1
|
Lou W, Ting HC, Reynolds CA, Tyurina YY, Tyurin VA, Li Y, Ji J, Yu W, Liang Z, Stoyanovsky DA, Anthonymuthu TS, Frasso MA, Wipf P, Greenberger JS, Bayır H, Kagan VE, Greenberg ML. Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1354-1368. [PMID: 29935382 PMCID: PMC6641546 DOI: 10.1016/j.bbalip.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Cardiolipin (CL) is a unique phospholipid localized almost exclusively within the mitochondrial membranes where it is synthesized. Newly synthesized CL undergoes acyl remodeling to produce CL species enriched with unsaturated acyl groups. Cld1 is the only identified CL-specific phospholipase in yeast and is required to initiate the CL remodeling pathway. In higher eukaryotes, peroxidation of CL, yielding CLOX, has been implicated in the cellular signaling events that initiate apoptosis. CLOX can undergo enzymatic hydrolysis, resulting in the release of lipid mediators with signaling properties. Our previous findings suggested that CLD1 expression is upregulated in response to oxidative stress, and that one of the physiological roles of CL remodeling is to remove peroxidized CL. To exploit the powerful yeast model to study functions of CLD1 in CL peroxidation, we expressed the H. brasiliensis Δ12-desaturase gene in yeast, which then synthesized poly unsaturated fatty acids(PUFAs) that are incorporated into CL species. Using LC-MS based redox phospholipidomics, we identified and quantified the molecular species of CL and other phospholipids in cld1Δ vs. WT cells. Loss of CLD1 led to a dramatic decrease in chronological lifespan, mitochondrial membrane potential, and respiratory capacity; it also resulted in increased levels of mono-hydroperoxy-CLs, particularly among the highly unsaturated CL species, including tetralinoleoyl-CL. In addition, purified Cld1 exhibited a higher affinity for CLOX, and treatment of cells with H2O2 increased CLD1 expression in the logarithmic growth phase. These data suggest that CLD1 expression is required to mitigate oxidative stress. The findings from this study contribute to our overall understanding of CL remodeling and its role in mitigating oxidative stress.
Collapse
Affiliation(s)
- Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hsiu-Chi Ting
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christian A Reynolds
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Detcho A Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamil S Anthonymuthu
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael A Frasso
- Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Chemistry, University of Pittsburgh, Pittsburgh, PA, United States; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States; Laboratory of Navigational Redox Lipidomics,and Department of Human Pathology, IM Sechenov Moscow State Medical University, Moscow, Russian Federation.
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
2
|
Losito I, Facchini L, Diomede S, Conte E, Megli FM, Cataldi TRI, Palmisano F. Hydrophilic interaction liquid chromatography-electrospray ionization-tandem mass spectrometry of a complex mixture of native and oxidized phospholipids. J Chromatogr A 2015; 1422:194-205. [PMID: 26508677 DOI: 10.1016/j.chroma.2015.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/28/2022]
Abstract
A mixture of native and oxidized phospholipids (PLs), generated by the soybean lipoxygenase type V-catalyzed partial oxidation of a lipid extract obtained from human platelets, was analyzed by Hydrophilic Interaction Liquid Chromatography-ElectroSpray Ionization-Tandem Mass Spectrometry (HILIC-ESI-MS/MS). The complexity of the resulting mixture was remarkable, considering that the starting lipid extract, containing (as demonstrated in a previous study) about 130 native PLs, was enriched with enzymatically generated hydroperoxylated derivatives and chemically generated hydroxylated forms of PLs bearing polyunsaturated side chains. Nonetheless, the described analytical approach proved to be very powerful; indeed, focusing on phosphatidylcolines (PCs), the most abundant PL class in human platelets, about fifty different native/oxidized species could be identified in a single HILIC-ESI-MS/MS run. Low-energy collision induced dissociation tandem MS (CID-MS/MS) experiments on chromatographically separated species showed single neutral losses of H2O2 and H2O to be typical fragmentation pathways of hydroperoxylated PCs, whereas a single H2O loss was observed for hydroxylated ones. Moreover, diagnostic losses of n-hexanal or n-pentanol were exploited to recognize PCs hydroperoxylated on the last but five carbon atom of a ɷ-6 polyunsaturated side chain. Despite the low resolution of the 3D ion trap mass analyzer used, the described HILIC-ESI-MS/MS approach appears very promising for the identification of oxidized lipids in oxidatively stressed complex biological systems.
Collapse
Affiliation(s)
- I Losito
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy.
| | - L Facchini
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - S Diomede
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - E Conte
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - F M Megli
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - T R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| | - F Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy; Centro Interdipartimentale SMART, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70126 Bari, Italy
| |
Collapse
|
3
|
Balasubramanian K, Maeda A, Lee JS, Mohammadyani D, Dar HH, Jiang JF, St Croix CM, Watkins S, Tyurin VA, Tyurina YY, Klöditz K, Polimova A, Kapralova VI, Xiong Z, Ray P, Klein-Seetharaman J, Mallampalli RK, Bayir H, Fadeel B, Kagan VE. Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity. Sci Signal 2015; 8:ra95. [PMID: 26396268 PMCID: PMC4760701 DOI: 10.1126/scisignal.aaa6179] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the distinct molecular signatures present in the mitochondrion is the tetra-acylated anionic phospholipid cardiolipin, a lipid also present in primordial, single-cell bacterial ancestors of mitochondria and multiple bacterial species today. Cardiolipin is normally localized to the inner mitochondrial membrane; however, when cardiolipin becomes externalized to the surface of dysregulated mitochondria, it promotes inflammasome activation and stimulates the elimination of damaged or nonfunctional mitochondria by mitophagy. Given the immunogenicity of mitochondrial and bacterial membranes that are released during sterile and pathogen-induced trauma, we hypothesized that cardiolipins might function as "eat me" signals for professional phagocytes. In experiments with macrophage cell lines and primary macrophages, we found that membranes with mitochondrial or bacterial cardiolipins on their surface were engulfed through phagocytosis, which depended on the scavenger receptor CD36. Distinct from this process, the copresentation of cardiolipin with the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide dampened TLR4-stimulated production of cytokines. These data suggest that externalized, extracellular cardiolipins play a dual role in host-host and host-pathogen interactions by promoting phagocytosis and attenuating inflammatory immune responses.
Collapse
Affiliation(s)
- Krishnakumar Balasubramanian
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Akihiro Maeda
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Janet S Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dariush Mohammadyani
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Haider Hussain Dar
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jian Fei Jiang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Katharina Klöditz
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Anastassia Polimova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valentyna I Kapralova
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Zeyu Xiong
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Rama K Mallampalli
- Department of Internal Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA. Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15215, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA. Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
4
|
Does hydrogen bonding contribute to lipoperoxidation-dependent membrane fluidity variation? An EPR-spin labeling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2040-9. [PMID: 25983307 DOI: 10.1016/j.bbamem.2015.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
Abstract
This study is aimed at making clear the relationship between oxidative stress of the phospholipid bilayer and membrane fluidity. Di-(hydroperoxylinoleoyl)-phosphatidylcholine (diHpLPC) was used as a highly hydroperoxidized and unsaturated phospholipid species in order to investigate the issue. Hydrophylic Interaction Liquid Chromatography-ElectroSpray Ionization-Mass Spectrometry (HILIC-ESI-MS) and NMR spectroscopy were employed to define the structure of the peroxidized phospholipid as 1-(9-hydroperoxy-10c,12t)octadecadienoyl-2-(9t,11c-13-hydroperoxy)octadecadienoyl-sn-glycero-3-phosphorylcholine. This phospholipid's ability to form vesicular structures was confirmed by Sepharose 4B gel filtration and Dynamic Light Scattering (DLS) of its aqueous suspensions. Fatty acid misalignment and fluidity gradient were studied in the bilayer of both supported planar bilayers (SPB) and multilamellar vesicles (MLV) made of different DLPC/diHpLPC mixtures by means of spin labelling-EPR spectroscopy of either n-DSPC or 3-doxylcholestane spin labels embedded in the membranes. It was found that diHpLPC increases both fatty acid misalignment and rigidification with increasing molar ratio in spite of increasing unsaturation of the fatty acid core. Basing on our observations, the observed ability of pure diHpLPC to form rigid and disordered SPB and MLV bilayers is proposed to be dependent on the cross bridging of oxidized linoleoyl chains by mutual hydrogen bonding of hydroperoxyl groups. However, the contribution to the observed overall rigidification of the model membranes by trans double bonds in the peroxidized chains should not be neglected, as a second membrane fluidity effector also arising from lipid peroxidation.
Collapse
|
5
|
Tyurina YY, Domingues RM, Tyurin VA, Maciel E, Domingues P, Amoscato AA, Bayir H, Kagan VE. Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids 2014; 179:3-10. [PMID: 24333544 PMCID: PMC4025908 DOI: 10.1016/j.chemphyslip.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022]
Abstract
Cardiolipins, a class of mitochondria-specific lipid molecules, is one of the most unusual and ancient phospholipids found in essentially all living species. Typical of mammalian cells is the presence of vulnerable to oxidation polyunsaturated fatty acid resides in CL molecules. The overall role and involvement of cardiolipin oxidation (CLox) products in major intracellular signaling as well as extracellular inflammatory and immune responses have been established. However, identification of individual peroxidized molecular species in the context of their ability to induce specific biological responses has not been yet achieved. This is due, at least in part, to technological difficulties in detection, identification, structural characterization and quantitation of CLox associated with their very low abundance and exquisite diversification. This dictates the need for the development of new methodologies for reliable, sensitive and selective analysis of both CLox. LC-MS-based oxidative lipidomics with high mass accuracy instrumentation as well as new software packages are promising in achieving the goals of expedited and reliable analysis of cardiolipin oxygenated species in biosamples.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Rosario M Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisabete Maciel
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
6
|
Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal Bioanal Chem 2013; 406:1291-306. [DOI: 10.1007/s00216-013-7534-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
7
|
Decline in cytochrome c oxidase activity in rat-brain mitochondria with aging. Role of peroxidized cardiolipin and beneficial effect of melatonin. J Bioenerg Biomembr 2013; 45:431-40. [PMID: 23494666 DOI: 10.1007/s10863-013-9505-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/26/2013] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) are considered a key factor in mitochondrial dysfunction associated with brain aging process. Mitochondrial respiration is an important source of ROS and hence a potential contributor to brain functional changes with aging. In this study, we examined the effect of aging on cytochrome c oxidase activity and other bioenergetic processes such as oxygen consumption, membrane potential and ROS production in rat brain mitochondria. We found a significant age-dependent decline in the cytochrome c oxidase activity which was associated with parallel changes in state 3 respiration, membrane potential and with an increase in H2O2 generation. The cytochrome aa3 content was practically unchanged in mitochondria from young and aged animals. The age-dependent decline of cytochrome c oxidase activity could be restored, in situ, to the level of young animals, by exogenously added cardiolipin. In addition, exposure of brain mitochondria to peroxidized cardiolipin resulted in an inactivation of this enzyme complex. It is suggested that oxidation/depletion of cardiolipin could be responsible, at least in part, for the decline of cytochrome c oxidase and mitochondrial dysfunction in brain aging. Melatonin treatment of old animals largely prevented the age-associated alterations of mitochondrial bioenergetic parameters. These results may prove useful in elucidating the molecular mechanisms underlying mitochondrial dysfunction associated with brain aging process, and may have implications in etiopathology of age-associated neurodegenerative disorders and in the development of potential treatment strategies.
Collapse
|