1
|
Bashyal A, Brodbelt JS. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. MASS SPECTROMETRY REVIEWS 2024; 43:289-326. [PMID: 36165040 PMCID: PMC10040477 DOI: 10.1002/mas.21811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Posttranslational modifications (PTMs) are covalent modifications of proteins that modulate the structure and functions of proteins and regulate biological processes. The development of various mass spectrometry-based proteomics workflows has facilitated the identification of hundreds of PTMs and aided the understanding of biological significance in a high throughput manner. Improvements in sample preparation and PTM enrichment techniques, instrumentation for liquid chromatography-tandem mass spectrometry (LC-MS/MS), and advanced data analysis tools enhance the specificity and sensitivity of PTM identification. Highly prevalent PTMs like phosphorylation, glycosylation, acetylation, ubiquitinylation, and methylation are extensively studied. However, the functions and impact of less abundant PTMs are not as well understood and underscore the need for analytical methods that aim to characterize these PTMs. This review focuses on the advancement and analytical challenges associated with the characterization of three less common but biologically relevant PTMs, specifically, adenosine diphosphate-ribosylation, tyrosine sulfation, and tyrosine nitration. The advantages and disadvantages of various enrichment, separation, and MS/MS techniques utilized to identify and localize these PTMs are described.
Collapse
Affiliation(s)
- Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Campolo N, Mastrogiovanni M, Mariotti M, Issoglio FM, Estrin D, Hägglund P, Grune T, Davies MJ, Bartesaghi S, Radi R. Multiple oxidative post-translational modifications of human glutamine synthetase mediate peroxynitrite-dependent enzyme inactivation and aggregation. J Biol Chem 2023; 299:102941. [PMID: 36702251 PMCID: PMC10011836 DOI: 10.1016/j.jbc.2023.102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO-) in vitro. We found that ONOO- exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO- induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.
Collapse
Affiliation(s)
- Nicolás Campolo
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Michele Mariotti
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Federico M Issoglio
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Darío Estrin
- CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires, Argentina; Departamento de Química Inorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Analítica y Química Física, Buenos Aires, Argentina
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Silvina Bartesaghi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Complete and selective nitration of tyrosine residue in peptides caused by ultraviolet matrix-assisted laser desorption/ionization. Photochem Photobiol Sci 2022; 22:687-692. [PMID: 36352303 DOI: 10.1007/s43630-022-00338-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Complete and highly selective nitration of tyrosine (Tyr) as a residue-specific modification in peptides was found without side reactions, using ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) with a nitroaromatic reagent 3, 5-dinitrosalicylic acid (3,5-DNSA). The tyrosine nitration supported two propositions, namely, the UV-induced. NO2 attack reaction mechanism by Long et al. and the C-NO2 homolysis as a thermal process by Wiik et al. and Furman et al. With the UV-MALDI of peptides, a residue-specific reaction was observed in glycine (Gly) residue, i.e., an oxidation of the alpha-carbon of Gly due to attack of hydroxyl radical (.OH).
Collapse
|
4
|
Immuno-Affinity Study of Oxidative Tyrosine Containing Peptides. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Li J, Zhan X. Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140584. [PMID: 33321259 DOI: 10.1016/j.bbapap.2020.140584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Pituitary adenoma (PA) is a common intracranial neoplasm, which affects the hypothalamus-pituitary-target organ axis systems, and is hazardous to human health. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, nitration, and sumoylation, are vitally important in the PA pathogenesis. The large-scale analysis of PTMs could provide a global view of molecular mechanisms for PA. Proteoforms, which are used to define various protein structural and functional forms originated from the same gene, are the future direction of proteomics research. The global studies of different proteoforms and PTMs of hypophyseal hormones such as growth hormone (GH) and prolactin (PRL) and the proportion change of different GH proteoforms or PRL proteoforms in human pituitary tissue could provide new insights into the clinical value of pituitary hormones in PAs. Multiple quantitative proteomics methods, including mass spectrometry (MS)-based label-free and stable isotope-labeled strategies in combination with different PTM-peptide enrichment methods such as TiO2 enrichment of tryptic phosphopeptides and antibody enrichment of other PTM-peptides increase the feasibility for researchers to study PA proteomes. This article reviews the research status of PTMs and proteoforms in PAs, including the enrichment method, technical limitation, quantitative proteomics strategies, and the future perspectives, to achieve the goals of in-depth understanding its molecular pathogenesis, and discovering effective biomarkers and clinical therapeutic targets for predictive, preventive, and personalized treatment of PA patients.
Collapse
Affiliation(s)
- Jiajia Li
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China
| | - Xianquan Zhan
- University Creative Research Initiatives Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117, P. R. China; Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 P. R. China; State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
6
|
Dhar SK, Bakthavatchalu V, Dhar B, Chen J, Tadahide I, Zhu H, Gao T, St Clair DK. DNA polymerase gamma (Polγ) deficiency triggers a selective mTORC2 prosurvival autophagy response via mitochondria-mediated ROS signaling. Oncogene 2018; 37:6225-6242. [PMID: 30038268 PMCID: PMC6265263 DOI: 10.1038/s41388-018-0404-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 11/24/2022]
Abstract
Autophagy is a highly regulated evolutionarily conserved metabolic process induced by stress and energy deprivation. Here, we show that DNA polymerase gamma (Polγ) deficiency activates a selective prosurvival autophagic response via mitochondria-mediated reactive oxygen species (ROS) signaling and the mammalian target of rapamycin complex 2 (mTORC2) activities. In keratinocytes, Polγ deficiency causes metabolic adaptation that triggers cytosolic sensing of energy demand for survival. Knockdown of Polγ causes mitochondrial stress, decreases mitochondrial energy production, increases glycolysis, increases the expression of autophagy-associated genes, and enhances AKT phosphorylation and cell proliferation. Deficiency of Polγ preferentially activates mTORC2 formation to increase autophagy and cell proliferation, and knocking down Rictor abrogates these responses. Overexpression of Rictor, but not Raptor, reactivates autophagy in Polγ-deficient cells. Importantly, inhibition of ROS by a mitochondria-selective ROS scavenger abolishes autophagy and cell proliferation. These results identify Rictor as a critical link between mitochondrial stress, ROS, and autophagy. They represent a major shift in our understanding of the prosurvival role of the mTOR complexes and highlight mitochondria-mediated ROS as a prosurvival autophagy regulator during cancer development.
Collapse
Affiliation(s)
- Sanjit K Dhar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bithika Dhar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Izumi Tadahide
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
7
|
Determination of 3-nitrotyrosine in food protein suspensions. Talanta 2017; 171:81-89. [DOI: 10.1016/j.talanta.2017.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
|
8
|
Batthyány C, Bartesaghi S, Mastrogiovanni M, Lima A, Demicheli V, Radi R. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects. Antioxid Redox Signal 2017; 26:313-328. [PMID: 27324931 PMCID: PMC5326983 DOI: 10.1089/ars.2016.6787] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE "Nitroproteomic" is under active development, as 3-nitrotyrosine in proteins constitutes a footprint left by the reactions of nitric oxide-derived oxidants that are usually associated to oxidative stress conditions. Moreover, protein tyrosine nitration can cause structural and functional changes, which may be of pathophysiological relevance for human disease conditions. Biological protein tyrosine nitration is a free radical process involving the intermediacy of tyrosyl radicals; in spite of being a nonenzymatic process, nitration is selectively directed toward a limited subset of tyrosine residues. Precise identification and quantitation of 3-nitrotyrosine in proteins has represented a "tour de force" for researchers. Recent Advances: A small number of proteins are preferential targets of nitration (usually less than 100 proteins per proteome), contrasting with the large number of proteins modified by other post-translational modifications such as phosphorylation, acetylation, and, notably, S-nitrosation. Proteomic approaches have revealed key features of tyrosine nitration both in vivo and in vitro, including selectivity, site specificity, and effects in protein structure and function. CRITICAL ISSUES Identification of 3-nitrotyrosine-containing proteins and mapping nitrated residues is challenging, due to low abundance of this oxidative modification in biological samples and its unfriendly behavior in mass spectrometry (MS)-based technologies, that is, MALDI, electrospray ionization, and collision-induced dissociation. FUTURE DIRECTIONS The use of (i) classical two-dimensional electrophoresis with immunochemical detection of nitrated proteins followed by protein ID by regular MS/MS in combination with (ii) immuno-enrichment of tyrosine-nitrated peptides and (iii) identification of nitrated peptides by a MIDAS™ experiment is arising as a potent methodology to unambiguously map and quantitate tyrosine-nitrated proteins in vivo. Antioxid. Redox Signal. 26, 313-328.
Collapse
Affiliation(s)
- Carlos Batthyány
- 1 Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo , Montevideo, Uruguay .,2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- 3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay .,4 Departamento de Educación Médica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Analía Lima
- 1 Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Verónica Demicheli
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- 2 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,3 Facultad de Medicina, Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Wang Q, Wang K, Ye M. Strategies for large-scale analysis of non-histone protein methylation by LC-MS/MS. Analyst 2017; 142:3536-3548. [DOI: 10.1039/c7an00954b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein methylation is an important post-translational modification (PTM) that plays crucial roles in the regulation of diverse biological processes.
Collapse
Affiliation(s)
- Qi Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry
- National Chromatographic R&A Center
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
| |
Collapse
|
10
|
Nitration of MOG diminishes its encephalitogenicity depending on MHC haplotype. J Neuroimmunol 2016; 303:1-12. [PMID: 28011088 DOI: 10.1016/j.jneuroim.2016.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Post-translational modifications of autoantigens are hypothesized to affect their immunogenicity. We here report that nitration of tyrosine 40 in Myelin Oligodendrocyte Glycoprotein (MOG) abrogates its encephalitogenicity both at protein and peptide levels in the experimental autoimmune encephalomyelitis (EAE) model in H2b C57BL/6 mice. Furthermore, nitrated MOG displays inferior antigen-specific proliferation of 2D2 splenocytes in vitro. Conversely, H2q DBA1 mice remain fully susceptible to EAE induction using nitrated MOG as the dominant epitope of H2q mice is unaltered. Molecular modeling analysis of the MOG35-55/H2-IAb complex and bioinformatics peptide binding predictions indicate that the lack of T cell reactivity towards nitrated MOG can be attributed to the inability of murine H2-IAb to efficiently present the altered peptide ligand of MOG35-55 because the nitrated tyrosine 40 cannot be accommodated in the p1 anchor pocket. In conclusion we demonstrate nitration as a relevant determinant affecting T cell recognition of carrier antigen depending on MHC haplotype. Our data have implications for understanding the role of post-translationally modified antigen in autoimmunity.
Collapse
|
11
|
Peng F, Li J, Guo T, Yang H, Li M, Sang S, Li X, Desiderio DM, Zhan X. Nitroproteins in Human Astrocytomas Discovered by Gel Electrophoresis and Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2062-76. [PMID: 26450359 DOI: 10.1007/s13361-015-1270-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 09/01/2015] [Indexed: 05/17/2023]
Abstract
Protein tyrosine nitration is involved in the pathogenesis of highly fatal astrocytomas, a type of brain cancer. To understand the molecular mechanisms of astrocytomas and to discover new biomarkers/therapeutic targets, we sought to identify nitroproteins in human astrocytoma tissue. Anti-nitrotyrosine immunoreaction-positive proteins from a high-grade astrocytoma tissue were detected with two-dimensional gel electrophoresis (2DGE)-based nitrotyrosine immunoblots, and identified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Fifty-seven nitrotyrosine immunopositive protein spots were detected. A total of 870 proteins (nitrated and non-nitrated) in nitrotyrosine-immunopositive 2D gel spots were identified, and 18 nitroproteins and their 20 nitrotyrosine sites were identified with MS/MS analysis. These nitroproteins participate in multiple processes, including drug-resistance, signal transduction, cytoskeleton, transcription and translation, cell proliferation and apoptosis, immune response, phenotypic dedifferentiation, cell migration, and metastasis. Among those nitroproteins that might play a role in astrocytomas was nitro-sorcin, which is involved in drug resistance and metastasis and might play a role in the spread and treatment of an astrocytoma. Semiquantitative immune-based measurements of different sorcin expressions were found among different grades of astrocytomas relative to controls, and a semiquantitative increased nitration level in high-grade astrocytoma relative to control. Nitro-β-tubulin functions in cytoskeleton and cell migration. Semiquantitative immunoreactivity of β-tubulin showed increased expression among different grades of astrocytomas relative to controls and semiquantitatively increased nitration level in high-grade astrocytoma relative to control. Each nitroprotein was rationalized and related to the corresponding functional system to provide new insights into tyrosine nitration and its potential role in the pathogenesis of astrocytoma formation. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Fang Peng
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Jianglin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, 410018, People's Republic of China
| | - Tianyao Guo
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Haiyan Yang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Department of Lung Cancer and Gastroenterology, Hunan Cancer Hospital, Changsha, Hunan, 410013, People's Republic of China
| | - Maoyu Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Shushan Sang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China.
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Hunan, 410008, People's Republic of China.
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
12
|
Chicooree N, Unwin RD, Griffiths JR. The application of targeted mass spectrometry-based strategies to the detection and localization of post-translational modifications. MASS SPECTROMETRY REVIEWS 2015; 34:595-626. [PMID: 24737647 DOI: 10.1002/mas.21421] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
This review describes some of the more interesting and imaginative ways in which mass spectrometry has been utilized to study a number of important post-translational modifications over the past two decades; from circa 1990 to 2013. A diverse range of modifications is covered, including citrullination, sulfation, hydroxylation and sumoylation. A summary of the biological role of each modification described, along with some brief mechanistic detail, is also included. Emphasis has been placed on strategies specifically aimed at detecting target modifications, as opposed to more serendipitous modification discovery approaches, which rely upon straightforward product ion scanning methods. The authors have intentionally excluded from this review both phosphorylation and glycosylation since these major modifications have been extensively reviewed elsewhere.
Collapse
Affiliation(s)
- Navin Chicooree
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
- School of Chemistry, University of Manchester, Brunswick Street, Manchester, M13 9SU, UK
| | - Richard D Unwin
- Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, UK
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - John R Griffiths
- CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
13
|
Martins D, Bakas I, McIntosh K, English AM. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein. Free Radic Biol Med 2015; 85:138-47. [PMID: 25881547 DOI: 10.1016/j.freeradbiomed.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/30/2022]
Abstract
Peroxynitrite [ONOO(H)] is an oxidant associated with deleterious effects in cells. Because it is an inorganic peroxide that reacts rapidly with peroxidases, we speculated that cells may respond to ONOO(H) and H2O2 challenge in a similar manner. We exposed yeast cells to SIN-1, a well-characterized ONOO(H) generator, and observed stimulation of catalase and peroxiredoxin (Prx) activities. Previously, we reported that H2O2 challenge increases these activities in wild-type cells and in cells producing the hyperactive mutant H2O2 sensor Ccp1(W191F) but not in Ccp1-knockout cells (ccp1Δ). We find here that the response of ccp1Δ and ccp1(W191F) cells to SIN-1 mirrors that to H2O2, identifying Ccp1 as a sensor of both peroxides. SIN-1 simultaneously releases (•)NO and O2(•-), which react to form ONOO(H), but exposure of the three strains separately to an (•)NO donor (spermine-NONOate) or an O2(•-) generator (paraquat) mainly depresses catalase or Prx activity, whereas co-challenge with the NONOate and paraquat stimulates these activities. Because Ccp1 appears to sense ONOO(H) in cells, we examined its reaction with ONOO(H) in vitro and found that peroxynitrous acid (ONOOH) rapidly (k2>10(6)M(-1)s(-1)) oxidizes purified Ccp1 to an intermediate with spectral and ferrocytochrome-oxidizing properties indistinguishable from those of its well-characterized compound I formed with H2O2. Importantly, the nitrite released from ONOOH is not oxidized to (•)NO2 by Ccp1(׳)s compound I, unlike peroxidases involved in immune defense. Overall, our results reveal that yeast cells mount a common antioxidant response to ONOO(H) and H2O2, with Ccp1 playing a pivotal role as an inorganic peroxide sensor.
Collapse
Affiliation(s)
- Dorival Martins
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6; PROTEO, the FRQ-NT Network for Research on Protein Function, Structure, and Engineering, Québec, QC, Canada
| | - Iolie Bakas
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6
| | - Kelly McIntosh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6
| | - Ann M English
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada H4B 1R6; PROTEO, the FRQ-NT Network for Research on Protein Function, Structure, and Engineering, Québec, QC, Canada.
| |
Collapse
|
14
|
Zhan X, Wang X, Desiderio DM. Mass spectrometry analysis of nitrotyrosine-containing proteins. MASS SPECTROMETRY REVIEWS 2015; 34:423-448. [PMID: 24318073 DOI: 10.1002/mas.21413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Oxidative stress plays important roles in a wide range of diseases such as cancer, inflammatory disease, neurodegenerative disorders, etc. Tyrosine nitration in a protein is a chemically stable oxidative modification, and a marker of oxidative injuries. Mass spectrometry (MS) is a key technique to identify nitrotyrosine-containing proteins and nitrotyrosine sites in endogenous and synthetic nitroproteins and nitropeptides. However, in vivo nitrotyrosine-containing proteins occur with extreme low-abundance to severely challenge the use of MS to identify in vivo nitroproteins and nitrotyrosine sites. A preferential enrichment of nitroproteins and/or nitropeptides is necessary before MS analysis. Current enrichment methods include immuno-affinity techniques, chemical derivation of the nitro group plus target isolations, followed with tandem mass spectrometry analysis. This article reviews the MS techniques and pertinent before-MS enrichment techniques for the identification of nitrotyrosine-containing proteins. This article reviews future trends in the field of nitroproteomics, including quantitative nitroproteomics, systems biological networks of nitroproteins, and structural biology study of tyrosine nitration to completely clarify the biological functions of tyrosine nitration.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Xiaowei Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P.R. China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis, Tennessee, 38163
| |
Collapse
|
15
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
16
|
Houée-Lévin C, Bobrowski K, Horakova L, Karademir B, Schöneich C, Davies MJ, Spickett CM. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radic Res 2015; 49:347-73. [DOI: 10.3109/10715762.2015.1007968] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Yeo WS, Kim YJ, Kabir MH, Kang JW, Ahsan-Ul-Bari M, Kim KP. Mass spectrometric analysis of protein tyrosine nitration in aging and neurodegenerative diseases. MASS SPECTROMETRY REVIEWS 2015; 34:166-183. [PMID: 24889964 DOI: 10.1002/mas.21429] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This review highlights the significance of protein tyrosine nitration (PTN) in signal transduction pathways, the progress achieved in analytical methods, and the implication of nitration in the cellular pathophysiology of aging and age-related neurodegenerative diseases. Although mass spectrometry of nitrated peptides has become a powerful tool for the characterization of nitrated peptides, the low stoichiometry of this modification clearly necessitates the use of affinity chromatography to enrich modified peptides. Analysis of nitropeptides involves identification of endogenous, intact modification as well as chemical conversion of the nitro group to a chemically reactive amine group and further modifications that enable affinity capture and enhance detectability by altering molecular properties. In this review, we focus on the recent progress in chemical derivatization of nitropeptides for enrichment and mass analysis, and for detection and quantification using various analytical tools. PTN participates in physiological processes, such as aging and neurodegenerative diseases. Accumulation of 3-nitrotyrosine has been found to occur during the aging process; this was identified through mass spectrometry. Further, there are several studies implicating the presence of nitrated tyrosine in age-related diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
19
|
Seeley KW, Fertig AR, Dufresne CP, Pinho JPC, Stevens SM. Evaluation of a method for nitrotyrosine site identification and relative quantitation using a stable isotope-labeled nitrated spike-in standard and high resolution fourier transform MS and MS/MS analysis. Int J Mol Sci 2014; 15:6265-85. [PMID: 24736779 PMCID: PMC4013627 DOI: 10.3390/ijms15046265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/26/2022] Open
Abstract
The overproduction of reactive oxygen and nitrogen species (ROS and RNS) can have deleterious effects in the cell, including structural and possible activity-altering modifications to proteins. Peroxynitrite is one such RNS that can result in a specific protein modification, nitration of tyrosine residues to form nitrotyrosine, and to date, the identification of nitrotyrosine sites in proteins continues to be a major analytical challenge. We have developed a method by which 15N-labeled nitrotyrosine groups are generated on peptide or protein standards using stable isotope-labeled peroxynitrite (O15NOO-), and the resulting standard is mixed with representative samples in which nitrotyrosine formation is to be measured by mass spectrometry (MS). Nitropeptide MS/MS spectra are filtered using high mass accuracy Fourier transform MS (FTMS) detection of the nitrotyrosine immonium ion. Given that the nitropeptide pair is co-isolated for MS/MS fragmentation, the nitrotyrosine immonium ions (at m/z=181 or 182) can be used for relative quantitation with negligible isotopic interference at a mass resolution of greater than 50,000 (FWHM, full width at half-maximum). Furthermore, the standard potentially allows for the increased signal of nitrotyrosine-containing peptides, thus facilitating selection for MS/MS in a data-dependent mode of acquisition. We have evaluated the methodology in terms of nitrotyrosine site identification and relative quantitation using nitrated peptide and protein standards.
Collapse
Affiliation(s)
- Kent W Seeley
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| | - Alison R Fertig
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| | - Craig P Dufresne
- Training Institute, Thermo Fisher Scientific, 1400 Northpoint Parkway, Ste 10., West Palm Beach, FL 33407, USA.
| | - Joao P C Pinho
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620, USA.
| |
Collapse
|
20
|
Arena S, Salzano AM, Renzone G, D'Ambrosio C, Scaloni A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. MASS SPECTROMETRY REVIEWS 2014; 33:49-77. [PMID: 24114996 DOI: 10.1002/mas.21378] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/09/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
The Maillard reaction includes a complex network of processes affecting food and biopharmaceutical products; it also occurs in living organisms and has been strictly related to cell aging, to the pathogenesis of several (chronic) diseases, such as diabetes, uremia, cataract, liver cirrhosis and various neurodegenerative pathologies, as well as to peritoneal dialysis treatment. Dozens of compounds are involved in this process, among which a number of protein-adducted derivatives that have been simplistically defined as early, intermediate and advanced glycation end-products. In the last decade, various bottom-up proteomic approaches have been successfully used for the identification of glycation/glycoxidation protein targets as well as for the characterization of the corresponding adducts, including assignment of the modified amino acids. This article provides an updated overview of the mass spectrometry-based procedures developed to this purpose, emphasizing their partial limits with respect to current proteomic approaches for the analysis of other post-translational modifications. These limitations are mainly related to the concomitant sheer diversity, chemical complexity, and variable abundance of the various derivatives to be characterized. Some challenges to scientists are finally proposed for future proteomic investigations to solve main drawbacks in this research field.
Collapse
Affiliation(s)
- Simona Arena
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | | | | | | | | |
Collapse
|
21
|
Abstract
SIGNIFICANCE The conversion of protein-bound Tyr residues to 3-nitrotyrosine (3NY) can occur during nitrative stress and has been correlated to aging and many disease states. Proteomic analysis of this post-translational modification, using mass spectrometry-based techniques, is crucial for understanding its potential role in pathological and physiological processes. RECENT ADVANCES To overcome some of the disadvantages inherent to well-established nitroproteomic methods using anti-3NY antibodies and gel-based separations, methods involving multidimensional chromatography, precursor ion scanning, and/or chemical derivatization have emerged for both identification and quantitation of protein nitration sites. A few of these methods have successfully detected endogenous 3NY modifications from biological samples. CRITICAL ISSUES While model systems often show promising results, identification of endogenous 3NY modifications remains largely elusive. The frequently low abundance of nitrated proteins in vivo, even under inflammatory conditions, is especially challenging, and sample loss due to derivatization and cleaning may become significant. FUTURE DIRECTIONS Continued efforts to avoid interference from non-nitrated peptides without sacrificing recovery of nitrated peptides are needed. Quantitative methods are emerging and are crucial for identifying endogenous modifications that may have significant biological impacts.
Collapse
Affiliation(s)
- Maria B Feeney
- Department of Pharmaceutical Chemistry, The University of Kansas , Lawrence, Kansas
| | | |
Collapse
|
22
|
Asakawa D. 5-nitrosalicylic Acid as a novel matrix for in-source decay in matrix-assisted laser desorption/ionization mass spectrometry. Mass Spectrom (Tokyo) 2013; 2:A0019. [PMID: 24860709 DOI: 10.5702/massspectrometry.a0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/18/2013] [Indexed: 11/23/2022] Open
Abstract
The matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) of peptides and glycans was studied using an oxidizing chemical, 5-nitrosalicylic acid (5-NSA) as the matrix. The use of 5-NSA for the MALDI-ISD of peptides and glycans promoted fragmentation pathways involving "hydrogen-deficient" radical precursors. Hydrogen abstraction from peptides resulted in the production of a "hydrogen-deficient" peptide radical that contained a radical site on the amide nitrogen in the peptide backbone with subsequent radical-induced cleavage at the Cα-C bonds. Cleavage at the Cα-C bond leads to the production of an a (•)/x fragment pair and the radical a (•) ions then undergo further hydrogen abstraction to form a ions after Cα-C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα-C bond cleavage does not occur at this site. Alternatively, the specific cleavage of CO-N bonds leads to a b (•)/y fragment pair at Xxx-Pro which occurs via hydrogen abstraction from the Cα-H in the Pro residue. In contrast, "hydrogen-deficient" glycan radicals were generated by hydrogen abstraction from hydroxyl groups in glycans. Both glycosidic and cross-ring cleavages occurred as the result of the degradation of "hydrogen-deficient" glycan radicals. Cross-ring cleavage ions are potentially useful in linkage analysis, one of the most critical steps in the characterization of glycans. Moreover, isobaric glycans could be distinguished by structure specific ISD ions, and the molar ratio of glycan isomers in a mixture can be estimated from their fragment ions abundance ratios. MALDI-ISD with 5-NSA could be a useful method for the sequencing of peptides including the location of post-translational modifications, identification and semi-quantitative analysis of mixtures of glycan isomers.
Collapse
Affiliation(s)
- Daiki Asakawa
- Department of Chemistry, Mass Spectrometry Laboratory, University of Liège
| |
Collapse
|
23
|
Spickett CM, Reis A, Pitt AR. Use of narrow mass-window, high-resolution extracted product ion chromatograms for the sensitive and selective identification of protein modifications. Anal Chem 2013; 85:4621-7. [PMID: 23534669 DOI: 10.1021/ac400131f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL.
Collapse
Affiliation(s)
- Corinne M Spickett
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | | | | |
Collapse
|
24
|
Tveen-Jensen K, Reis A, Mouls L, Pitt AR, Spickett CM. Reporter ion-based mass spectrometry approaches for the detection of non-enzymatic protein modifications in biological samples. J Proteomics 2013; 92:71-9. [PMID: 23603107 DOI: 10.1016/j.jprot.2013.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 12/11/2022]
Abstract
UNLABELLED Development of mass spectrometry techniques to detect protein oxidation, which contributes to signalling and inflammation, is important. Label-free approaches have the advantage of reduced sample manipulation, but are challenging in complex samples owing to undirected analysis of large data sets using statistical search engines. To identify oxidised proteins in biological samples, we previously developed a targeted approach involving precursor ion scanning for diagnostic MS(3) ions from oxidised residues. Here, we tested this approach for other oxidations, and compared it with an alternative approach involving the use of extracted ion chromatograms (XICs) generated from high-resolution MSMS data using very narrow mass windows. This accurate mass XIC data methodology was effective at identifying nitrotyrosine, chlorotyrosine, and oxidative deamination of lysine, and for tyrosine oxidations highlighted more modified peptide species than precursor ion scanning or statistical database searches. Although some false positive peaks still occurred in the XICs, these could be identified by comparative assessment of the peak intensities. The method has the advantage that a number of different modifications can be analysed simultaneously in a single LC-MSMS run.This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine. BIOLOGICAL SIGNIFICANCE The use of accurate mass extracted product ion chromatograms to detect oxidised peptides could improve the identification of oxidatively damaged proteins in inflammatory conditions.
Collapse
|
25
|
Zhan X, Wang X, Desiderio DM. Pituitary adenoma nitroproteomics: current status and perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:580710. [PMID: 23533694 PMCID: PMC3606787 DOI: 10.1155/2013/580710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
Oxidative stress is extensively associated with tumorigenesis. A series of studies on stable tyrosine nitration as a marker of oxidative damage were performed in human pituitary and adenoma. This paper reviews published research on the mass spectrometry characteristics of nitropeptides and nitroproteomics of pituitary controls and adenomas. The methodology used for nitroproteomics, the current status of human pituitary nitroproteomics studies, and the future perspectives are reviewed. Enrichment of those low-abundance endogenous nitroproteins from human tissues or body fluid samples is the first important step for nitroproteomics studies. Mass spectrometry is the essential approach to determine the amino acid sequence and locate the nitrotyrosine sites. Bioinformatics analyses, including protein domain and motif analyses, are needed to locate the nitrotyrosine site within the corresponding protein domains/motifs. Systems biology techniques, including pathway analysis, are necessary to discover signaling pathway networks involving nitroproteins from the systematically global point of view. Future quantitative nitroproteomics will discover pituitary adenoma-specific nitroprotein(s). Structural biology techniques such as X-ray crystallography analysis will solidly clarify the effects of tyrosine nitration on structure and functions of a protein. Those studies will eventually address the mechanisms and biological functions of tyrosine nitration in pituitary tumorigenesis and will discover nitroprotein biomarkers for pituitary adenomas and targets for drug design for pituitary adenoma therapy.
Collapse
Affiliation(s)
- Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China.
| | | | | |
Collapse
|
26
|
Bachi A, Dalle-Donne I, Scaloni A. Redox Proteomics: Chemical Principles, Methodological Approaches and Biological/Biomedical Promises. Chem Rev 2012. [DOI: 10.1021/cr300073p] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Angela Bachi
- Biological Mass Spectrometry Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| |
Collapse
|
27
|
Robinson RAS, Evans AR. Enhanced Sample Multiplexing for Nitrotyrosine-Modified Proteins Using Combined Precursor Isotopic Labeling and Isobaric Tagging. Anal Chem 2012; 84:4677-86. [DOI: 10.1021/ac202000v] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Redox proteomics and drug development. J Proteomics 2011; 74:2575-95. [DOI: 10.1016/j.jprot.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/22/2010] [Accepted: 01/09/2011] [Indexed: 01/06/2023]
|
29
|
Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, Walter J, Pape HC, König S, Roeber S, Jessen F, Klockgether T, Korte M, Heneka MT. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron 2011; 71:833-44. [PMID: 21903077 DOI: 10.1016/j.neuron.2011.07.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2011] [Indexed: 12/21/2022]
Abstract
Part of the inflammatory response in Alzheimer's disease (AD) is the upregulation of the inducible nitric oxide synthase (NOS2) resulting in increased NO production. NO contributes to cell signaling by inducing posttranslational protein modifications. Under pathological conditions there is a shift from the signal transducing actions to the formation of protein tyrosine nitration by secondary products like peroxynitrite and nitrogen dioxide. We identified amyloid β (Aβ) as an NO target, which is nitrated at tyrosine 10 (3NTyr(10)-Aβ). Nitration of Aβ accelerated its aggregation and was detected in the core of Aβ plaques of APP/PS1 mice and AD brains. NOS2 deficiency or oral treatment with the NOS2 inhibitor L-NIL strongly decreased 3NTyr(10)-Aβ, overall Aβ deposition and cognitive dysfunction in APP/PS1 mice. Further, injection of 3NTyr(10)-Aβ into the brain of young APP/PS1 mice induced β-amyloidosis. This suggests a disease modifying role for NOS2 in AD and therefore represents a potential therapeutic target.
Collapse
Affiliation(s)
- Markus P Kummer
- Clinical Neuroscience Unit, Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Asakawa D, Takayama M. Cα-C bond cleavage of the peptide backbone in MALDI in-source decay using salicylic acid derivative matrices. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1224-1233. [PMID: 21953105 DOI: 10.1007/s13361-011-0131-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/09/2011] [Accepted: 03/15/2011] [Indexed: 05/31/2023]
Abstract
The use of 5-formylsalicylic acid (5-FSA) and 5-nitrosalicylic acid (5-NSA) as novel matrices for in-source decay (ISD) of peptides in matrix-assisted laser desorption/ionization (MALDI) is described. The use of 5-FSA and 5-NSA generated a- and x-series ions accompanied by oxidized peptides [M - 2 H + H](+). The preferential formation of a- and x-series ions was found to be dependent on the hydrogen-accepting ability of matrix. The hydrogen-accepting ability estimated from the ratio of signal intensity of oxidized product [M - 2 H + H](+) to that of non-oxidized protonated molecule [M + H](+) of peptide was of the order 5-NSA > 5-FSA > 5-aminosalicylic acid (5-ASA) ≒ 2,5-dihydroxyl benzoic acid (2,5-DHB) ≒ 0. The results suggest that the hydrogen transfer reaction from peptide to 5-FSA and 5-NSA occurs during the MALDI-ISD processes. The hydrogen abstraction from peptides results in the formation of oxidized peptides containing a radical site on the amide nitrogen with subsequent radical-induced cleavage at the Cα-C bond, leading to the formation of a- and x-series ions. The most significant feature of MALDI-ISD with 5-FSA and 5-NSA is the specific cleavage of the Cα-C bond of the peptide backbone without degradation of side-chain and post-translational modifications (PTM). The matrix provides a useful complementary method to conventional MALDI-ISD for amino acid sequencing and site localization of PTMs in peptides.
Collapse
Affiliation(s)
- Daiki Asakawa
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | | |
Collapse
|
31
|
Protein nitrotryptophan: formation, significance and identification. J Proteomics 2011; 74:2300-12. [PMID: 21679780 DOI: 10.1016/j.jprot.2011.05.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 12/31/2022]
Abstract
Reactive nitrogen species are formed during a variety of disease states and have been shown to modify several amino acids on proteins. To date, the majority of research in this area has focused on the nitration of tyrosine residues to form 3-nitrotyrosine. However, emerging evidence suggests that another modification, nitration of tryptophan residues, to form nitrotryptophan (NO(2)-Trp), may also play a significant role in the biology of nitrosative stress. This review takes an in-depth look at NO(2)-Trp, presenting the current research about its formation, prevalence and biological significance, as well as the methods used to identify NO(2)-Trp-modified proteins. Although more research is needed to understand the full biological role of NO(2)-Trp, the data presented herein suggest a contribution to nitrosative stress-induced cell dysregulation and perhaps even in physiological cell processes.
Collapse
|
32
|
Larsen TR, Bache N, Gramsbergen JB, Roepstorff P. Identification of nitrotyrosine containing peptides using combined fractional diagonal chromatography (COFRADIC) and off-line nano-LC-MALDI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:989-996. [PMID: 21953040 DOI: 10.1007/s13361-011-0095-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 05/31/2023]
Abstract
Protein nitration take place on tyrosine residues under oxidative stress conditions and may influence a number of processes including enzyme activity, protein-protein interactions and phospho-tyrosine signalling pathways. Nitrated proteins have been identified in a number of diseases, however, the study of these proteins has been compromised by the lack of good methods for identifying nitrated proteins, their nitration sites and the level of nitration. Here, we present a method for identification of nitrated peptides that allows the site specific assignment of nitration, is easy to use and reproducible, and opens up for the possibility to quantify the level of nitration of specific peptides as function of different oxidative conditions, namely combined fractional diagonal chromatography (COFRADIC) in combination with off-line nano-LC-MALDI. We identify six nitrated peptides from in vitro nitrated bovine serum albumin and propose that automated COFRADIC using nano-LC and off-line MALDI-MS might be a possibility for identification of tyrosine nitrated proteins and the nitration sites in complex samples.
Collapse
Affiliation(s)
- Trine R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | | | | | | |
Collapse
|
33
|
Confident identification of 3-nitrotyrosine modifications in mass spectral data across multiple mass spectrometry platforms. J Proteomics 2011; 74:2510-21. [PMID: 21514405 DOI: 10.1016/j.jprot.2011.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 01/13/2023]
Abstract
3-nitrotyrosine (3NT) is an oxidative posttranslational modification associated with many diseases. Determining the specific sites of this modification remains a challenge due to the low stoichiometry of 3NT modifications in biological samples. Mass spectrometry-based proteomics is a powerful tool for identifying 3NT modifications, however several reports identifying 3NT sites were later demonstrated to be incorrect, highlighting that both the accuracy and efficiency of these workflows need improvement. To advance our understanding of the chromatographic and spectral properties of 3NT-containing peptides we have adapted a straightforward, reproducible procedure to generate a large set of 3NT peptides by chemical nitration of a defined, commercially available 48 protein mixture. Using two complementary LC-MS/MS platforms, a QTOF (QSTAR Elite) and dual pressure ion trap mass spectrometer (LTQ Velos), we detected over 200 validated 3NT-containing peptides with significant overlap in the peptides detected by both systems. We investigated the LC-MS/MS properties for each peptide manually using defined criteria and then assessed their utility to confirm that the peptide was 3NT modified. This broad set of validated 3NT-containing peptides can be utilized to optimize mass spectrometric instrumentation and data mining strategies or further develop 3NT peptide enrichment strategies for this biologically important, oxidative posttranslational modification.
Collapse
|
34
|
Shin YS, Moon JH, Kim MS. Selective screening of tyrosine-nitrated peptides in tryptic mixtures by in-source photodissociation at 355 nm in matrix-assisted laser desorption ionization. Anal Chem 2011; 83:1704-8. [PMID: 21309608 DOI: 10.1021/ac1028352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitration of tyrosine residues in proteins is an important post-translational modification related to various diseases such as Alzheimer's. In this work, efficient and selective photodissociation (PD) at 355 nm was observed for [M + H](+), [M + H - 16](+), and [M + H - 32](+) generated by matrix-assisted ultraviolet laser desorption ionization (UV-MALDI) of tyrosine-nitrated peptides (nitropeptides). Product ion spectra obtained by post-source PD at this wavelength contained useful information on the amino acid sequence. The spectra for nitropeptides obtained with 355 nm irradiation inside the ion source (MALDI/in-source PD) displayed characteristic triplet patterns due to PD of the above ions. For peptides displaying prominent signal in a MALDI mass map of a tryptic mixture, which are mostly those with arginine at the C-terminus, in-source PD allowed positive identification of their tyrosine-nitrated forms. Identification of such nitropeptides was possible at the 10 fmol level (in tryptic digest of 100 fmol BSA).
Collapse
Affiliation(s)
- Young Sik Shin
- Department of Chemistry, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
35
|
Cook SL, Jackson GP. Characterization of tyrosine nitration and cysteine nitrosylation modifications by metastable atom-activation dissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:221-232. [PMID: 21472582 DOI: 10.1007/s13361-010-0041-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/13/2010] [Accepted: 11/14/2010] [Indexed: 05/30/2023]
Abstract
The fragmentation behavior of nitrated and S-nitrosylated peptides were studied using collision induced dissociation (CID) and metastable atom-activated dissociation mass spectrometry (MAD-MS). Various charge states, such as 1+, 2+, 3+, 2-, of modified and unmodified peptides were exposed to a beam of high kinetic energy helium (He) metastable atoms resulting in extensive backbone fragmentation with significant retention of the post-translation modifications (PTMs). Whereas the high electron affinity of the nitrotyrosine moiety quenches radical chemistry and fragmentation in electron capture dissociation (ECD) and electron transfer dissociation (ETD), MAD does produce numerous backbone cleavages in the vicinity of the modification. Fragment ions of nitrosylated cysteine modifications typically exhibit more abundant neutral losses than nitrated tyrosine modifications because of the extremely labile nature of the nitrosylated cysteine residues. However, compared with CID, MAD produced between 66% and 86% more fragment ions, which preserved the labile -NO modification. MAD was also able to differentiate I/L residues in the modified peptides. MAD is able to induce radical ion chemistry even in the presence of strong radical traps and therefore offers unique advantages to ECD, ETD, and CID for determination of PTMs such as nitrated and S-nitrosylated peptides.
Collapse
Affiliation(s)
- Shannon L Cook
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|
36
|
Tyther R, McDonagh B, Sheehan D. Proteomics in investigation of protein nitration in kidney disease: technical challenges and perspectives from the spontaneously hypertensive rat. MASS SPECTROMETRY REVIEWS 2011; 30:121-141. [PMID: 21166007 DOI: 10.1002/mas.20270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Kidneys are the mammalian organs with widest range of oxidative status ranging from the well-perfused cortex to the relatively anoxic medulla. This organ is of key interest from the perspective of hypertension, an important contributor to human mortality, and there has been growing use of the spontaneously hypertensive rat (SHR) as a model to explore oxidative stress in hypertensive kidney. Nitrosative stress is often associated with oxidative stress and, like oxidative stress, can lead to covalent modification of protein side-chains. It is especially relevant to kidney because of high levels of both nitrite/nitrate and nitric oxide synthase in medulla. Because of their relatively low abundance and their well-known role in signal transduction, nitration of tyrosines to 3-nitrotyrosines (3NT) is of particular interest in this regard. This modification has the potential to contribute to changes in regulation, in protein activity and may provide a means of specific targeting of key proteins. Mass spectrometry (MS) offers a promising route to detecting this modification. This review surveys protein nitration in kidney disease and highlights opportunities for MS detection of nitrated residues in the SHR.
Collapse
Affiliation(s)
- Raymond Tyther
- Upstream Bioprocessing Group, National Institute for Bioprocessing Research and Training, NICB, Dublin City University, Dublin, Ireland
| | | | | |
Collapse
|
37
|
Analysis of nitrated proteins and tryptic peptides by HPLC-chip-MS/MS: site-specific quantification, nitration degree, and reactivity of tyrosine residues. Anal Bioanal Chem 2010; 399:459-71. [PMID: 21058019 DOI: 10.1007/s00216-010-4280-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 02/02/2023]
Abstract
The reaction products and pathways of protein nitration were studied with bovine serum albumin (BSA) and ovalbumin (OVA) nitrated by liquid tetranitromethane (TNM) or by gaseous nitrogen dioxide and ozone (NO(2)+O(3)). Native and nitrated proteins were enzymatically digested with trypsin, and the tryptic peptides were analyzed by high-performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) using a chip cube nano-flow system (Agilent). Upon nitration by TNM, up to ten of 17 tyrosine residues in BSA and up to five of ten tyrosine residues in OVA could be detected in nitrated form. Upon nitration by NO(2)+O(3), only three nitrated tyrosine residues were found in BSA. The nitration degrees of individual nitrotyrosine residues (ND(Y)) were determined by site-specific quantification and compared to the total protein nitration degrees (ND) determined by photometric detection of HPLC-DAD. The slopes of the observed linear correlations between ND(Y) and ND varied in the range of ~0.02-2.4 for BSA and ~0.2-1.6 for OVA. They provide information about the relative rates of nitration or reaction probabilities for different tyrosine residues. In BSA, the tyrosine residue Y(161) was by far most reactive against NO(2)+O(3) and one of the four most reactive positions with regard to nitration by TNM. In OVA, all except one tyrosine residue detected in nitrated form exhibited similar reactivities. The observed nitration patterns show how the site selectivity of protein nitration depends on the nitrating agent, reaction conditions, and molecular structure of the protein (primary, secondary, and tertiary).
Collapse
|
38
|
Roeser J, Bischoff R, Bruins AP, Permentier HP. Oxidative protein labeling in mass-spectrometry-based proteomics. Anal Bioanal Chem 2010; 397:3441-55. [PMID: 20155254 PMCID: PMC2911539 DOI: 10.1007/s00216-010-3471-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 01/07/2023]
Abstract
Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)-mass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade.
Collapse
Affiliation(s)
- Julien Roeser
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rainer Bischoff
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Andries P. Bruins
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hjalmar P. Permentier
- Analytical Biochemistry and Mass Spectrometry Core Facility, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
39
|
Lee JR, Lee SJ, Kim TW, Kim JK, Park HS, Kim DE, Kim KP, Yeo WS. Chemical approach for specific enrichment and mass analysis of nitrated peptides. Anal Chem 2010; 81:6620-6. [PMID: 19610626 DOI: 10.1021/ac9005099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The analysis and detection of 3-nitrotyrosine are biologically and clinically important because protein tyrosine nitration is known to be involved in a number of biological phenomena such as cellular signal transduction, pathogenesis of inflammatory responses, and age-related disorders. However, the main obstacles in the study are low abundance of nitrated species and lack of efficient enrichment methods. Here in, we suggest a new chemical approach to analyze nitrated peptides using mass spectrometry by incorporating specific tagging groups in the peptides through simple chemical transformations. Nitro groups on tyrosine side chains of nitrated peptides were subjected to reduction to give rise to amine which was further converted to metal-chelating motif. Mass analyses verified that Ni(2+)-NTA magnetic agarose beads selectively captured and isolated the modified peptides, i.e., nitrated peptides, by strong and specific metal chelating interactions. We further demonstrated the utility of our approach by detection of nitrated peptides in complex samples such as tryptic peptide mixtures of bovine serum albumin (BSA) and a HeLa cell lysate.
Collapse
Affiliation(s)
- Jung Rok Lee
- Institute of Biomedical Science and Technology, Konkuk University, Seoul 143-834, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino Acids 2010; 42:45-63. [DOI: 10.1007/s00726-010-0604-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 04/16/2010] [Indexed: 12/31/2022]
|
41
|
Aslan M. Functional consequences of actin nitration: in vitro and in disease states. Amino Acids 2010; 42:65-74. [PMID: 20480195 DOI: 10.1007/s00726-010-0613-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/27/2010] [Indexed: 11/29/2022]
Abstract
To link the phenomena of inflammatory-induced increases in protein nitrotyrosine (NO(2)Tyr) derivatives to protein dysfunction and consequent pathological conditions, the evaluation of discrete NO(2)Tyr modifications on specific proteins must be undertaken. Mass spectrometric (MS) proteomics-based strategies allow for the identification of all individual proteins that are nitrated by separating tissue homogenates using 2D gel electrophoresis, detecting the nitrated proteins using an anti-NO(2)Tyr antibody, and then identifying the peptides generated during an in-gel proteolytic digest using matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) MS. Actin, one of the most abundant proteins in eukaryotic cells, constitutes 5% or more of cell protein and serves with other cytoskeletal proteins as a critical target for nitration-induced functional impairment. Herein, examples of actin nitration detected under physiological conditions in various models of human disease or in clinically derived tissues are given and the impact that this post-translational protein modification can have on cell and organ function is discussed.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Biochemistry, Akdeniz University Medical School, 07070, Antalya, Turkey.
| |
Collapse
|
42
|
Protein oxidation: role in signalling and detection by mass spectrometry. Amino Acids 2010; 42:5-21. [PMID: 20401673 DOI: 10.1007/s00726-010-0585-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/26/2010] [Indexed: 01/10/2023]
Abstract
Proteins can undergo a wide variety of oxidative post-translational modifications (oxPTM); while reversible modifications are thought to be relevant in physiological processes, non-reversible oxPTM may contribute to pathological situations and disease. The oxidant is also important in determining the type of oxPTM, such as oxidation, chlorination or nitration. The best characterized oxPTMs involved in signalling modulation are partial oxidations of cysteine to disulfide, glutathionylated or sulfenic acid forms that can be reversed by thiol reductants. Proline hydroxylation in HIF signalling is also quite well characterized, and there is increasing evidence that specific oxidations of methionine and tyrosine may have some biological roles. For some proteins regulated by cysteine oxidation, the residues and molecular mechanism involved have been extensively studied and are well understood, such as the protein tyrosine phosphatase PTP1B and MAP3 kinase ASK1, as well as transcription factor complex Keap1-Nrf2. The advances in understanding of the role oxPTMs in signalling have been facilitated by advances in analytical technology, in particular tandem mass spectrometry techniques. Combinations of peptide sequencing by collisionally induced dissociation and precursor ion scanning or neutral loss to select for specific oxPTMs have proved very useful for identifying oxidatively modified proteins and mapping the sites of oxidation. The development of specific labelling and enrichment procedures for S-nitrosylation or disulfide formation has proved invaluable, and there is ongoing work to establish analogous methods for detection of nitrotyrosine and other modifications.
Collapse
|
43
|
Abonnenc M, Qiao L, Liu B, Girault HH. Electrochemical aspects of electrospray and laser desorption/ionization for mass spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2010; 3:231-54. [PMID: 20636041 DOI: 10.1146/annurev.anchem.111808.073740] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Soft-ionization methods, namely electrospray ionization and laser desorption/ionization, are widely used to transfer large molecules as intact gas-phase ions either from a solution or from a solid substrate. During both processes, in-source electrochemical and photoelectrochemical reactions occur. These electrode reactions, which take place at interfaces, play important roles in influencing the ionization products, but they have received little attention. We show that having good control over both types of electrochemical reactions can lead to new analytical applications. Examples include online tagging by grafting of mass tags and in-source photooxidation of peptides.
Collapse
Affiliation(s)
- Mélanie Abonnenc
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, Switzerland.
| | | | | | | |
Collapse
|
44
|
Tsumoto H, Taguchi R, Kohda K. Efficient Identification and Quantification of Peptides Containing Nitrotyrosine by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry after Derivatization. Chem Pharm Bull (Tokyo) 2010; 58:488-94. [DOI: 10.1248/cpb.58.488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroki Tsumoto
- Research Institute of Pharmaceutical Sciences, Musashino University
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo
| | - Kohfuku Kohda
- Research Institute of Pharmaceutical Sciences, Musashino University
| |
Collapse
|
45
|
Zhan X, Desiderio DM. MALDI-induced Fragmentation of Leucine enkephalin, Nitro-Tyr Leucine Enkaphalin, and d(5)-Phe-Nitro-Tyr Leucine Enkephalin. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2009; 287:77-86. [PMID: 20161518 PMCID: PMC2799299 DOI: 10.1016/j.ijms.2008.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The long-term objective of this study is to use MALDI MS and MS/MS to study the fragmentation pattern of in vitro nitrotyrosine-containing peptides in order to assist the interpretation of MS-identification of endogenous nitroproteins in human tissues and fluids. The short-term objective is to study synthetic leucine enkephalin, nitro-Tyr-leucine enkephalin, and d(5)-Phe-nitro-Tyr-leucine enkephalin with a vacuum matrix-assisted laser desorption/ionization linear ion-trap mass spectrometer (vMALDI-LTQ). The results demonstrated the UV laser-induced photochemical decomposition of the nitro group. Although photochemical decomposition decreased the ion intensity and complicated the MS spectrum, the recognition of that unique decomposition pattern unambiguously identified a nitrotyrosine. The a(4)- and b(4)-ions were the most-intense fragment ions found in the MS/MS spectra for those three synthetic peptides. Compared to the unmodified peptides, more collision energy optimized the fragmentation of the nitropeptide, increased the intensity of the a(4)-ion, and decreased the intensity of the b(4)-ion. Optimized laser fluence maximized the fragmentation of the nitropeptide. MS(3) analysis confirmed the MS(2)-derived amino acid sequence, but required much more sample. To detect a nitropeptide, the sensitivity of vMALDI-LTQ is 1 fmol for MS detection and 10 fmol for MS(2) detection; the S/N ratio was ca. 50:1 in those studies. Those data are important for an analysis of low-abundance endogenous nitroproteins, where preferential enrichment of nitroproteins and optimized mass spectrometry parameters are used.
Collapse
Affiliation(s)
- Xianquan Zhan
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory The University of Tennessee Health Science Center 847 Monroe Avenue, Room 117 Memphis, Tennessee 38163 USA
- Department of Neurology The University of Tennessee Health Science Center 847 Monroe Avenue, Room 117 Memphis, Tennessee 38163 USA
| | - Dominic M. Desiderio
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory The University of Tennessee Health Science Center 847 Monroe Avenue, Room 117 Memphis, Tennessee 38163 USA
- Department of Neurology The University of Tennessee Health Science Center 847 Monroe Avenue, Room 117 Memphis, Tennessee 38163 USA
- Department of Molecular Sciences The University of Tennessee Health Science Center 847 Monroe Avenue, Room 117 Memphis, Tennessee 38163 USA
- University of Tennessee Cancer Institute The University of Tennessee Health Science Center 847 Monroe Avenue, Room 117 Memphis, Tennessee 38163 USA
| |
Collapse
|
46
|
Abello N, Kerstjens HAM, Postma DS, Bischoff R. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 2009; 8:3222-38. [PMID: 19415921 DOI: 10.1021/pr900039c] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO2). In the present article, we review the main nitration reactions and elucidate why nitration is not a random chemical process. The particular physical and chemical properties of 3-nitrotyrosine (e.g., pKa, spectrophotometric properties, reduction to aminotyrosine) will be discussed, and the biological consequences of PTN (e.g., modification of enzymatic activity, sensitivity to proteolytic degradation, impact on protein phosphorylation, immunogenicity and implication in disease) will be reviewed. Recent data indicate the possibility of an in vivo denitration process, which will be discussed with respect to the different reaction mechanisms that have been proposed. The second part of this review article focuses on analytical methods to determine this post-translational modification in complex proteomes, which remains a major challenge.
Collapse
Affiliation(s)
- Nicolas Abello
- Department of Analytical Biochemistry, Center for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
47
|
Ghesquière B, Colaert N, Helsens K, Dejager L, Vanhaute C, Verleysen K, Kas K, Timmerman E, Goethals M, Libert C, Vandekerckhove J, Gevaert K. In vitro and in vivo protein-bound tyrosine nitration characterized by diagonal chromatography. Mol Cell Proteomics 2009; 8:2642-52. [PMID: 19741252 DOI: 10.1074/mcp.m900259-mcp200] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A new proteomics technique for analyzing 3-nitrotyrosine-containing peptides is presented here. This technique is based on the combined fractional diagonal chromatography peptide isolation procedures by which specific classes of peptides are isolated following a series of identical reverse-phase HPLC separation steps. Here dithionite is used to reduce 3-nitrotyrosine to 3-aminotyrosine peptides, which thereby become more hydrophilic. Our combined fractional diagonal chromatography technique was first applied to characterize tyrosine nitration in tetranitromethane-modified BSA and further led to a high quality list of 335 tyrosine nitration sites in 267 proteins in a peroxynitrite-treated lysate of human Jurkat cells. We then analyzed a serum sample of a C57BL6/J mouse in which septic shock was induced by intravenous Salmonella infection and identified six in vivo nitration events in four serum proteins, thereby illustrating that our technique is sufficiently sensitive to identify rare in vivo tyrosine nitration sites in a very complex background.
Collapse
Affiliation(s)
- Bart Ghesquière
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Matsuo EI, Watanabe M, Kuyama H, Nishimura O. A new strategy for protein biomarker discovery utilizing 2-nitrobenzenesulfenyl (NBS) reagent and its applications to clinical samples. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2607-14. [DOI: 10.1016/j.jchromb.2009.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/06/2009] [Accepted: 05/24/2009] [Indexed: 12/11/2022]
|
49
|
Deford JH, Nuss JE, Amaning J, English RD, Tjernlund D, Papaconstantinou J. High-throughput liquid-liquid fractionation of multiple protein post-translational modifications. J Proteome Res 2009; 8:907-16. [PMID: 19099502 DOI: 10.1021/pr800519g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post-translational protein modifications have contributed significantly to the identification of macromolecular biomarkers of biological processes. We have modified a two-dimensional HPLC system (Beckman Coulter PF2D ProteomeLab) to create proteome maps of post-translational protein modifications. This system resolves complex protein mixtures by anion exchange chromatofocusing in the first dimension and hydrophobicity (reverse phase chromatography) in the second dimension. The simultaneous identification of multiple protein modifications, accomplished by incorporating a photo diode array (PDA) detector into the PF2D system, facilitates the simultaneous production of three-dimensional proteome maps and visualization of both unmodified and post-translationally modified (PTM) proteins at their signature wavelengths within the proteome. We describe procedures for the simultaneous resolution of proteome maps, the identification of proteins modified by nitration, carbonylation, and phosphorylation, and proteins with unique spectra such as the heme containing proteins.
Collapse
Affiliation(s)
- James H Deford
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0643, USA
| | | | | | | | | | | |
Collapse
|
50
|
Asakawa D, Hiraoka K. Study on the redox reactions for organic dyes and S-nitrosylated peptide in electrospray droplet impact. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:461-465. [PMID: 19061243 DOI: 10.1002/jms.1521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reduction of analytes in ionization processes often obscures the determination of molecular structure. The reduction of analytes is found to take place in various desorption/ionization methods such as fast atom bombardment (FAB), secondary ion mass spectrometry (SIMS), matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon (DIOS). To examine the extent of the reduction reactions taking place in electrospray droplet impact (EDI) processes, reduction-sensitive dyes and S-nitrosylated peptide were analyzed by EDI. No reduction was observed for methylene blue. While methyl red has a lower reduction potential than methylene blue, the reduction product ions were detected. For S-nitrosylated peptide, protonated molecule ion [M + H](+) and NO-eliminated molecular ion [M - NO + H](+*) were observed but reduction reactions are largely suppressed in EDI compared with that in MALDI. As such, the analytes examined suffer from little reduction reactions in EDI.
Collapse
Affiliation(s)
- Daiki Asakawa
- Clean Energy Research Center, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | | |
Collapse
|