene and 0.02 pg/L (5.9 amol) for papaverine. The acceptable linearity (R2 > 0.99), signal stability (RSD ≤ 10.7%), spike recoveries (91-95%), and comparable results for real urine samples were also achieved, opening up possibilities for quantitative analysis of trace compounds (at attomole levels) in complex bio-samples. Graphical abstract.
Collapse
Affiliation(s)
- Jing Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.,Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Wei Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Lixue Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Debo Wu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China.
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Aiying Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hua Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wei Kou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoping Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| | - Shuiping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
25
|
ZHANG XL, ZHANG H, WANG XC, HUANG KK, WANG D, CHEN HW. Advances in Ambient Ionization for Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61122-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Lu H, Zhang H, Chingin K, Xiong J, Fang X, Chen H. Ambient mass spectrometry for food science and industry. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Chao YY, Chen YL, Lin HY, Huang YL. Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source. Anal Chim Acta 2018; 1010:44-53. [DOI: 10.1016/j.aca.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 11/15/2022]
|
28
|
Chao YY, Chen YL, Chen WC, Chen BH, Huang YL. Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source. Food Chem 2018; 252:189-197. [DOI: 10.1016/j.foodchem.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/06/2017] [Accepted: 12/26/2017] [Indexed: 10/18/2022]
|
29
|
Rahman MM, Jiang T, Tang Y, Xu W. A simple desorption atmospheric pressure chemical ionization method for enhanced non-volatile sample analysis. Anal Chim Acta 2018; 1002:62-69. [DOI: 10.1016/j.aca.2017.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/04/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023]
|
30
|
Bianchi F, Riboni N, Termopoli V, Mendez L, Medina I, Ilag L, Cappiello A, Careri M. MS-Based Analytical Techniques: Advances in Spray-Based Methods and EI-LC-MS Applications. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:1308167. [PMID: 29850370 PMCID: PMC5937452 DOI: 10.1155/2018/1308167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/26/2018] [Indexed: 05/15/2023]
Abstract
Mass spectrometry is the most powerful technique for the detection and identification of organic compounds. It can provide molecular weight information and a wealth of structural details that give a unique fingerprint for each analyte. Due to these characteristics, mass spectrometry-based analytical methods are showing an increasing interest in the scientific community, especially in food safety, environmental, and forensic investigation areas where the simultaneous detection of targeted and nontargeted compounds represents a key factor. In addition, safety risks can be identified at the early stage through online and real-time analytical methodologies. In this context, several efforts have been made to achieve analytical instrumentation able to perform real-time analysis in the native environment of samples and to generate highly informative spectra. This review article provides a survey of some instrumental innovations and their applications with particular attention to spray-based MS methods and food analysis issues. The survey will attempt to cover the state of the art from 2012 up to 2017.
Collapse
Affiliation(s)
- Federica Bianchi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Veronica Termopoli
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Lucia Mendez
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Spanish National Research Council (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Leopold Ilag
- Department of Environmental Science and Analytical Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Achille Cappiello
- Department of Pure and Applied Sciences, LC-MS Laboratory, Piazza Rinascimento 6, 61029 Urbino, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
31
|
Su R, Wang X, Hou C, Yang M, Huang K, Chen H. Fast Determination of Ingredients in Solid Pharmaceuticals by Microwave-Enhanced In-Source Decay of Microwave Plasma Torch Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1947-1957. [PMID: 28631113 PMCID: PMC5556135 DOI: 10.1007/s13361-017-1708-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 06/09/2023]
Abstract
Rapid qualitative and quantitative analysis of solid samples (e.g., pharmaceutical preparations) by using a small and low-resolution mass spectrometer without MS/MS function is still a challenge in ambient pressure ionization mass spectrometric analysis. Herein, a practically efficient method termed microwave-enhanced in-source decay (MEISD) using microwave plasma torch desorption ionization coupled with time-of-flight mass spectrometry (MPTDI-TOF MS) was developed for fast analysis of pharmaceutical tablets using a miniature TOF mass spectrometer without tandem mass function. The intensity of ISD fragmentation was evaluated under different microwave power values. Several factors, including desorption distance and time that might affect the signal intensity and fragmentation, were systematically investigated. It was observed that both the protonated molecular ions and major fragment ions from the active ingredients in tablets could be found in the full-scan mass spectra in positive ion mode, which were comparable to those obtained by a commercial LTQ-XL ion trap mass spectrometer. The structures of the ingredients could be elucidated in detail using the MEISD method, which promotes our understanding of the desorption/ionization processes in microwave plasma torch (MPT). Quantitative analysis of 10 tablets was achieved by full-scan MPTDI-TOF MS with low limit of detection (LOD, 0.763 mg/g), acceptable relative standard deviation (RSD < 7.33%, n =10), and 10 s for each tablet, showing promising applications in high throughput screening of counterfeit drugs. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rui Su
- Department of Chemistry, Jilin University, Changchun, 130012, China
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinchen Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Changming Hou
- Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Meiling Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Keke Huang
- Department of Chemistry, Jilin University, Changchun, 130012, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
32
|
Guo X, Cui M, Deng M, Liu X, Huang X, Zhang X, Luo L. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves. Sci Rep 2017; 7:46579. [PMID: 28425482 PMCID: PMC5397862 DOI: 10.1038/srep46579] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
Five chemotypes, the isoborneol-type, camphora-type, cineole-type, linalool-type and borneol-type of Cinnamomum camphora (L.) Presl have been identified at the molecular level based on the multivariate analysis of mass spectral fingerprints recorded from a total of 750 raw leaf samples (i.e., 150 leaves equally collected for each chemotype) using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Both volatile and semi-volatile metabolites of the fresh leaves of C. camphora were simultaneously detected by DAPCI-MS without any sample pretreatment, reducing the analysis time from half a day using conventional methods (e.g., GC-MS) down to 30 s. The pattern recognition results obtained using principal component analysis (PCA) was cross-checked by cluster analysis (CA), showing that the difference visualized by the DAPCI-MS spectral fingerprints was validated with 100% accuracy. The study demonstrates that DAPCI-MS meets the challenging requirements for accurate differentiation of all the five chemotypes of C. camphora leaves, motivating more advanced application of DAPCI-MS in plant science and forestry studies.
Collapse
Affiliation(s)
- Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Min Deng
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xingxing Liu
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xinglei Zhang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi 330013, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
33
|
Guo T, Yong W, Jin Y, Zhang L, Liu J, Wang S, Chen Q, Dong Y, Su H, Tan T. Applications of DART-MS for food quality and safety assurance in food supply chain. MASS SPECTROMETRY REVIEWS 2017; 36:161-187. [PMID: 25975720 DOI: 10.1002/mas.21466] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 05/21/2023]
Abstract
Direct analysis in real time (DART) represents a new generation of ion source which is used for rapid ionization of small molecules under ambient conditions. The combination of DART and various mass spectrometers allows analyzing multiple food samples with simple or no sample treatment, or in conjunction with prevailing protocolized sample preparation methods. Abundant applications by DART-MS have been reviewed in this paper. The DART-MS strategy applied to food supply chain (FSC), including production, processing, and storage and transportation, provides a comprehensive solution to various food components, contaminants, authenticity, and traceability. Additionally, typical applications available in food analysis by other ambient ionization mass spectrometers were summarized, and fundamentals mainly including mechanisms, devices, and parameters were discussed as well. © 2015 Wiley Periodicals, Inc. Mass Spec Rev. 36:161-187, 2017.
Collapse
Affiliation(s)
- Tianyang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Wei Yong
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, P.R. China
| | - Yong Jin
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100123, P.R. China
| | - Liya Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiahui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Sai Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qilong Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yiyang Dong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
34
|
Ambient Desorption/Ionization. Mass Spectrom (Tokyo) 2017. [DOI: 10.1007/978-3-319-54398-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Yang Y, Deng J. Analysis of pharmaceutical products and herbal medicines using ambient mass spectrometry. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Black C, Chevallier OP, Elliott CT. The current and potential applications of Ambient Mass Spectrometry in detecting food fraud. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.06.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Zhu X, Huang Z, Gao W, Li X, Li L, Zhu H, Mo T, Huang B, Zhou Z. Rapid Microcystin Determination Using a Paper Spray Ionization Method with a Time-of-Flight Mass Spectrometry System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5614-9. [PMID: 27345366 DOI: 10.1021/acs.jafc.6b02101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The eutrophication of surface water sources and climate changes have resulted in an annual explosion of cyanobacterial blooms in many irrigating and drinking water resources. To decrease health risks to the public, a rapid real time method for the synchronous determination of two usually harmful microcystins (MC-RR and MC-LR) in environmental water samples was built by employing a paper spray ionization method coupled with a time-of-flight mass spectrometer system. With this approach, direct analysis of microcystin mixtures without sample preparation has been achieved. Rapid detection was performed, simulating the release process of microcystins in reservoir water samples, and the routine detection frequency was every three minutes. The identification time of microcystins was reduced from several hours to a few minutes. The limit of detection is 1 μg/L, and the limit of quantitation is 3 μg/L. This method displays the ability for carrying out rapid, direct, and high-throughput experiments for determination of microcystins, and it would be of significant interest for environmental and food safety applications.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University , Guangzhou 510632, China
- Department of Ecology, Jinan University , Guangzhou 510632, China
| | - Zhengxu Huang
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University , Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution , Guangzhou 510632, China
| | - Wei Gao
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University , Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution , Guangzhou 510632, China
| | - Xue Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University , Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution , Guangzhou 510632, China
| | - Lei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University , Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution , Guangzhou 510632, China
| | - Hui Zhu
- Guangzhou Hexin Analytical Instrument Co., Ltd. , Guangzhou 510530, China
| | - Ting Mo
- Guangzhou Hexin Analytical Instrument Co., Ltd. , Guangzhou 510530, China
| | - Bao Huang
- Guangzhou Hexin Analytical Instrument Co., Ltd. , Guangzhou 510530, China
| | - Zhen Zhou
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University , Guangzhou 510632, China
- Guangdong Provincial Engineering Research Center for On-line Source Apportionment System of Air Pollution , Guangzhou 510632, China
| |
Collapse
|
38
|
Correa DN, Santos JM, Eberlin LS, Eberlin MN, Teunissen SF. Forensic Chemistry and Ambient Mass Spectrometry: A Perfect Couple Destined for a Happy Marriage? Anal Chem 2016; 88:2515-26. [DOI: 10.1021/acs.analchem.5b02397] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deleon N. Correa
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
- Technical-Scientific Police Superintendence—IC-SPTC-SP, São Paulo, São Paulo 05507-06, Brazil
| | - Jandyson M. Santos
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Livia S. Eberlin
- Department
of Chemistry, The University of Texas at Austin, Austin, Texas 78712 United States
| | - Marcos N. Eberlin
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| | - Sebastiaan F. Teunissen
- ThoMSon
Mass Spectrometry Laboratory, University of Campinas—UNICAMP, Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
39
|
Winter GT, Wilhide JA, LaCourse WR. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:352-358. [PMID: 26471042 DOI: 10.1007/s13361-015-1289-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.
Collapse
Affiliation(s)
- Gregory T Winter
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
40
|
Smoluch M, Mielczarek P, Silberring J. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. MASS SPECTROMETRY REVIEWS 2016; 35:22-34. [PMID: 25988731 DOI: 10.1002/mas.21460] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/24/2014] [Indexed: 05/28/2023]
Abstract
Plasma-based ambient ionization mass spectrometry techniques are gaining growing interest due to their specific features, such as the need for little or no sample preparation, its high analysis speed, and the ambient experimental conditions. Samples can be analyzed in gas, liquid, or solid forms. These techniques allow for a wide range of applications, like warfare agent detection, chemical reaction control, mass spectrometry imaging, polymer identification, and food safety monitoring, as well as applications in biomedical science, e.g., drug and pharmaceutical analysis, medical diagnostics, biochemical analysis, etc. Until now, the main drawback of plasma-based techniques is their quantitative aspect, but a lot of efforts have been done to improve this obstacle.
Collapse
Affiliation(s)
- Marek Smoluch
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Przemyslaw Mielczarek
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Jerzy Silberring
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowskiej St. 34, 41-819, Zabrze, Poland
| |
Collapse
|
41
|
Method for Improving Spatial Resolution of Liquid-assisted Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60896-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Hu L, Liang J, Chingin K, Hang Y, Wu X, Chen H. Early release of 1-pyrroline by Pseudomonas aeruginosa cultures discovered using ambient corona discharge ionization mass spectrometry. RSC Adv 2016. [DOI: 10.1039/c5ra24594j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1-Pyrroline detected by ambient mass spectrometry is suggested as a potential volatile biomarker for early identification of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Longhua Hu
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Juchao Liang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| | - Yaping Hang
- The Second Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Xiaoping Wu
- Department of Infections
- The First Affiliated Hospital of Nanchang University
- Nanchang 330006
- P. R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang 330013
- P. R. China
| |
Collapse
|
43
|
Cardoso-Palacios C, Lanekoff I. Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:3591908. [PMID: 27766177 PMCID: PMC5059531 DOI: 10.1155/2016/3591908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/04/2016] [Indexed: 05/13/2023]
Abstract
Counterfeit pharmaceutical drugs imply an increasing threat to the global public health. It is necessary to have systems to control the products that reach the market and to detect falsified medicines. In this work, molecules in several pharmaceutical tablets were directly analyzed using nanospray desorption electrospray ionization mass spectrometry (nano-DESI MS). Nano-DESI is an ambient surface sampling technique which enables sampling of molecules directly from the surface of the tablets without any sample pretreatment. Both the active pharmaceutical ingredients (APIs) and some excipients were detected in all analyzed tablets. Principal component analysis was used to analyze mass spectral features from different tablets showing strong clustering between tablets with different APIs. The obtained results suggest nano-DESI MS as future tool for forensic analysis to discern APIs present in unknown tablet samples.
Collapse
Affiliation(s)
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
- *Ingela Lanekoff:
| |
Collapse
|
44
|
Handberg E, Chingin K, Wang N, Dai X, Chen H. Mass spectrometry imaging for visualizing organic analytes in food. MASS SPECTROMETRY REVIEWS 2015; 34:641-58. [PMID: 24687728 DOI: 10.1002/mas.21424] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 05/27/2023]
Abstract
The demand for rapid chemical imaging of food products steadily increases. Mass spectrometry (MS) is featured by excellent molecular specificity of analysis and is, therefore, a very attractive method for chemical profiling. MS for food imaging has increased significantly over the past decade, aided by the emergence of various ambient ionization techniques that allow direct and rapid analysis in ambient environment. In this article, the current status of food imaging with MSI is reviewed. The described approaches include matrix-assisted laser desorption/ionization (MALDI), but emphasize desorption atmospheric pressure photoionization (DAPPI), electrospray-assisted laser desorption/ionization (ELDI), probe electrospray ionization (PESI), surface desorption atmospheric pressure chemical ionization (SDAPCI), and laser ablation flowing atmospheric pressure afterglow (LA-FAPA). The methods are compared with regard to spatial resolution; analysis speed and time; limit of detection; and technical aspects. The performance of each method is illustrated with the description of a related application. Specific requirements in food imaging are discussed.
Collapse
Affiliation(s)
- Eric Handberg
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Nannan Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Ximo Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Department of Applied Chemistry, East China Institute of Technology, Nanchang, 330013, P.R. China
| |
Collapse
|
45
|
Jjunju FPM, Maher S, Li A, Syed SU, Smith B, Heeren RMA, Taylor S, Cooks RG. Hand-held portable desorption atmospheric pressure chemical ionization ion source for in situ analysis of nitroaromatic explosives. Anal Chem 2015; 87:10047-55. [PMID: 26329926 DOI: 10.1021/acs.analchem.5b02684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel, lightweight (0.6 kg), solvent- and gas-cylinder-free, hand-held ion source based on desorption atmospheric pressure chemical ionization has been developed and deployed for the analysis of nitroaromatic explosives on surfaces in open air, offering portability for in-field analysis. A small, inexpensive, rechargeable lithium polymer battery was used to power the custom-designed circuitry within the device, which generates up to ±5 kV dc voltage to ignite a corona discharge plasma in air for up to 12 h of continuous operation, and allowing positive- and negative-ion mass spectrometry. The generated plasma is pneumatically transported to the surface to be interrogated by ambient air at a rate of 1-3.5 L/min, compressed using a small on-board diaphragm pump. The plasma source allows liquid or solid samples to be examined almost instantaneously without any sample preparation in the open environment. The advantages of low carrier gas and low power consumption (<6 W), as well as zero solvent usage, have aided in developing the field-ready, hand-held device for trigger-based, "near-real-time" sampling/ionization. Individual nitroaromatic explosives (such as 2,4,6-trinitrotoluene) can be easily detected in amounts as low as 5.8 pg with a linear dynamic range of at least 10 (10-100 pg), a relative standard deviation of ca. 7%, and an R(2) value of 0.9986. Direct detection of several nitroaromatic compounds in a complex mixture without prior sample preparation is demonstrated, and their identities are confirmed by tandem mass spectrometry fragmentation patterns.
Collapse
Affiliation(s)
- Fred P M Jjunju
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K.,Q-Technologies Ltd. , 100 Childwall Road, Liverpool L15 6UX, U.K
| | - Simon Maher
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K
| | - Anyin Li
- Chemistry Department, Purdue University , West Lafayette, Indiana 47907, United States
| | - Sarfaraz U Syed
- M4I, the Maastricht Multi Modal Molecular Imaging Institute, University of Maastricht , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Barry Smith
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K.,Q-Technologies Ltd. , 100 Childwall Road, Liverpool L15 6UX, U.K
| | - Ron M A Heeren
- M4I, the Maastricht Multi Modal Molecular Imaging Institute, University of Maastricht , Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Stephen Taylor
- Department of Electrical Engineering and Electronics, University of Liverpool , Liverpool L69 3GJ, U.K.,Q-Technologies Ltd. , 100 Childwall Road, Liverpool L15 6UX, U.K
| | - R Graham Cooks
- Chemistry Department, Purdue University , West Lafayette, Indiana 47907, United States
| |
Collapse
|
46
|
Fast Differential Analysis of Propolis Using Surface Desorption Atmospheric Pressure Chemical Ionization Mass Spectrometry. Int J Anal Chem 2015; 2015:176475. [PMID: 26339245 PMCID: PMC4539062 DOI: 10.1155/2015/176475] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 01/21/2023] Open
Abstract
Mass spectral fingerprints of 24 raw propolis samples, including 23 from China and one from the United States, were directly obtained using surface desorption atmospheric pressure chemical ionization mass spectrometry (SDAPCI-MS) without sample pretreatment. Under the optimized experimental conditions, the most abundant signals were detected in the mass ranges of 70 to 500 m/z and 200 to 350 m/z, respectively. Principal component analyses (PCA) for the two mass ranges showed similarities in that the colors had a significant correlation with the first two PCs; in contrast there was no correlation with the climatic zones from which the samples originated. Analytes such as chrysin, pinocembrin, and quercetin were detected and identified using multiple stage mass spectrometry within 3 min. Therefore, SDAPCI-MS can be used for rapid and reliable high-throughput analysis of propolis.
Collapse
|
47
|
|
48
|
Ding X, Duan Y. Plasma-based ambient mass spectrometry techniques: The current status and future prospective. MASS SPECTROMETRY REVIEWS 2015; 34:449-73. [PMID: 24338668 DOI: 10.1002/mas.21415] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 05/21/2023]
Abstract
Plasma-based ambient mass spectrometry is emerging as a frontier technology for direct analysis of sample that employs low-energy plasma as the ionization reagent. The versatile sources of ambient mass spectrometry (MS) can be classified according to the plasma formation approaches; namely, corona discharge, glow discharge, dielectric barrier discharge, and microwave-induced discharge. These techniques allow pretreatment-free detection of samples, ranging from biological materials (e.g., flies, bacteria, plants, tissues, peptides, metabolites, and lipids) to pharmaceuticals, food-stuffs, polymers, chemical warfare reagents, and daily-use chemicals. In most cases, plasma-based ambient MS performs well as a qualitative tool and as an analyzer for semi-quantitation. Herein, we provide an overview of the key concepts, mechanisms, and applications of plasma-based ambient MS techniques, and discuss the challenges and outlook.
Collapse
Affiliation(s)
- Xuelu Ding
- Research Center of Analytical Instrumentation, Analytical Testing Center and College of Chemistry, Sichuan University, Chengdu, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Analytical Testing Center and College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Calligaris D, Feldman DR, Norton I, Brastianos PK, Dunn IF, Santagata S, Agar NYR. Molecular typing of Meningiomas by Desorption Electrospray Ionization Mass Spectrometry Imaging for Surgical Decision-Making. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 377:690-698. [PMID: 25844057 PMCID: PMC4379512 DOI: 10.1016/j.ijms.2014.06.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Meningiomas are the most frequent intracranial tumors. The majority is benign slow-growing tumors but they can be difficult to treat depending on their location and size. While meningiomas are well delineated on magnetic resonance imaging by their uptake of contrast, surgical limitations still present themselves from not knowing the extent of invasion of the dura matter by meningioma cells. The development of tools to characterize tumor tissue in real or near real time could prevent recurrence after tumor resection by allowing for more precise surgery, i.e. removal of tumor with preservation of healthy tissue. The development of ambient ionization mass spectrometry for molecular characterization of tissue and its implementation in the surgical decision-making workflow carry the potential to fulfill this need. Here, we present the characterization of meningioma and dura mater by desorption electrospray ionization mass spectrometry to validate the technique for the molecular assessment of surgical margins and diagnosis of meningioma from surgical tissue in real-time. Nine stereotactically resected surgical samples and three autopsy samples were analyzed by standard histopathology and mass spectrometry imaging. All samples indicated a strong correlation between results from both techniques. We then highlight the value of desorption electrospray ionization mass spectrometry for the molecular subtyping/subgrouping of meningiomas from a series of forty genetically characterized specimens. The minimal sample preparation required for desorption electrospray ionization mass spectrometry offers a distinct advantage for applications relying on real-time information such as surgical decision-making. The technology here was tested to distinguish meningioma from dura mater as an approach to precisely define surgical margins. In addition we classify meningiomas into fibroblastic and meningothelial subtypes and more notably recognize meningiomas with NF2 genetic aberrations.
Collapse
Affiliation(s)
- David Calligaris
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Daniel R. Feldman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Isaiah Norton
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Priscilla K. Brastianos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115
| | - Ian F. Dunn
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Sandro Santagata
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115
| |
Collapse
|
50
|
Towards SERS based applications in food analytics: Lipophilic sensor layers for the detection of Sudan III in food matrices. Anal Chim Acta 2015; 860:43-50. [DOI: 10.1016/j.aca.2015.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/10/2014] [Accepted: 01/04/2015] [Indexed: 01/12/2023]
|