1
|
Zhang W, Xu L, Zhang H. Recent advances in mass spectrometry techniques for atmospheric chemistry research on molecular-level. MASS SPECTROMETRY REVIEWS 2024; 43:1091-1134. [PMID: 37439762 DOI: 10.1002/mas.21857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| | - Lu Xu
- NOAA Chemical Sciences Laboratory, Boulder, Colorado, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Missouri, USA
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Resch J, Li K, Kalberer M. Prolonged Dark Chemical Processes in Secondary Organic Aerosols on Filters and in Aqueous Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14318-14328. [PMID: 39078875 PMCID: PMC11325657 DOI: 10.1021/acs.est.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Secondary organic aerosol (SOA) represents a large fraction of atmospheric aerosol particles that significantly affect both the Earth's climate and human health. Laboratory-generated SOA or ambient particles are routinely collected on filters for a detailed chemical analysis. Such filter sampling is prone to artifactual changes in composition during collection, storage, sample workup, and analysis. In this study, we investigate the chemical composition differences in SOA generated in the laboratory, kept at room temperature as aqueous extracts or on filters, and analyzed in detail after a storage time of a day and up to 4 weeks using liquid chromatography coupled to high-resolution mass spectrometry. We observe significantly different temporal concentration changes for monomers and oligomers in both extracts and on filters. In SOA aqueous extracts, many monomers increase in concentration over time, while many dimers decay at the same time. In contrast, on filters, we observe a strong and persistent concentration increase of many dimers and a decrease of many monomers. This study highlights artifacts arising from SOA chemistry occurring during storage, which should be considered when detailed organic aerosol compositions are studied. The particle-phase reactions on filters can also serve as a model system for atmospheric particle aging processes.
Collapse
Affiliation(s)
- Julian Resch
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Kangwei Li
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| | - Markus Kalberer
- Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Surdu M, Top J, Yang B, Zhang J, Slowik JG, Prévôt AS, Wang DS, el Haddad I, Bell DM. Real-Time Identification of Aerosol-Phase Carboxylic Acid Production Using Extractive Electrospray Ionization Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8857-8866. [PMID: 38718183 PMCID: PMC11112753 DOI: 10.1021/acs.est.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na]+ adducts. The method is validated and characterized using standard compounds. A proof-of-concept application to α-pinene secondary organic aerosol (SOA) shows the ability to identify carboxylic acids even in complex mixtures. The real-time capability of the method allows for the observation of the production of carboxylic acids, likely formed in the particle phase on short time scales (<120 min). Our research explains previous findings of carboxylic acids being a significant component of SOA and a quick decrease in peroxide functionalization following SOA formation. We show that the formation of these acids is commensurate with the increase of dimers in the particle phase. Our results imply that SOA is in constant evolution through condensed-phase processes, which lower the volatility of the aerosol components and increase the available condensed mass for SOA growth and, therefore, aerosol mass loading in the atmosphere. Further work could aim to quantify the effect of particle-phase acid formation on the aerosol volatility distributions.
Collapse
Affiliation(s)
- Mihnea Surdu
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jens Top
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Boxing Yang
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jun Zhang
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jay G. Slowik
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - André S.
H. Prévôt
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Dongyu S. Wang
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Imad el Haddad
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - David M. Bell
- Laboratory of Atmospheric
Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
4
|
Li K, Resch J, Kalberer M. Synthesis and Characterization of Organic Peroxides from Monoterpene-Derived Criegee Intermediates in Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3322-3331. [PMID: 38324703 PMCID: PMC10927166 DOI: 10.1021/acs.est.3c07048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Ozonolysis of alkenes is known to produce reactive intermediates─stabilized Criegee intermediates (SCIs), and their subsequent bimolecular reactions with various carboxylic acids can form α-acyloxyalkyl hydroperoxides (AAHPs), which is considered a major class of organic peroxides in secondary organic aerosol (SOA). Despite their atmospheric and health importance, the molecular-level identification of organic peroxides in atmospheric aerosols is highly challenging, preventing further assessment of their environmental fate. Here, we synthesize 20 atmospherically relevant AAHPs through liquid-phase ozonolysis, in which two types of monoterpene-derived SCIs from either α-pinene or 3-carene are scavenged by 10 different carboxylic acids to form AAHPs with diverse structures. These AAHPs are identified individually by liquid chromatography coupled with high-resolution mass spectrometry. AAHPs were previously thought to decompose quickly in an aqueous environment such as cloud droplets, but we demonstrate here that AAHPs hydrolysis rates are highly compound-dependent with rate constants differing by 2 orders of magnitude. In contrast, the aqueous-phase formation rate constants between SCI and various carboxylic acids vary only within a factor of 2-3. Finally, we identified two of the 20 synthesized AAHPs in α-pinene SOA and two in 3-carene SOA, contributing ∼0.3% to the total SOA mass. Our results improve the current molecular-level understanding of organic peroxides and are useful for a more accurate assessment of their environmental fate and health impact.
Collapse
Affiliation(s)
- Kangwei Li
- Department of Environmental
Sciences, University of Basel, Basel 4056, Switzerland
| | - Julian Resch
- Department of Environmental
Sciences, University of Basel, Basel 4056, Switzerland
| | - Markus Kalberer
- Department of Environmental
Sciences, University of Basel, Basel 4056, Switzerland
| |
Collapse
|
5
|
Kenseth CM, Hafeman NJ, Rezgui SP, Chen J, Huang Y, Dalleska NF, Kjaergaard HG, Stoltz BM, Seinfeld JH, Wennberg PO. Particle-phase accretion forms dimer esters in pinene secondary organic aerosol. Science 2023; 382:787-792. [PMID: 37972156 DOI: 10.1126/science.adi0857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
Secondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized. In this work, we elucidate the structures of several major dimer esters in SOA from ozonolysis of α-pinene and β-pinene-substantial global SOA sources-through independent synthesis of authentic standards. We show that these dimer esters are formed in the particle phase and propose a mechanism of nucleophilic addition of alcohols to a cyclic acylperoxyhemiacetal. This chemistry likely represents a general pathway to dimeric compounds in ambient SOA.
Collapse
Affiliation(s)
- Christopher M Kenseth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nicholas J Hafeman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Samir P Rezgui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jing Chen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Yuanlong Huang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathan F Dalleska
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik G Kjaergaard
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul O Wennberg
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Amarandei C, Olariu RI, Arsene C. First insights into the molecular characteristics of atmospheric organic aerosols from Iasi, Romania: Behavior of biogenic versus anthropogenic contributions and potential implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162830. [PMID: 36924952 DOI: 10.1016/j.scitotenv.2023.162830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
The present study reports first data on the organic molecular composition and evolution of secondary organic aerosols (SOAs) markers in aerosol samples from an urban environment in Romania. Targeted and non-targeted approaches of liquid chromatography tandem with time-of-flight mass spectrometry (LC-ToF-MS) were used as powerful analytical approaches for aerosol characterization at the molecular level. Four distinct organic molecular groups (CHO, CHON, CHONS, and CHOS) were classified as relevant for both warm (with 847 assigned molecular formulae) and cold (with 432 assigned molecular formulae) periods. Different formation mechanisms, physico-chemical processing, meteorological conditions, and sources origin or strengths (biogenic versus anthropogenic), were identified as governing factors of the mass concentration size distribution for the first generation and second-generation oxidation products of α-/β-pinene and two nitroaromatics (i.e., 4-nitrophenol and 4-nitrocatechol). Aromaticity equivalent (XC), carbon oxidation state (OSC), H/C and O/C ratios, and van Krevelen diagrams, were used to discriminate between: i) the aliphatic or aromatic nature of the identified organic aerosol constituents, ii) the oxidation state of the aerosol samples (e.g., more oxidized molecular formulae during the highly insolated period, more intense photochemistry), and iii) sources role in controlling OAs constituents abundances and behavior (e.g., higher relative contributions of aliphatic CHO formulae with a wider range of carbon numbers and CHOS molecular group with higher contribution during the warm period due to increased biogenic emissions or secondary formation from the biogenic precursors). Since in the present study >88 % of the 4-nitrocatechol and 4-nitrophenol was determined in the aerosol size fraction below 1 μm, it is believed that determination of their abundances and size distribution in ambient aerosols might provide direction for future studies such as to enhance the knowledge on their toxic potential levels for the human health.
Collapse
Affiliation(s)
- Cornelia Amarandei
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania
| | - Romeo Iulian Olariu
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania
| | - Cecilia Arsene
- "Alexandru Ioan Cuza" University of Iasi, Faculty of Chemistry, 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Integrated Centre of Environmental Science Studies in the North Eastern Region (CERNESIM), 11 Carol I, 700506, Iasi, Romania; "Alexandru Ioan Cuza" University of Iasi, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT-AIR), 11 Carol I, 700506, Iasi, Romania.
| |
Collapse
|
7
|
Witkowski B, al-Sharafi M, Błaziak K, Gierczak T. Aging of α-Pinene Secondary Organic Aerosol by Hydroxyl Radicals in the Aqueous Phase: Kinetics and Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6040-6051. [PMID: 37014140 PMCID: PMC10116591 DOI: 10.1021/acs.est.2c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
The reaction of hydroxyl radicals (OH) with a water-soluble fraction of the α-pinene secondary organic aerosol (SOA) was investigated using liquid chromatography coupled with negative electrospray ionization mass spectrometry. The SOA was generated by the dark ozonolysis of α-pinene, extracted into the water, and subjected to chemical aging by the OH. Bimolecular reaction rate coefficients (kOH) for the oxidation of terpenoic acids by the OH were measured using the relative rate method. The unaged SOA was dominated by the cyclobutyl-ring-retaining compounds, primarily cis-pinonic, cis-pinic, and hydroxy-pinonic acids. Aqueous oxidation by the OH resulted in the removal of early-stage products and dimers, including well-known oligomers with MW = 358 and 368 Da. Furthermore, a 2- to 5-fold increase in the concentration of cyclobutyl-ring-opening products was observed, including terpenylic and diaterpenylic acids and diaterpenylic acid acetate as well as some of the newly identified OH aging markers. At the same time, results obtained from the kinetic box model showed a high degree of SOA fragmentation following the reaction with the OH, which indicates that non-radical reactions occurring during the evaporation of water likely contribute to the high yields of terpenoic aqSOAs reported previously. The estimated atmospheric lifetimes showed that in clouds, terpenoic acids react with the OH exclusively in the aqueous phase. Aqueous OH aging of the α-pinene SOA results in a 10% increase of the average O/C ratio and a 3-fold decrease in the average kOH value, which is likely to affect the cloud condensation nuclei activity of the aqSOA formed after the evaporation of water.
Collapse
|
8
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
9
|
Thomsen D, Thomsen LD, Iversen EM, Björgvinsdóttir TN, Vinther SF, Skønager JT, Hoffmann T, Elm J, Bilde M, Glasius M. Ozonolysis of α-Pinene and Δ 3-Carene Mixtures: Formation of Dimers with Two Precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16643-16651. [PMID: 36355568 DOI: 10.1021/acs.est.2c04786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The formation of secondary organic aerosol (SOA) from the structurally similar monoterpenes, α-pinene and Δ3-carene, differs substantially. The aerosol phase is already complex for a single precursor, and when mixtures are oxidized, products, e.g., dimers, may form between different volatile organic compounds (VOCs). This work investigates whether differences in SOA formation and properties from the oxidation of individual monoterpenes persist when a mixture of the monoterpenes is oxidized. Ozonolysis of α-pinene, Δ3-carene, and a 1:1 mixture of them was performed in the Aarhus University Research on Aerosol (AURA) atmospheric simulation chamber. Here, ∼100 ppb of monoterpene was oxidized by 200 ppb O3 under dark conditions at 20 °C. The particle number concentration and particle mass concentration for ozonolysis of α-pinene exceed those from ozonolysis of Δ3-carene alone, while their mixture results in concentrations similar to α-pinene ozonolysis. Detailed offline analysis reveals evidence of VOC-cross-product dimers in SOA from ozonolysis of the monoterpene mixture: a VOC-cross-product dimer likely composed of the monomeric units cis-caric acid and 10-hydroxy-pinonic acid and a VOC-cross-product dimer ester likely from the monomeric units caronaldehyde and terpenylic acid were tentatively identified by liquid chromatography-mass spectrometry. To improve the understanding of chemical mechanisms determining SOA, it is relevant to identify VOC-cross-products.
Collapse
Affiliation(s)
- Ditte Thomsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lotte Dyrholm Thomsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Emil Mark Iversen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | - Sofie Falk Vinther
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jane Tygesen Skønager
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Thorsten Hoffmann
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jonas Elm
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Merete Bilde
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Marianne Glasius
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Determination of Volatility Parameters of Secondary Organic Aerosol Components via Thermal Analysis. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, there are limited data on the thermal properties of secondary organic aerosol (SOA) components. In this study, we employed an experimental method to evaluate the physical properties of some atmospherically relevant compounds. We estimated the thermodynamic properties of SOA components, in particularly some carboxylic acids. The molar heat capacity, melting point and enthalpy, and vaporization enthalpy of the samples were determined via differential scanning calorimetry and thermogravimetric analysis, and their vaporization enthalpy (ΔHvap) was estimated using Clausius–Clapeyron and Langmuir equations based on their thermogravimetric profiles. The thermodynamic properties of benzoic acid as a reference compound agree well with the reported values. The obtained specific heat capacities of benzoic acid, phthalic acid, pinic acid, ketopinic acid, cis-pinonic acid, terpenylic acid and diaterpenylic acid acetate (DTAA) are 118.1, 169.4, 189.9, 223.9, 246.1, 223.2, and 524.1 J mol−1 K−1, respectively. The ΔHvap of benzoic acid, phthalic acid, ketopinic acid, DTAA, and 3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA) are 93.2 ± 0.4, 131.6, 113.8, and 124.4 kJ mol−1, respectively. The melting and vaporization enthalpies of the SOA components range from 7.3 to 29.7 kJ mol−1.
Collapse
|
11
|
Zhang H, Chen G, Lü S, Zhang L, Guo M. Insecticidal Activities Against Odontotermes formosanus and Plutella xylostella and Corresponding Constituents of Tung Meal from Vernicia fordii. INSECTS 2021; 12:425. [PMID: 34068455 PMCID: PMC8150873 DOI: 10.3390/insects12050425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022]
Abstract
The environmental pollution, pesticide resistance, and other associated problems caused by traditional chemical pesticides with limited modes of action make it urgent to seek alternative environmentally-friendly pesticides from natural products. Tung meal, the byproduct of the detoxified Vernicia fordii (Hemsl.) seed, has been commonly used as an agricultural fertilizer and as a pesticide. However, its active insecticidal extracts and ingredients remain elusive. In the present study, the contact toxicities of tung meal extracts against the agricultural and forest pests like O. formosanus and P. xylostella were examined. Our results showed that ethyl acetate and petroleum ether extracts showed the strongest toxicity against O. formosanus and P. xylostella, respectively. In order to further explore the chemical profiles of the ethyl acetate and petroleum ether extracts, UPLC-Q/TOF-MS and GC-MS analyses have been performed, and 20 and 29 compounds were identified from EA and PE extracts, respectively. The present study, for the first time, verified the noteworthy insecticidal activities on the aforementioned agricultural and forest pesticides and revealed the potential active parts and chemical composition, which are conducive to further exploiting the potential of tung meal as a natural plant-derived insecticide for biological control of agricultural and forest pests.
Collapse
Affiliation(s)
- Hui Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (H.Z.); (G.C.)
- Institute of Geochemistry, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (H.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 434200, China;
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (H.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
12
|
Kenseth CM, Hafeman NJ, Huang Y, Dalleska NF, Stoltz BM, Seinfeld JH. Synthesis of Carboxylic Acid and Dimer Ester Surrogates to Constrain the Abundance and Distribution of Molecular Products in α-Pinene and β-Pinene Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12829-12839. [PMID: 32813970 DOI: 10.1021/acs.est.0c01566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid chromatography/negative electrospray ionization mass spectrometry [LC/(-)ESI-MS] is routinely employed to characterize the identity and abundance of molecular products in secondary organic aerosol (SOA) derived from monoterpene oxidation. Due to a lack of authentic standards, however, commercial terpenoic acids (e.g., cis-pinonic acid) are typically used as surrogates to quantify both monomeric and dimeric SOA constituents. Here, we synthesize a series of enantiopure, pinene-derived carboxylic acid and dimer ester homologues. We find that the (-)ESI efficiencies of the dimer esters are 19-36 times higher than that of cis-pinonic acid, demonstrating that the mass contribution of dimers to monoterpene SOA has been significantly overestimated in past studies. Using the measured (-)ESI efficiencies of the carboxylic acids and dimer esters as more representative surrogates, we determine that molecular products measureable by LC/(-)ESI-MS account for only 21.8 ± 2.6% and 18.9 ± 3.2% of the mass of SOA formed from ozonolysis of α-pinene and β-pinene, respectively. The 28-36 identified monomers (C7-10H10-18O3-6) constitute 15.6-20.5% of total SOA mass, whereas only 1.3-3.3% of the SOA mass is attributable to the 46-62 identified dimers (C15-19H24-32O4-11). The distribution of identified α-pinene and β-pinene SOA molecular products is examined as a function of carbon number (nC), average carbon oxidation state (OS¯C), and volatility (C*). The observed order-of-magnitude difference in (-)ESI efficiency between monomers and dimers is expected to be broadly applicable to other biogenic and anthropogenic SOA systems analyzed via (-) or (+) LC/ESI-MS under various LC conditions, and demonstrates that the use of unrepresentative surrogates can lead to substantial systematic errors in quantitative LC/ESI-MS analyses of SOA.
Collapse
Affiliation(s)
- Christopher M Kenseth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicholas J Hafeman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yuanlong Huang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathan F Dalleska
- Environmental Analysis Center, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - John H Seinfeld
- Divisions of Chemistry and Chemical Engineering and Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Amorim JV, Wu S, Klimchuk K, Lau C, Williams FJ, Huang Y, Zhao R. pH Dependence of the OH Reactivity of Organic Acids in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12484-12492. [PMID: 32936620 DOI: 10.1021/acs.est.0c03331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photochemical processing taking place in atmospheric aqueous phases serves as both a source and a sink of organic compounds. In aqueous environments, acid-base chemistry and, by extension, aqueous-phase pH, are an important yet often neglected factors to consider when investigating the kinetics of organic compounds. We have investigated the aqueous-phase OH-oxidation of pinic acid, cis-pinonic acid, limononic acid, and formic acid (FA) as a function of pH. We have also extended our studies to other organic acids (OAs) present in the water-soluble fraction of secondary organic aerosol (SOA) arising from the ozonolysis of α-pinene. Although all the OAs exhibited larger OH reactivities at pH 10, the pH dependence was dramatically different between FA, the smallest OA, and those that contained more than eight carbons. A kinetic box model was also employed to characterize our photoreactor and to provide confidence to our results. Our finding shows that the atmospheric lifetimes of small OAs (e.g., FA) are highly sensitive to cloud water pH. However, those of larger OAs and many other OAs in α-pinene SOA are affected to a much less extent. These results are of great importance for the simplification of cloud water chemistry models.
Collapse
Affiliation(s)
- Jéssica Vejdani Amorim
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Keifer Klimchuk
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Chester Lau
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| | - Florence J Williams
- Department of Chemistry, University of Iowa, W285 Chemistry Building, Iowa City, Iowa 52242-1294, United States
| | - Yuanlong Huang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Ran Zhao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
14
|
Vogel AL, Lauer A, Fang L, Arturi K, Bachmeier F, Daellenbach KR, Käser T, Vlachou A, Pospisilova V, Baltensperger U, Haddad IE, Schwikowski M, Bjelić S. A Comprehensive Nontarget Analysis for the Molecular Reconstruction of Organic Aerosol Composition from Glacier Ice Cores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12565-12575. [PMID: 31566955 DOI: 10.1021/acs.est.9b03091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ice cores are climate archives suitable for the reconstruction of past atmospheric composition changes. Ice core analysis provides valuable insight into the chemical nature of aerosols and enables constraining emission inventories of primary emissions and of gas-phase precursors. Changes in the emissions of volatile organic compounds (VOCs) can affect formation rates and mechanisms as well as chemical composition of aerosols during the preindustrial era, key information for understanding aerosol climate effects. Here, we present an analytical method for the reconstruction of organic aerosol composition preserved in glacier ice cores. A solid-phase-extraction method, optimized toward oxidation products of biogenic VOCs, provides an enrichment factor of ∼200 and quantitative recovery for compounds of interest. We applied the preconcentration method on ice core samples from the high-alpine Fiescherhorn glacier (Swiss Alps), and used high-performance liquid chromatography coupled to high-resolution mass spectrometry as a sensitive detection method. We describe a nontarget analysis that screens for organic molecules in the ice core samples. We evaluate the atmospheric origin of the detected compounds in the ice by molecular-resolved comparison with airborne particulate matter samples from the nearby high-alpine research station Jungfraujoch. The presented method is able to shed light upon the history of the evolution of organic aerosol composition in the anthropocene, a research field in paleoclimatology with considerable potential.
Collapse
Affiliation(s)
- Alexander L Vogel
- Laboratory of Environmental Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
- Institute for Atmospheric and Environmental Sciences , Goethe-University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Anja Lauer
- Institute for Atmospheric and Environmental Sciences , Goethe-University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Ling Fang
- Laboratory of Environmental Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Katarzyna Arturi
- Bioenergy and Catalysis Laboratory , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Franziska Bachmeier
- Institute for Atmospheric and Environmental Sciences , Goethe-University Frankfurt , 60438 Frankfurt am Main , Germany
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Timon Käser
- Bioenergy and Catalysis Laboratory , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Athanasia Vlachou
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Veronika Pospisilova
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Imad El Haddad
- Laboratory of Atmospheric Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Margit Schwikowski
- Laboratory of Environmental Chemistry , Paul Scherrer Institute , 5232 Villigen , Switzerland
| | - Saša Bjelić
- Bioenergy and Catalysis Laboratory , Paul Scherrer Institute , 5232 Villigen , Switzerland
| |
Collapse
|
15
|
Witkowski B, Al-Sharafi M, Gierczak T. Ozonolysis of β-Caryophyllonic and Limononic Acids in the Aqueous Phase: Kinetics, Product Yield, and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8823-8832. [PMID: 31296007 DOI: 10.1021/acs.est.9b02471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ozonolysis of β-caryophyllonic (BCA) and limononic (LA) acids in the aqueous-phase was investigated. The rate coefficients (kozone) measured for the BCA + ozone (O3) reaction at 295 ± 2 K were 4.8 ± 0.6 × 105 M-1 s-1 at pH = 2 and 6.0 ± 0.3 × 105 M-1 s-1 at pH = 8. The UV-vis absorption cross sections (σ, cm2 molecule-1) for BCA and LA in water were also measured. Atmospheric lifetimes of BCA and LA due to reactions with O3, hydroxyl radicals (OH), and due to photolysis were calculated. Lifetime estimates indicate that the aqueous-phase processing of both terpenoic acids studied in this work would be relevant in the atmosphere. In cloudwater, BCA is more likely to react with O3 with some possible contribution from the oxidation by OH, whereas the opposite is true for LA. Products of BCA and LA ozonolysis were quantified with LC-MS as well as with the UV-vis assays for quantification of formaldehyde and hydroperoxides. Oxygenated derivatives of BCA and LA that were produced following aqueous ozonolysis were identified as keto-BCA and keto-LA, respectively. Additionally, large quantities of intramolecular secondary ozonides and α-acyloxyhydroperoxy aldehydes were tentatively identified as products of aqueous ozonolysis of the two unsaturated terpenoic acids investigated.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| | - Mohammed Al-Sharafi
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| | - Tomasz Gierczak
- Faculty of Chemistry , University of Warsaw , Al. Żwirki i Wigury 101 , Warsaw , 02-089 , Poland
| |
Collapse
|
16
|
Walhout EQ, Dorn SE, Martens J, Berden G, Oomens J, Cheong PHY, Kroll JH, O'Brien RE. Infrared Ion Spectroscopy of Environmental Organic Mixtures: Probing the Composition of α-Pinene Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7604-7612. [PMID: 31184875 DOI: 10.1021/acs.est.9b02077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Characterizing the chemical composition of organic aerosols can elucidate aging mechanisms as well as the chemical and physical properties of the aerosol. However, the high chemical complexity and often low atmospheric abundance present a difficult analytical challenge. Milligrams or more of material may be needed for speciated spectroscopic analysis. In contrast, mass spectrometry provides a very sensitive platform but limited structural information. Here, we combine the strengths of mass spectrometry and infrared (IR) action spectroscopy to generate characteristic IR spectra of individual, mass-isolated ion populations. Soft ionization combined with in situ infrared ion spectroscopy, using the tunable free-electron laser FELIX, provides detailed information on molecular structures and functional groups. We apply this technique, along with quantum mechanical modeling, to characterize organic molecules in secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. Spectral overlap with a standard is used to identify cis-pinonic acid. We also demonstrate the characterization of isomers for multiple SOA products using both quantum mechanical computations and analyses of fragment ion spectra. These results demonstrate the detailed structural information on isolated ions obtained by combining mass spectrometry with fingerprint IR spectroscopy.
Collapse
Affiliation(s)
- Emma Q Walhout
- Department of Chemistry , College of William and Mary , Williamsburg , Virginia 23185 , United States
| | - Shelby E Dorn
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| | - Jonathan Martens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525ED Nijmegen , The Netherlands
| | - Giel Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525ED Nijmegen , The Netherlands
| | - Jos Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7c , 6525ED Nijmegen , The Netherlands
- van't Hoff Institute for Molecular Sciences , University of Amsterdam , 1098XH Amsterdam , Science Park 908 , The Netherlands
| | - Paul H-Y Cheong
- Department of Chemistry , Oregon State University , 153 Gilbert Hall , Corvallis , Oregon 97331-4003 , United States
| | - Jesse H Kroll
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Rachel E O'Brien
- Department of Chemistry , College of William and Mary , Williamsburg , Virginia 23185 , United States
- Department of Civil and Environmental Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
17
|
Otto T, Schaefer T, Herrmann H. Aqueous-Phase Oxidation of Terpene-Derived Acids by Atmospherically Relevant Radicals. J Phys Chem A 2018; 122:9233-9241. [PMID: 30359526 DOI: 10.1021/acs.jpca.8b08922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terpene-derived acids formed through the atmospheric gas-phase oxidation of terpenes are able to efficiently undergo a phase transfer into the aqueous phase. The subsequent aqueous-phase oxidation of such compounds has not been intensely studied. Accordingly, the aqueous-phase second-order rate constants of the oxidation reactions of cis-pinonic acid (CPA) and (+)-camphoric acid (+CA) with hydroxyl radicals (•OH), nitrate radicals (NO3•), and sulfate radicals (SO4•-) were investigated as a function of temperature and pH in the present study. For CPA and +CA the following •OH reaction rate constants at T = 298 K are determined: ksecond(CPA, pH<2) = (2.8 ± 0.1) × 109 L mol-1 s-1, ksecond(CPA, pH>8) = (2.7 ± 0.3) × 109 L mol-1 s-1, ksecond(+CA, pH<2) = (2.1 ± 0.1) × 109 L mol-1 s-1, ksecond(+CA, pH=5.3) = (2.7 ± 0.3) × 109 L mol-1 s-1, ksecond(+CA, pH>8) = (2.7 ± 0.1) × 109 L mol-1 s-1. In order to assess the atmospheric impact of the aqueous-phase oxidation of such compounds, atmospheric aqueous-phase lifetimes were calculated for two model scenarios based on CAPRAM 3.0i. The aqueous-phase oxidation under remote conditions emerges to be the most favored pathway with lifetimes of 5 ± 1 h.
Collapse
Affiliation(s)
- Tobias Otto
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD) , Leibniz-Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , 04318 Leipzig , Germany
| |
Collapse
|
18
|
Witkowski B, Al-Sharafi M, Gierczak T. Kinetics of Limonene Secondary Organic Aerosol Oxidation in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11583-11590. [PMID: 30207709 DOI: 10.1021/acs.est.8b02516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Twenty semivolatile organic compounds that contribute to limonene secondary organic aerosol (SOA) were synthesized in the flow-tube reactor. Kinetics of the aqueous-phase oxidation of the synthesized compounds by hydroxyl radicals (OH) and ozone (O3) were investigated at 298 ± 2 K using the relative rate method. Oxidized organic compounds identified as the major components of limonene SOA were quantified with liquid chromatography coupled to the electrospray ionization and quadrupole tandem mass spectrometry (LC-ESI/MS/MS). The bimolecular rate coefficients measured for the oxidation products of limonene are kOH = 2-5 × 109 M-1 s-1 for saturated and kOH = 1-2 × 1010 M-1 s-1 for unsaturated compounds. Ozonolysis reaction bimolecular rate coefficients obtained for the unsaturated compounds in the aqueous phase are between 2 and 6 × 104 M-1 s-1. The results obtained in this work also indicate that oxidation of limonene carboxylic acids by OH was about a factor of 2 slower for the carboxylate ions than for the protonated acids while the opposite was true for the ozonolysis. The data acquired provided new insights into kinetics of the limonene SOA processing in the aqueous phase. Ozonolysis of limonene SOA also increased the concentration of dimers, most likely due to reactions of the stabilized Criegee intermediates with the other, stable products. These results indicate that aqueous-phase oxidation of limonene SOA by OH and O3 will be relevant in clouds, fogs, and wet aerosols.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Mohammed Al-Sharafi
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Tomasz Gierczak
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
19
|
Witkowski B, Jurdana S, Gierczak T. Limononic Acid Oxidation by Hydroxyl Radicals and Ozone in the Aqueous Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3402-3411. [PMID: 29444406 DOI: 10.1021/acs.est.7b04867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Kinetics and mechanism of limononic acid (3-isopropenyl-6-oxoheptanoic acid, LA) oxidation by hydroxyl radicals (OH) and ozone (O3) were studied in the aqueous phase at 298 ± 2 K. These reactions were investigated using liquid chromatography coupled to the electrospray ionization and quadrupole tandem mass spectrometry (LC-ESI/MS/MS). The rate coefficients determined for LA + OH reaction were: 1.3 ± 0.3 × 1010 M-1 s-1 at pH = 2 and 5.7 ± 0.6 × 109 M-1 s-1 at pH = 10. The rate coefficient determined for LA ozonolysis was 4.2 ± 0.2 × 104 M-1 s-1 at pH = 2. The calculated Henry's law constant (H) for LA was ca. 6.3 × 106 M × atm-1, thereby indicating that in fogs and clouds with LWC = 0.3-0.5 g × m-3 LA will reside entirely in the aqueous phase. Calculated atmospheric lifetimes due to reaction with OH and O3 strongly indicate that aqueous-phase oxidation can be important for LA under realistic atmospheric conditions. Under acidic conditions, the aqueous-phase oxidation of LA by OH will dominate over reaction with O3, whereas the opposite is more likely when pH ≥ 4.5. The aqueous-phase oxidation of LA produced keto-limononic acid and a number of low-volatility products, such as hydroperoxy-LA and α-hydroxyhydroperoxides.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Sara Jurdana
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Tomasz Gierczak
- University of Warsaw , Faculty of Chemistry , Al. Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| |
Collapse
|
20
|
Kostenidou E, Karnezi E, Kolodziejczyk A, Szmigielski R, Pandis SN. Physical and Chemical Properties of 3-Methyl-1,2,3-butanetricarboxylic Acid (MBTCA) Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1150-1155. [PMID: 29286656 DOI: 10.1021/acs.est.7b04348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The properties and the chemical fate of later generation products of the oxidation of biogenic organic compounds are mostly unknown. The properties of fresh MBTCA aerosol, a later generation product of the oxidation of monoterpenes in the atmosphere, were determined combining an aerosol mass spectrometer (AMS), a thermodenuder, and a scanning mobility particle sizer. Based on its AMS spectrum m/z 141.055 (C7H9O3+) could be used as an MBTCA signature. The MBTCA particle density was 1.43 ± 0.04 g cm-3, its saturation concentration was (1.8 ± 1.3) × 10-3 μg m-3 at 298 K, and its vaporization enthalpy was 150 ± 15 kJ mol-1. After OH radical exposure (∼1.2 days) and UV illumination the average aerosol O:C ratio decreased from 0.72 to 0.58-0.64 suggesting net fragmentation. Our findings suggest that the reactions of MBTCA with OH lead to CO2 loss with or without an oxygen addition.
Collapse
Affiliation(s)
- Evangelia Kostenidou
- Department of Chemical Engineering, University of Patras , Patras, 26504, Greece
- Institute of Chemical Engineering Sciences, ICE-HT , Patras, 26504, Greece
| | - Eleni Karnezi
- Department of Chemical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | - Agata Kolodziejczyk
- Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw, Poland
| | - Rafal Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw, Poland
| | - Spyros N Pandis
- Department of Chemical Engineering, University of Patras , Patras, 26504, Greece
- Institute of Chemical Engineering Sciences, ICE-HT , Patras, 26504, Greece
- Department of Chemical Engineering, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
21
|
Identification and interconversion of isomeric 4,5-functionalized 1,2,3-thiadiazoles and 1,2,3-triazoles in conditions of electrospray ionization. J Pharm Biomed Anal 2017; 145:315-321. [DOI: 10.1016/j.jpba.2017.06.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 11/23/2022]
|
22
|
Witkowski B, Gierczak T. cis-Pinonic Acid Oxidation by Hydroxyl Radicals in the Aqueous Phase under Acidic and Basic Conditions: Kinetics and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9765-9773. [PMID: 28719200 DOI: 10.1021/acs.est.7b02427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Aqueous-phase oxidation of cis-pinonic acid (CPA) by hydroxyl radicals (OH) was studied using a relative rate technique under acidic and basic conditions. Liquid chromatography (LC) coupled to the negative electrospray ionization (ESI) quadrupole tandem mass spectrometry (MS/MS) was used to monitor the concentrations of CPA and reference compounds. The measured second order reaction rate coefficients of CPA with OH were: 3.6 ± 0.3 × 109 M-1 s-1 (pH 2) and 3.0 ± 0.3 × 109 M-1 s-1 (pH 10) - combined uncertainties are 2σ. These results indicated that the lifetimes of CPA in the atmosphere are most likely independent from the aqueous-phase pH. LC-ESI/MS/MS was also used to tentatively identify the CPA oxidation products. Formation of carboxylic acids with molecular weight (MW) 216 Da (most likely C10H16O5) and MW 214 Da (C10H14O5) was confirmed with LC-ESI/MS/MS. When the initial CPA concentration was increased from 0.3 to 10 mM, formation of additional products was observed with MW 188, 200, 204, and 232 Da. Hydroperoxy, hydroxyl and carbonyl-substituted CPA derivatives were tentatively identified among the products. Similar products were formed by the CPA oxidation by OH in the gas-phase, at the air-water interface as well as in the solid phase (dry film). Formation of the stable adduct of CPA and H2O2 was also observed when the reaction mixture was evaporated to dryness and redissolved in water. Acquired mass spectrometric data argues against formation of oligomers.
Collapse
Affiliation(s)
- Bartłomiej Witkowski
- University of Warsaw , Faculty of Chemistry, Al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Tomasz Gierczak
- University of Warsaw , Faculty of Chemistry, Al. Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
23
|
Elm J, Myllys N, Kurtén T. What Is Required for Highly Oxidized Molecules To Form Clusters with Sulfuric Acid? J Phys Chem A 2017; 121:4578-4587. [DOI: 10.1021/acs.jpca.7b03759] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jonas Elm
- Department
of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Nanna Myllys
- Department
of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Theo Kurtén
- Department
of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
24
|
Koistinen VM, Hanhineva K. Mass spectrometry-based analysis of whole-grain phytochemicals. Crit Rev Food Sci Nutr 2017; 57:1688-1709. [PMID: 26167744 DOI: 10.1080/10408398.2015.1016477] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Whole grains are a rich source of several classes of phytochemicals, such as alkylresorcinols, benzoxazinoids, flavonoids, lignans, and phytosterols. A high intake of whole grains has been linked to a reduced risk of some major noncommunicable diseases, and it has been postulated that a complex mixture of phytochemicals works in synergy to generate beneficial health effects. Mass spectrometry, especially when coupled with liquid chromatography, is a widely used method for the analysis of phytochemicals owing to its high sensitivity and dynamic range. In this review, the current knowledge of the mass spectral properties of the most important classes of phytochemicals found in cereals of common wheat, barley, oats, and rye is discussed.
Collapse
Affiliation(s)
- Ville Mikael Koistinen
- a Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio , Finland
| | - Kati Hanhineva
- a Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
25
|
Steimer SS, Kourtchev I, Kalberer M. Mass Spectrometry Characterization of Peroxycarboxylic Acids as Proxies for Reactive Oxygen Species and Highly Oxygenated Molecules in Atmospheric Aerosols. Anal Chem 2017; 89:2873-2879. [DOI: 10.1021/acs.analchem.6b04127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sarah S. Steimer
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Ivan Kourtchev
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
26
|
Brüggemann M, Karu E, Hoffmann T. Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:141-149. [PMID: 26889930 DOI: 10.1002/jms.3733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/20/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region.
Collapse
Affiliation(s)
- Martin Brüggemann
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Einar Karu
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Thorsten Hoffmann
- Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
27
|
Parshintsev J, Vaikkinen A, Lipponen K, Vrkoslav V, Cvačka J, Kostiainen R, Kotiaho T, Hartonen K, Riekkola ML, Kauppila TJ. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1233-1241. [PMID: 26395607 DOI: 10.1002/rcm.7219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. METHODS Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). RESULTS The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. CONCLUSIONS DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research.
Collapse
Affiliation(s)
- Jevgeni Parshintsev
- Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Anu Vaikkinen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Katriina Lipponen
- Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Vladimir Vrkoslav
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Risto Kostiainen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Tapio Kotiaho
- Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Kari Hartonen
- Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Marja-Liisa Riekkola
- Laboratory of Analytical Chemistry, Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland
| | - Tiina J Kauppila
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland
| |
Collapse
|
28
|
Brüggemann M, Karu E, Stelzer T, Hoffmann T. Real-Time Analysis of Ambient Organic Aerosols Using Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPA-MS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5571-5578. [PMID: 25861027 DOI: 10.1021/es506186c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Organic compounds contribute to a major fraction of atmospheric aerosols and have significant impacts on climate and human health. However, because of their chemical complexity, their measurement remains a major challenge for analytical instrumentation. Here we present the development and characterization of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source is based on a helium glow discharge plasma, which generates excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and produces mainly intact quasimolecular ions, facilitating the interpretation of the acquired mass spectra. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng m(-3) range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region is presented. In general, the observed compounds are in agreement with previous offline studies; however, the acquisition of chemical information and compound identification is much faster. The results demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis and reveal the potential of this technique to enable new insights into aerosol formation, growth, and transformation in the atmosphere.
Collapse
Affiliation(s)
- Martin Brüggemann
- †Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Einar Karu
- †Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-Universität, 55128 Mainz, Germany
- ‡College of Physical Sciences, University of Aberdeen, Aberdeen AB243UE, United Kingdom
| | - Torsten Stelzer
- †Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Thorsten Hoffmann
- †Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| |
Collapse
|
29
|
Nozière B, Kalberer M, Claeys M, Allan J, D'Anna B, Decesari S, Finessi E, Glasius M, Grgić I, Hamilton JF, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf CJ, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt JD, Szidat S, Szmigielski R, Wisthaler A. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem Rev 2015; 115:3919-83. [PMID: 25647604 DOI: 10.1021/cr5003485] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Nozière
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Barbara D'Anna
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Irena Grgić
- ○National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | | | | | - Yoshiteru Iinuma
- ¶Leibniz-Institut für Troposphärenforschung, 04318 Leipzig, Germany
| | | | | | | | - Ivan Kourtchev
- ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Willy Maenhaut
- §University of Antwerp, 2000 Antwerp, Belgium.,□Ghent University, 9000 Gent, Belgium
| | | | | | | | - Jason D Surratt
- ▼University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
30
|
Dette HP, Koop T. Glass Formation Processes in Mixed Inorganic/Organic Aerosol Particles. J Phys Chem A 2014; 119:4552-61. [DOI: 10.1021/jp5106967] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hans P. Dette
- Faculty of Chemistry and
Center for Molecular Materials, Bielefeld University, Universitätsstraße
25, D-33615 Bielefeld, Germany
| | - Thomas Koop
- Faculty of Chemistry and
Center for Molecular Materials, Bielefeld University, Universitätsstraße
25, D-33615 Bielefeld, Germany
| |
Collapse
|
31
|
Olariu RI, Vione D, Grinberg N, Arsene C. Applications of Liquid Chromatographic Techniques in the Chemical Characterization of Atmospheric Aerosols. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Romeo-Iulian Olariu
- a Department of Chemistry, Faculty of Chemistry, Laboratory of Analytical Chemistry , “Alexandru Ioan Cuza” University of Iasi , Iasi , Romania
| | - Davide Vione
- b Dipartimento di Chimica , Università di Torino , Torino , Italy
| | - Nelu Grinberg
- c Boehringer Ingelheim Pharmaceuticals Inc. , Ridgefield , Connecticut , USA
| | - Cecilia Arsene
- a Department of Chemistry, Faculty of Chemistry, Laboratory of Analytical Chemistry , “Alexandru Ioan Cuza” University of Iasi , Iasi , Romania
| |
Collapse
|
32
|
Finessi E, Lidster RT, Whiting F, Elliott T, Alfarra MR, McFiggans GB, Hamilton JF. Improving the Quantification of Secondary Organic Aerosol Using a Microflow Reactor Coupled to HPLC-MS and NMR to Manufacture Ad Hoc Calibration Standards. Anal Chem 2014; 86:11238-45. [DOI: 10.1021/ac5028512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Emanuela Finessi
- Wolfson Atmospheric
Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Richard T. Lidster
- Wolfson Atmospheric
Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Fiona Whiting
- Wolfson Atmospheric
Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Thomas Elliott
- Wolfson Atmospheric
Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - M. Rami Alfarra
- National Centre
for Atmospheric Science (NCAS), School of Earth, Atmospheric
and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Gordon B. McFiggans
- Centre for Atmospheric
Science, School of Earth, Atmospheric and Environmental
Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jacqueline F. Hamilton
- Wolfson Atmospheric
Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
33
|
Dette HP, Qi M, Schröder DC, Godt A, Koop T. Glass-Forming Properties of 3-Methylbutane-1,2,3-tricarboxylic Acid and Its Mixtures with Water and Pinonic Acid. J Phys Chem A 2014; 118:7024-33. [DOI: 10.1021/jp505910w] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hans P. Dette
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Mian Qi
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - David C. Schröder
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Thomas Koop
- Faculty of Chemistry and ‡Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
34
|
Kahnt A, Iinuma Y, Blockhuys F, Mutzel A, Vermeylen R, Kleindienst TE, Jaoui M, Offenberg JH, Lewandowski M, Böge O, Herrmann H, Maenhaut W, Claeys M. 2-hydroxyterpenylic acid: an oxygenated marker compound for α-pinene secondary organic aerosol in ambient fine aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4901-8. [PMID: 24697354 DOI: 10.1021/es500377d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An oxygenated MW 188 compound is commonly observed in substantial abundance in atmospheric aerosol samples and was proposed in previous studies as an α-pinene-related marker compound that is associated with aging processes. Owing to difficulties in producing this compound in sufficient amounts in laboratory studies and the occurrence of isobaric isomers, a complete assignment for individual MW 188 compounds could not be achieved in these studies. Results from a comprehensive mass spectrometric analysis are presented here to corroborate the proposed structure of the most abundant MW 188 compound as a 2-hydroxyterpenylic acid diastereoisomer with 2R,3R configuration. The application of collision-induced dissociation with liquid chromatography/electrospray ionization-ion trap mass spectrometry in both negative and positive ion modes, as well as chemical derivatization to methyl ester derivatives and analysis by the latter technique and gas chromatography/electron ionization mass spectrometry, enabled a comprehensive characterization of MW 188 isomers, including a detailed study of the fragmentation behavior using both mass spectrometric techniques. Furthermore, a MW 188 positional isomer, 4-hydroxyterpenylic acid, was tentatively identified, which also is of atmospheric relevance as it could be detected in ambient fine aerosol. Quantum chemical calculations were performed to support the diastereoisomeric assignment of the 2-hydroxyterpenylic acid isomers. Results from a time-resolved α-pinene photooxidation experiment show that the 2-hydroxyterpenylic acid 2R,3R diastereoisomer has a time profile distinctly different from that of 3-methyl-1,2,3-butanetricarboxylic acid, a marker for oxygenated (aged) secondary organic aerosol. This study presents a comprehensive chemical data set for a more complete structural characterization of hydroxyterpenylic acids in ambient fine aerosol, which sets the foundation to better understand the atmospheric fate of α-pinene in future studies.
Collapse
Affiliation(s)
- Ariane Kahnt
- Department of Pharmaceutical Sciences and §Department of Chemistry, University of Antwerp , Campus Drie Eiken, BE 2610 Antwerp, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Brüggemann M, Vogel AL, Hoffmann T. Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2014; 20:31-41. [PMID: 24881453 DOI: 10.1255/ejms.1260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present the development and characterization of a combination of a micro-orifice volatilization impactor (MOVI) and an ion trap mass spectrometer (IT/MS) with an atmospheric-pressure chemical ionization (APCI) source. The MOVI is a multi-jet impactor with 100 nozzles, allowing the collection of aerosol particles by inertial impaction on a deposition plate. The pressure drop behind the nozzles is approximately 5%, resulting in a pressure of 96kPa on the collection surface for ambient pressures of 101.3 kPa. The cut-point diameter (diameter of 50% collection efficiency) is at 0.13 microm for a sampling flow rate of 10 L min(-1). After the collection step, aerosol particles are evaporated by heating the impaction surface and transferred into the APCI-IT/MS for detection of the analytes. APCI was used in the negative ion mode to detect predominantly mono- and dicarboxylic acids, which are major oxidation products of biogenic terpenes. The MOVI-APCI-IT/MS instrument was used for the analysis of laboratory-generated secondary organic aerosol (SOA), which was generated by ozonolysis of alpha-pinene in a 100 L continuous-flow reactor under dark and dry conditions. The combination of the MOVI with an APCI-IT/MS improved the detection Limits for small dicarboxylic acids, such as pinic acid, compared to online measurements by APCI-IT/MS. The Limits of detection and quantification for pinic acid were determined by external calibration to 4.4 ng and 13.2 ng, respectively. During a field campaign in the southern Rocky Mountains (USA) in summer 2011 (BEACHON-RoMBAS), the MOVI-APCI-IT/MS was applied for the analysis of ambient organic aerosols and the quantification of individual biogenic SOA marker compounds. Based on a measurement frequency of approximately 5 h, a diurnal cycle for pinic acid in the sampled aerosol particles was found with maximum concentrations at night (median: 10.1 ngm(-3)) and minimum concentrations during the day (median: 8.2 ng m(-3)), which is likely due to the partitioning behavior of pinic acid and the changing phase state of the organic aerosol particles with changing relative humidity.
Collapse
|
36
|
Kourtchev I, Fuller S, Aalto J, Ruuskanen TM, McLeod MW, Maenhaut W, Jones R, Kulmala M, Kalberer M. Molecular composition of boreal forest aerosol from Hyytiälä, Finland, using ultrahigh resolution mass spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4069-4079. [PMID: 23469832 DOI: 10.1021/es3051636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organic compounds are important constituents of fine particulate matter (PM) in the troposphere. In this study, we applied direct infusion nanoelectrospray (nanoESI) ultrahigh resolution mass spectrometry (UHR-MS) and liquid chromatography LC/ESI-UHR-MS for the analysis of the organic fraction of PM1 aerosol samples collected over a two week period at a boreal forest site (Hyytiälä), southern Finland. Elemental formulas (460-730 in total) were identified with nanoESI-UHR-MS in the negative ionization mode and attributed to organic compounds with a molecular weight below 400. Kendrick Mass Defect and Van Krevelen approaches were used to identify compound classes and mass distributions of the detected species. The molecular composition of the aerosols strongly varied between samples with different air mass histories. An increased number of nitrogen, sulfur, and highly oxygenated organic compounds was observed during the days associated with continental air masses. However, the samples with Atlantic air mass history were marked by a presence of homologous series of unsaturated and saturated C12-C20 fatty acids suggesting their marine origin. To our knowledge, we show for the first time that the highly detailed chemical composition obtained from UHR-MS analyses can be clearly linked to meteorological parameters and trace gases concentrations that are relevant to atmospheric oxidation processes. The additional LC/ESI-UHR-MS analysis revealed 29 species, which were mainly attributed to oxidation products of biogenic volatile compounds BVOCs (i.e., α,β-pinene, Δ3-carene, limonene, and isoprene) supporting the results from the direct infusion analysis.
Collapse
Affiliation(s)
- Ivan Kourtchev
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Aida S, Terao K, Nishiyama Y, Kakiuchi K, Oelgemöller M. Microflow photochemistry—a reactor comparison study using the photochemical synthesis of terebic acid as a model reaction. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Tracers for Biogenic Secondary Organic Aerosol from α-Pinene and Related Monoterpenes: An Overview. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-94-007-5034-0_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|