1
|
Ghaste M, Mistrik R, Shulaev V. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics. Int J Mol Sci 2016; 17:ijms17060816. [PMID: 27231903 PMCID: PMC4926350 DOI: 10.3390/ijms17060816] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 02/02/2023] Open
Abstract
Metabolomics, along with other "omics" approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data.
Collapse
Affiliation(s)
- Manoj Ghaste
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| | | | - Vladimir Shulaev
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
2
|
Narváez-Rivas M, Zhang Q. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr A 2016; 1440:123-134. [PMID: 26928874 DOI: 10.1016/j.chroma.2016.02.054] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 11/30/2022]
Abstract
The goal of untargeted lipidomics is to have high throughput, yet comprehensive and unambiguous identification and quantification of lipids. Novel stationary phases in LC separation and new mass spectrometric instruments capable of high mass resolving power and faster scanning rate are essential to achieving this goal. In this work, 4 reversed phase LC columns coupled with a high field quadrupole orbitrap mass spectrometer (Q Exactive HF) were thoroughly compared using complex lipid standard mixture and rat plasma and liver samples. A good separation of all lipids was achieved in 24min of gradient. The columns compared include C30 and C18 functionalization on either core-shell or totally porous silica particles, with size ranging from 1.7 to 2.6μm. Accucore C30 column showed the narrowest peaks and highest theoretical plate number, and excellent peak capacity and retention time reproducibility (<1% standard deviation). As a result, it resulted in 430 lipid species identified from rat plasma and rat liver samples with highest confidence. The high resolution offered by the up-front RPLC allowed discrimination of cis/trans isomeric lipid species, and the high field orbitrap mass spectrometer afforded the clear distinction of isobaric lipid species in full scan MS and the unambiguous assignment of sn-positional isomers for lysophospholipids in MS/MS. Taken together, the high efficiency LC separation and high mass resolving MS analysis are very promising tools for untargeted lipidomics analysis.
Collapse
Affiliation(s)
- Mónica Narváez-Rivas
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081, USA; Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
3
|
Abstract
In response to the urgent need for analysis software that is capable of handling data from targeted high-throughput lipidomics experiments, we here present a systematic workflow for the straightforward method design and analysis of selected reaction monitoring data in lipidomics based on lipid building blocks. Skyline is a powerful software primarily designed for proteomics applications where it is widely used. We adapted this tool to a "Plug and Play" system for lipid research. This extension offers the unique capability to assemble targeted mass spectrometry methods for complex lipids easily by making use of building blocks. With simple yet tailored modifications, targeted methods to analyze main lipid classes such as glycerophospholipids, sphingolipids, glycerolipids, cholesteryl-esters, and cholesterol can be quickly introduced into Skyline for easy application by end users without distinct bioinformatics skills. To illustrate the benefits of our novel strategy, we used Skyline to quantify sphingolipids in mesenchymal stem cells. We demonstrate a simple method building procedure for sphingolipids screening, collision energy optimization, and absolute quantification of sphingolipids. In total, 72 sphingolipids were identified and absolutely quantified at the fatty acid scan species level by utilizing Skyline for data interpretation and visualization.
Collapse
Affiliation(s)
- Bing Peng
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str.6b, 44227 Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str.6b, 44227 Dortmund, Germany
| |
Collapse
|
4
|
|
5
|
Zehethofer N, Bermbach S, Hagner S, Garn H, Müller J, Goldmann T, Lindner B, Schwudke D, König P. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases. Chromatographia 2014; 78:403-413. [PMID: 25750457 PMCID: PMC4346681 DOI: 10.1007/s10337-014-2787-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022]
Abstract
Airway epithelial cells play an important role in the pathogenesis of inflammatory lung diseases such as asthma, cystic fibrosis and COPD. Studies concerning the function of the lipid metabolism of the airway epithelium are so far based only on the detection of lipids by immunohistochemistry but quantitative analyses have not been performed. Although recent advances in mass spectrometry have allowed to identify a variety of lipid classes simultaneously in isolated tissue samples, up until now, these methods were not suitable to analyze lipids in the airway epithelium. To determine all major lipid classes in airway epithelial cells, we used an LC-MS-based approach that can easily be combined with the specific isolation procedure to obtain epithelial cells. We tested the suitability of this method with a mouse model of experimental asthma. In response to allergen challenge, perturbations in the sphingolipids were detected, which led to increased levels of ceramides. We expanded the scope of this approach analysing human bronchus samples without pathological findings of adenocarcinoma patients. For the human lung epithelium an unusual lipid class distribution was found in which ceramide was the predominant sphingolipid. In summary, we show that disease progression and lipid metabolism perturbation can be monitored in animal models and that the method can be used for the analysis of clinical samples.
Collapse
Affiliation(s)
- Nicole Zehethofer
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; Division of Cellular Microbiology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; German Center for Infection Research, TTU-Tb, Location Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Saskia Bermbach
- Institute for Anatomy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Stefanie Hagner
- Institute of Laboratory Medicine and Pathochemistry, Molecular Diagnostics, Philipps University of Marburg, ZTI, Hans-Meerwein-Str. 3, 35043 Marburg, Germany ; Universities of Gießen and Marburg Lung School (UGMLC), German Center for Lung Research (DZL), Gießen, Germany
| | - Holger Garn
- Institute of Laboratory Medicine and Pathochemistry, Molecular Diagnostics, Philipps University of Marburg, ZTI, Hans-Meerwein-Str. 3, 35043 Marburg, Germany ; Universities of Gießen and Marburg Lung School (UGMLC), German Center for Lung Research (DZL), Gießen, Germany
| | - Julia Müller
- Division of Clinical and Experimental Pathology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
| | - Torsten Goldmann
- Division of Clinical and Experimental Pathology, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 22927 Grosshansdorf, Germany
| | - Buko Lindner
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany ; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 22927 Grosshansdorf, Germany ; German Center for Infection Research, TTU-Tb, Location Borstel, Parkallee 1, 23845 Borstel, Germany
| | - Peter König
- Institute for Anatomy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany ; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), 22927 Grosshansdorf, Germany
| |
Collapse
|
6
|
Böcking C, Harb H, Ege MJ, Zehethofer N, Fischer K, Krauß J, Holst O, Nüsing RM, Lindner B, von Mutius E, Renz H, Garn H, Pfefferle PI. Bioavailability and allergoprotective capacity of milk-associated conjugated linoleic acid in a murine model of allergic airway inflammation. Int Arch Allergy Immunol 2014; 163:234-42. [PMID: 24603060 DOI: 10.1159/000358523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cross-sectional epidemiological studies have demonstrated that farm milk from traditional farm settings possesses allergoprotective properties. Up to now, it has not been clarified which milk ingredient is responsible for protection against allergic diseases. As farm milk is rich in conjugated linoleic acids (CLA), it is hypothesized that this n-3 polyunsaturated fatty acid family contributes to the allergoprotective capacity of farm milk. We aim to prove this hypothesis in a murine model of allergic airway inflammation. METHODS To prove the bioavailability and allergoprotective capacity of milk-associated CLA in a standardized protocol, milk batches that differed significantly in terms of their CLA content were spray dried and incorporated into a basic diet by substituting the regular sunflower fat fraction. Initially, the milk CLA uptake from the diet was monitored via measurement of the CLA content in plasma and erythrocyte membranes obtained from supplemented mice. To determine whether a milk CLA-enriched diet possesses allergoprotective properties, female Balb/c mice were fed the milk CLA-enriched diet ahead of sensitization and a challenge with ovalbumin (OVA) and the parameters of airway inflammation and eisosanoid pattern were measured. RESULTS In animals, supplementation with a diet rich in milk CLA resulted in elevated CLA levels in plasma and erythrocyte membranes, indicating bioavailability of milk fatty acids. Though membrane-associated phospholipid patterns were affected by supplementation with milk CLA, this application neither reduced the hallmarks of allergic airway inflammation in sensitized and OVA-challenged mice nor modified the eiconsanoid pattern in the bronchoalveolar lavage fluid of these animals. CONCLUSION Milk-associated CLA was not capable of preventing murine allergic airway inflammation in an animal model of OVA-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Christian Böcking
- Institute for Laboratory Medicine, Pathobiochemistry and Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Husen P, Tarasov K, Katafiasz M, Sokol E, Vogt J, Baumgart J, Nitsch R, Ekroos K, Ejsing CS. Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One 2013; 8:e79736. [PMID: 24244551 PMCID: PMC3820610 DOI: 10.1371/journal.pone.0079736] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/24/2013] [Indexed: 11/21/2022] Open
Abstract
Global lipidomics analysis across large sample sizes produces high-content datasets that require dedicated software tools supporting lipid identification and quantification, efficient data management and lipidome visualization. Here we present a novel software-based platform for streamlined data processing, management and visualization of shotgun lipidomics data acquired using high-resolution Orbitrap mass spectrometry. The platform features the ALEX framework designed for automated identification and export of lipid species intensity directly from proprietary mass spectral data files, and an auxiliary workflow using database exploration tools for integration of sample information, computation of lipid abundance and lipidome visualization. A key feature of the platform is the organization of lipidomics data in ”database table format” which provides the user with an unsurpassed flexibility for rapid lipidome navigation using selected features within the dataset. To demonstrate the efficacy of the platform, we present a comparative neurolipidomics study of cerebellum, hippocampus and somatosensory barrel cortex (S1BF) from wild-type and knockout mice devoid of the putative lipid phosphate phosphatase PRG-1 (plasticity related gene-1). The presented framework is generic, extendable to processing and integration of other lipidomic data structures, can be interfaced with post-processing protocols supporting statistical testing and multivariate analysis, and can serve as an avenue for disseminating lipidomics data within the scientific community. The ALEX software is available at www.msLipidomics.info.
Collapse
Affiliation(s)
- Peter Husen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Maciej Katafiasz
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Elena Sokol
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jan Baumgart
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Robert Nitsch
- Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kim Ekroos
- Zora Biosciences Oy, Espoo, Finland
- * E-mail: (CSE); (KE)
| | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail: (CSE); (KE)
| |
Collapse
|
8
|
Griffiths WJ, Ogundare M, Williams CM, Wang Y. On the future of "omics": lipidomics. J Inherit Metab Dis 2011; 34:583-92. [PMID: 21318352 DOI: 10.1007/s10545-010-9274-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/19/2010] [Accepted: 12/23/2010] [Indexed: 12/13/2022]
Abstract
Following in the wake of the genomic and proteomic revolutions new fields of "omics" research are emerging. The metabolome provides the natural complement to the genome and proteome, however, the extreme physicochemical diversity of the metabolome leads to a subdivision of metabolites into compounds soluble in aqueous solutions or those soluble in organic solvents. A complete molecular and quantitative investigation of the latter when isolated from tissue, fluid or cells constitutes lipidomics. Like proteomics, lipidomics is a subject which is both technology driven and technology driving, with the primary technologies being mass spectrometry, with or without on-line chromatography and computer-assisted data analysis. In this paper we will examine the underlying fundamentals of different lipidomic experimental approaches including the "shotgun" and "top-down" global approaches, and the more targeted liquid chromatography - or gas chromatography - mass spectrometry approaches. Application of these approaches to the identification of in-born errors of metabolism will be discussed.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Mass Spectrometry, School of Medicine, Grove Building, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| | | | | | | |
Collapse
|
9
|
Keck M, Gisch N, Moll H, Vorhölter FJ, Gerth K, Kahmann U, Lissel M, Lindner B, Niehaus K, Holst O. Unusual outer membrane lipid composition of the gram-negative, lipopolysaccharide-lacking myxobacterium Sorangium cellulosum So ce56. J Biol Chem 2011; 286:12850-9. [PMID: 21321121 PMCID: PMC3075632 DOI: 10.1074/jbc.m110.194209] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/11/2011] [Indexed: 11/06/2022] Open
Abstract
The gram-negative myxobacterium Sorangium cellulosum So ce56 bears the largest bacterial genome published so far, coding for nearly 10,000 genes. Careful analysis of this genome data revealed that part of the genes coding for the very well conserved biosynthesis of lipopolysaccharides (LPS) are missing in this microbe. Biochemical analysis gave no evidence for the presence of LPS in the membranes of So ce56. By analyzing the lipid composition of its outer membrane sphingolipids were identified as the major lipid class, together with ornithine-containing lipids (OL) and ether lipids. A detailed analysis of these lipids resulted in the identification of more than 50 structural variants within these three classes, which possessed several interesting properties regarding to LPS replacement, mediators in myxobacterial differentiation, as well as potential bioactive properties. The sphingolipids with the basic structure C9-methyl-C(20)-sphingosine possessed as an unusual trait C9-methylation, which is common to fungi but highly uncommon to bacteria. Such sphingolipids have not been found in bacteria before, and they may have a function in myxobacterial development. The OL, also identified in myxobacteria for the first time, contained acyloxyacyl groups, which are also characteristic for LPS and might replace those in certain functions. Finally, the ether lipids may serve as biomarkers in myxobacterial development.
Collapse
Affiliation(s)
- Matthias Keck
- From the Department of Proteome and Metabolome Research, Faculty of Biology and
| | | | | | | | - Klaus Gerth
- the Research Group Microbial Drugs, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Uwe Kahmann
- ZUD in the IIT GmbH, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Manfred Lissel
- From the Department of Proteome and Metabolome Research, Faculty of Biology and
| | | | - Karsten Niehaus
- From the Department of Proteome and Metabolome Research, Faculty of Biology and
| | - Otto Holst
- Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 4a/c, 23845 Borstel, Germany, and
| |
Collapse
|
10
|
Herzog R, Schwudke D, Schuhmann K, Sampaio JL, Bornstein SR, Schroeder M, Shevchenko A. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biol 2011; 12:R8. [PMID: 21247462 PMCID: PMC3091306 DOI: 10.1186/gb-2011-12-1-r8] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/04/2011] [Accepted: 01/19/2011] [Indexed: 01/27/2023] Open
Abstract
Shotgun lipidome profiling relies on direct mass spectrometric analysis of total lipid extracts from cells, tissues or organisms and is a powerful tool to elucidate the molecular composition of lipidomes. We present a novel informatics concept of the molecular fragmentation query language implemented within the LipidXplorer open source software kit that supports accurate quantification of individual species of any ionizable lipid class in shotgun spectra acquired on any mass spectrometry platform.
Collapse
Affiliation(s)
- Ronny Herzog
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Hein EM, Bödeker B, Nolte J, Hayen H. Software tool for mining liquid chromatography/multi-stage mass spectrometry data for comprehensive glycerophospholipid profiling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2083-2092. [PMID: 20552715 DOI: 10.1002/rcm.4614] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) has emerged as an indispensable tool in the field of lipidomics. Despite the growing interest in lipid analysis, there are only a few software tools available for data evaluation, as compared for example to proteomics applications. This makes comprehensive lipid analysis a complex challenge. Thus, a computational tool for harnessing the raw data from liquid chromatography/mass spectrometry (LC/MS) experiments was developed in this study and is available from the authors on request. The Profiler-Merger-Viewer tool is a software package for automatic processing of raw-data from data-dependent experiments, measured by high-performance liquid chromatography hyphenated to electrospray ionization hybrid linear ion trap Fourier transform mass spectrometry (FTICR-MS and Orbitrap) in single and multi-stage mode. The software contains three parts: processing of the raw data by Profiler for lipid identification, summarizing of replicate measurements by Merger and visualization of all relevant data (chromatograms as well as mass spectra) for validation of the results by Viewer. The tool is easily accessible, since it is implemented in Java and uses Microsoft Excel (XLS) as output format. The motivation was to develop a tool which supports and accelerates the manual data evaluation (identification and relative quantification) significantly but does not make a complete data analysis within a black-box system. The software's mode of operation, usage and options will be demonstrated on the basis of a lipid extract of baker's yeast (S. cerevisiae). In this study, we focused on three important representatives of lipids: glycerophospholipids, lyso-glycerophospholipids and free fatty acids.
Collapse
Affiliation(s)
- Eva-Maria Hein
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Str. 11, D-44139 Dortmund, Germany
| | | | | | | |
Collapse
|