1
|
Li R, Heuer J, Kuckhoff T, Landfester K, Ferguson CTJ. pH-Triggered Recovery of Organic Polymer Photocatalytic Particles for the Production of High Value Compounds and Enhanced Recyclability. Angew Chem Int Ed Engl 2023; 62:e202217652. [PMID: 36749562 DOI: 10.1002/anie.202217652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Pseudo-homogeneous polymeric photocatalysts are an emerging class of highly efficient and tunable photocatalytic materials, where the photocatalytic centers are easily accessible. The creation of highly efficient photocatalytic materials that can be rapidly separated and recovered is one of the critical challenges in photocatalytic chemistry. Here, we describe pH-responsive photocatalytic nanoparticles that are active and well-dispersed under acidic conditions but aggregate instantly upon elevation of pH, enabling easy recovery. These responsive photocatalytic polymers can be used in various photocatalytic transformations, including CrVI reduction and photoredox alkylation of indole derivative. Notably, the cationic nature of the photocatalyst accelerates reaction rate of an anionic substrate compared to uncharged species. These photocatalytic particles could be readily recycled allowing multiple successive photocatalytic reactions with no clear loss in activity.
Collapse
Affiliation(s)
- Rong Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Julian Heuer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Thomas Kuckhoff
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,School of Chemistry, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Bełdowski P, Przybyłek M, Raczyński P, Dedinaite A, Górny K, Wieland F, Dendzik Z, Sionkowska A, Claesson PM. Albumin-Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics. Int J Mol Sci 2021; 22:ijms222212360. [PMID: 34830249 PMCID: PMC8625520 DOI: 10.3390/ijms222212360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin is one of the major components in synovial fluid. Its electrostatic properties, including the ability to form molecular complexes, are closely related to pH, solvation, and the presence of ions. In the context of synovial fluid, it is relevant to describe the possible interactions between albumin and hyaluronate, taking into account solution composition effects. In this study, the influence of Na+, Mg2+, and Ca2+ ions on human serum albumin–hyaluronan interactions were examined using molecular dynamics tools. It was established that the presence of divalent cations, and especially Ca2+, contributes mostly to the increase of the affinity between hyaluronan and albumin, which is associated with charge compensation in negatively charged hyaluronan and albumin. Furthermore, the most probable binding sites were structurally and energetically characterized. The indicated moieties exhibit a locally positive charge which enables hyaluronate binding (direct and water mediated).
Collapse
Affiliation(s)
- Piotr Bełdowski
- Faculty of Chemical Technology and Engineering, Institute of Mathematics & Physics, Bydgoszcz University of Science & Technology, 85-796 Bydgoszcz, Poland
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Engineering Pedagogics, SE-100 44 Stockholm, Sweden;
- Correspondence:
| | - Maciej Przybyłek
- Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950 Bydgoszcz, Poland;
| | - Przemysław Raczyński
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (P.R.); (K.G.); (Z.D.)
| | - Andra Dedinaite
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Engineering Pedagogics, SE-100 44 Stockholm, Sweden;
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Krzysztof Górny
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (P.R.); (K.G.); (Z.D.)
| | - Florian Wieland
- Helmholtz-Zentrum Hereon: Institute for metallic Biomaterials, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| | - Zbigniew Dendzik
- Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland; (P.R.); (K.G.); (Z.D.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Torun, Poland;
| | - Per M. Claesson
- KTH Royal Institute of Technology, Department of Chemistry, Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, SE-100 44 Stockholm, Sweden;
| |
Collapse
|
3
|
Bonney JR, Prentice BM. Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation. Anal Chem 2021; 93:6311-6322. [PMID: 33856206 PMCID: PMC8177724 DOI: 10.1021/acs.analchem.1c00061] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipids and metabolites are of interest in many clinical and research settings because it is the metabolome that is increasingly recognized as a more dynamic and sensitive molecular measure of phenotype. The enormous diversity of lipid structures and the importance of biological structure-function relationships in a wide variety of applications makes accurate identification a challenging yet crucial area of research in the lipid community. Indeed, subtle differences in the chemical structures of lipids can have important implications in cellular metabolism and many disease pathologies. The speed, sensitivity, and molecular specificity afforded by modern mass spectrometry has led to its widespread adoption in the field of lipidomics on many different instrument platforms and experimental workflows. However, unambiguous and complete structural identification of lipids by mass spectrometry remains challenging. Increasingly sophisticated tandem mass spectrometry (MS/MS) approaches are now being developed and seamlessly integrated into lipidomics workflows to meet this challenge. These approaches generally either (i) alter the type of ion that is interrogated or (ii) alter the dissociation method in order to improve the structural information obtained from the MS/MS experiment. In this Perspective, we highlight recent advances in both ion type alteration and ion dissociation methods for lipid identification by mass spectrometry. This discussion is aimed to engage investigators involved in fundamental ion chemistry and technology developments as well as practitioners of lipidomics and its many applications. The rapid rate of technology development in recent years has accelerated and strengthened the ties between these two research communities. We identify the common characteristics and practical figures of merit of these emerging approaches and discuss ways these may catalyze future directions of lipid structural elucidation research.
Collapse
Affiliation(s)
- Julia R Bonney
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Boone M Prentice
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Chen BW, He YC, Sung SY, Le TTH, Hsieh CL, Chen JY, Wei ZH, Yao DJ. Synthesis and characterization of magnetic nanoparticles coated with polystyrene sulfonic acid for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2020; 21:471-481. [PMID: 32939172 PMCID: PMC7476547 DOI: 10.1080/14686996.2020.1790032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 05/31/2023]
Abstract
The development of novel magnetic nanoparticles (MNPs) with satisfactory biocompatibility for biomedical applications has been the subject of extensive exploration over the past two decades. In this work, we synthesized superparamagnetic iron oxide MNPs coated with polystyrene sulfonic acid (PSS-MNPs) and with a conventional co-precipitation method. The core size and hydrodynamic diameter of the PSS-MNPs were determined as 8-18 nm and 50-200 nm with a transmission electron microscopy and dynamic light scattering, respectively. The saturation magnetization of the particles was measured as 60 emu g-1 with a superconducting quantum-interference-device magnetometer. The PSS content in the PSS-MNPs was 17% of the entire PSS-MNPs according to thermogravimetric analysis. Fourier-transform infrared spectra were recorded to detect the presence of SO3 - groups, which confirmed a successful PSS coating. The structural properties of the PSS-MNPs, including the crystalline lattice, composition and phases, were characterized with an X-ray powder diffractometer and 3D nanometer-scale Raman microspectrometer. MTT assay and Prussian-blue staining showed that, although PSS-MNPs caused no cytotoxicity in both NIH-3T3 mouse fibroblasts and SK-HEP1 human liver-cancer cells up to 1000 μg mL-1, SK-HEP1 cells exhibited significantly greater uptake of PSS-MNPs than NIH-3T3 cells. The low cytotoxicity and high biocompatibility of PSS-MNPs in human cancer cells demonstrated in the present work might have prospective applications for drug delivery.
Collapse
Affiliation(s)
- Bo-Wei Chen
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Chi He
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Trang Thi Huynh Le
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiann-Yeu Chen
- Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Zung-Hang Wei
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Da-Jeng Yao
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Chao HC, Shih M, McLuckey SA. Generation of Multiply Charged Protein Anions from Multiply Charged Protein Cations via Gas-Phase Ion/Ion Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1509-1517. [PMID: 32421340 PMCID: PMC7332380 DOI: 10.1021/jasms.0c00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a novel charge inversion ion/ion reaction that converts multiply charged protein cations to multiply charged protein anions via a single ion/ion collision using highly charged anions derived from nanoelectrospray ionization (nESI) of hyaluronic acids (HAs). This type of charge inversion reaction is demonstrated with cations derived from cytochrome c, apo-myoglobin, and carbonic anhydrase (CA) cations. For example, the reaction has been demonstrated to convert the [CA+22H]22+ carbonic anhydrase cation to a distribution of anions as high in absolute charge as [CA-19H]19-. Ion/ion reactions involving multiply charged ions of opposite polarity have previously been observed to result predominantly in the attachment of the reactant ions. All mechanisms for ion/ion charge inversion involving low energy ions proceed via the formation of a long-lived complex. Factors that underlie the charge inversion of protein cations to high anionic charge states in reaction with HA anions are hypothesized to include: (i) the relatively high charge densities of the HA anions that facilitate the extraction of multiple protons from the protein leading to multiply charged protein anions, (ii) the relatively high sum of absolute charges of the reactants that leads to high initial energies in the ion/ion complex, and (iii) the relatively high charge of the ion/ion complex following the multiple proton transfers that tends to destabilize the complex.
Collapse
Affiliation(s)
| | | | - Scott A. McLuckey
- Address correspondence to: Dr. Scott A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
6
|
Wang N, Pilo AL, Zhao F, Bu J, McLuckey SA. Gas-phase rearrangement reaction of Schiff-base-modified peptide ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:2166-2173. [PMID: 30280440 PMCID: PMC6657513 DOI: 10.1002/rcm.8298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Schiff base modification of peptides has been shown to facilitate their primary structural characterization via tandem mass spectrometry. However, we have discovered a novel rearrangement reaction via ion trap collisional activation involving the imine of the Schiff base and one of several functional groups, particularly the side chains of the basic residues lysine, arginine, and histidine, in the peptide. METHODS Gas-phase ion/ion reactions involving an aldehyde-containing reagent were used to generate Schiff-base-modified model peptides in a hybrid triple quadrupole/linear ion trap tandem mass spectrometer. Subsequent ion trap collisional activation was used to study the rearrangement reaction. RESULTS Schiff-base-modified peptide ions were found to undergo a rearrangement reaction that was observed to be either a major or minor contributor to the product ion spectrum, depending upon a variety of factors that include, for example, ion polarity, identity of the nucleophile in the peptide (e.g., side chains of lysine, histidine, and arginine), and the position of the nucleophile relative to the imine. CONCLUSIONS Relatively low-energy rearrangement reactions can occur in Schiff-base-modified peptide ions that involve the imine of the Schiff base and a nucleophile present in the polypeptide. While this rearrangement process does not appear to compromise the structural information that can be generated via collisional activation of Schiff-base-modified peptide ions, it can siphon away signal from the structurally diagnostic processes in some instances.
Collapse
Affiliation(s)
| | | | | | | | - Scott A. McLuckey
- Address reprint requested to: Dr. S. A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
7
|
Garimella SVB, Webb IK, Prabhakaran A, Attah IK, Ibrahim YM, Smith RD. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1442-1449. [PMID: 28560562 PMCID: PMC5551421 DOI: 10.1007/s13361-017-1680-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 05/06/2023]
Abstract
Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Aneesh Prabhakaran
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
8
|
Cotham VC, McGee WM, Brodbelt JS. Modulation of Phosphopeptide Fragmentation via Dual Spray Ion/Ion Reactions Using a Sulfonate-Incorporating Reagent. Anal Chem 2016; 88:8158-65. [PMID: 27467576 DOI: 10.1021/acs.analchem.6b01901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The labile nature of phosphoryl groups has presented a long-standing challenge for the characterization of protein phosphorylation via conventional mass spectrometry-based bottom-up proteomics methods. Collision-induced dissociation (CID) causes preferential cleavage of the phospho-ester bond of peptides, particularly under conditions of low proton mobility, and results in the suppression of sequence-informative fragmentation that often prohibits phosphosite determination. In the present study, the fragmentation patterns of phosphopeptides are improved through ion/ion-mediated peptide derivatization with 4-formyl-1,3-benezenedisulfonic acid (FBDSA) anions using a dual spray reactor. This approach exploits the strong electrostatic interactions between the sulfonate moieties of FBDSA and basic sites to facilitate gas-phase bioconjugation and to reduce charge sequestration and increase the yield of phosphate-retaining sequence ions upon CID. Moreover, comparative CID fragmentation analysis between unmodified phosphopeptides and those modified online with FBDSA or in solution via carbamylation and 4-sulfophenyl isothiocyanate (SPITC) provided evidence for sulfonate interference with charge-directed mechanisms that result in preferential phosphate elimination. Our results indicate the prominence of charge-directed neighboring group participation reactions involved in phosphate neutral loss, and the implementation of ion/ion reactions in a dual spray reactor setup provides a means to disrupt the interactions by competing hydrogen-bonding interactions between sulfonate groups and the side chains of basic residues.
Collapse
Affiliation(s)
- Victoria C Cotham
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - William M McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
9
|
Cotham VC, Shaw JB, Brodbelt JS. High-throughput bioconjugation for enhanced 193 nm photodissociation via droplet phase initiated ion/ion chemistry using a front-end dual spray reactor. Anal Chem 2015; 87:9396-402. [PMID: 26322807 DOI: 10.1021/acs.analchem.5b02242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fast online chemical derivatization of peptides with an aromatic label for enhanced 193 nm ultraviolet photodissociation (UVPD) is demonstrated using a dual electrospray reactor implemented on the front-end of a linear ion trap (LIT) mass spectrometer. The reactor facilitates the intersection of protonated peptides with a second population of chromogenic 4-formyl-1,3-benzenedisulfonic acid (FBDSA) anions to promote real-time formation of ion/ion complexes at atmospheric pressure. Subsequent collisional activation of the ion/ion intermediate results in Schiff base formation generated via reaction between a primary amine in the peptide cation and the aldehyde moiety of the FBDSA anion. Utilizing 193 nm UVPD as the subsequent activation step in the MS(3) workflow results in acquisition of greater primary sequence information relative to conventional collision induced dissociation (CID). Furthermore, Schiff-base-modified peptides exhibit on average a 20% increase in UVPD efficiency compared to their unmodified counterparts. Due to the efficiency of covalent labeling achieved with the dual spray reactor, we demonstrate that this strategy can be integrated into a high-throughput LC-MS(n) workflow for rapid derivatization of peptide mixtures.
Collapse
Affiliation(s)
- Victoria C Cotham
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street, Austin, Texas 78712, United States
| | - Jared B Shaw
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Luongo CA, Bu J, Burke NL, Gilbert JD, Prentice BM, Cummings S, Reed CA, McLuckey SA. Selective removal of alkali metal cations from multiply-charged ions via gas-phase ion/ion reactions using weakly coordinating anions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:404-414. [PMID: 25560986 DOI: 10.1007/s13361-014-1052-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 06/04/2023]
Abstract
Selective removal of alkali metal cations from mixed cation multiply-charged peptide ions is demonstrated here using gas-phase ion/ion reactions with a series of weakly coordinating anions (WCAs), including hexafluorophosphate (PF6 (-)), tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BARF), tetrakis(pentafluorophenyl)borate (TPPB), and carborane (CHB11Cl11 (-)). In all cases, a long-lived complex is generated by dication/anion condensation followed by ion activation to compare proton transfer with alkali ion transfer from the peptide to the anion. The carborane anion was the only anion studied to undergo dissociation exclusively through loss of the metallated anion, regardless of the studied metal adduct. All other anions studied yield varying abundances of protonated and metallated peptide depending on the peptide sequence and the metal identity. Density functional theory calculations suggest that for the WCAs studied, metal ion transfer is most strongly favored thermodynamically, which is consistent with the experimental results. The carborane anion is demonstrated to be a robust reagent for the selective removal of alkali metal cations from peptide cations with mixtures of excess protons and metal cations.
Collapse
Affiliation(s)
- Carl A Luongo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nonose S, Yamashita K, Okamura T, Fukase S, Kawashima M, Sudo A, Isono H. Conformations of disulfide-intact and -reduced lysozyme ions probed by proton-transfer reactions at various temperatures. J Phys Chem B 2014; 118:9651-61. [PMID: 25046209 DOI: 10.1021/jp505621f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-transfer reactions of disulfide-intact and -reduced lysozyme ions (7+ through 14+) to 2,6-dimethylpyridine were examined in the gas phase using tandem mass spectrometry with electrospray ionization. By changing temperature of a collision cell from 280 to 460 K, temperature dependence of reaction rate constants and branching fractions was measured. Absolute reaction rate constants for the protein ions of specific charge states were determined from intensities of parent and product ions in the mass spectra. Remarkable change was observed for the rate constants and distribution of product ions. The rate constants for disulfide-intact ions changed more drastically with change of charge states and temperature than those for disulfide-reduced ions. Observed branching fractions for parent and product ions were represented by calculated reaction rate constants with a scheme of sequential process. The reaction rate constants are closely related to conformation changes with change of temperature, which are profoundly influenced by amputation of disulfide bonds.
Collapse
Affiliation(s)
- Shinji Nonose
- Graduate School of Nanobioscience, Yokohama City University , Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Liu X, Tabet JC, Cole RB. Evidence for ion-ion interactions between peptides and anions (HSO₄⁻ or ClO₄⁻) derived from high-acidity acids. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:490-497. [PMID: 24913401 DOI: 10.1002/jms.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
The existence of gas-phase electrostatic ion-ion interactions between protonated sites on peptides ([Glu] Fibrinopeptide B, Angiotensin I and [Asn(1), Val(5)]-Angiotensin II) and attaching anions (ClO4(-) and HSO4(-)) derived from strong inorganic acids has been confirmed by CID MS/MS. Evidence for ion-ion interactions comes especially from the product ions formed during the first dissociation step, where, in addition to the expected loss of the anion or neutral acid, other product ions are also observed that require covalent bond cleavage (i.e. H2O loss when several carboxylate groups are present, or NH3 loss when only one carboxylate group is present). For [[Glu] Fibrinopeptide B + HSO4](-), under CID, H2O water loss was found to require less energy than H2SO4 departure. This indicates that the interaction between HSO4(-) and the peptide is stronger than the covalent bond holding the hydroxyl group, and must be an ion-ion interaction. The strength and stability of this type of ion-pairing interaction are highly dependent on the accessibility of additional mobile charges to the site. Positive mobile charges such as protons from the peptide can be transferred to the attaching anion to possibly form a neutral that may depart from the complex. Alternatively, an ion-ion interaction can be disrupted by a competing proximal additional negatively charged site of the peptide that can potentially form a salt bridge with the positively charged site and thereby facilitate the attaching anion's departure.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA, 70148, USA
| | | | | |
Collapse
|
13
|
McGee WM, McLuckey SA. Gas Phase Dissociation Behavior of Acyl-Arginine Peptides. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 354-356:181-187. [PMID: 24465154 PMCID: PMC3899352 DOI: 10.1016/j.ijms.2013.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The gas phase dissociation behavior of peptides containing acyl-arginine residues is investigated. These acylations are generated via a combination of ion/ion reactions between arginine-containing peptides and N-hydroxysuccinimide (NHS) esters and subsequent tandem mass spectrometry (MS/MS). Three main dissociation pathways of acylated arginine, labeled Paths 1-3, have been identified and are dependent on the acyl groups. Path 1 involves the acyl-arginine undergoing deguanidination, resulting in the loss of the acyl group and dissociation of the guanidine to generate an ornithine residue. This pathway generates selective cleavage sites based on the recently discussed "ornithine effect". Path 2 involves the coordinated losses of H2O and NH3 from the acyl-arginine side chain while maintaining the acylation. We propose that Path 2 is initiated via cyclization of the δ-nitrogen of arginine and the C-terminal carbonyl carbon, resulting in rapid rearrangement from the acyl-arginine side chain and the neutral losses. Path 3 occurs when the acyl group contains α-hydrogens and is observed as a rearrangement to regenerate unmodified arginine while the acylation is lost as a ketene.
Collapse
Affiliation(s)
| | - Scott A. McLuckey
- Address reprint requests to: Dr. S. A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
14
|
Prentice BM, McGee WM, Stutzman JR, McLuckey SA. Strategies for the Gas Phase Modification of Cationized Arginine via Ion/ion Reactions. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2013; 354-355:10.1016/j.ijms.2013.05.026. [PMID: 24273437 PMCID: PMC3835304 DOI: 10.1016/j.ijms.2013.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The gas phase acetylation of cationized arginine residues is demonstrated here using ion/ion reactions with sulfosuccinimidyl acetate (sulfo-NHS acetate) anions. Previous reports have demonstrated the gas phase modification of uncharged primary amine (the N-terminus and ε-amino side chain of lysine) and uncharged guanidine (the arginine side chain) functionalities via sulfo-NHS ester chemistry. Herein, charge-saturated arginine-containing peptides that contain sodium ions as the charge carriers, such as [ac-ARAAARA+2Na]2+, are shown to exhibit strong reactivity towards sulfo-NHS acetate whereas the protonated peptide analogues exhibit no such reactivity. This difference in reactivity is attributed to the lower sodium ion (as compared to proton) affinity of the arginine, which results in increased nucleophilicity of the cationized arginine guanidinium functionality. This increased nucleophilicity improves the arginine residue's reactivity towards sulfo-NHS esters and enhances the gas phase covalent modification pathway. No such dramatic increase in reactivity towards sulfo-NHS acetate has been observed upon sodium cationization of lysine amino acid residues, indicating that this behavior appears to be unique to arginine. The sodium cationization process is demonstrated in the condensed phase by simply spiking sodium chloride into the peptide sample solution and in the gas phase by a peptide-sodium cation exchange process with a sulfo-NHS acetate sodium-bound dimer cluster reagent. This methodology demonstrates several ways by which arginine can be covalently modified in the gas phase even when it is charged. Collisional activation of an acetylated arginine product can result in deguanidination of the residue, generating an ornithine. This gas phase ornithination exhibits similar site-specific fragmentation behavior to that observed with peptides ornithinated in solution and may represent a useful approach for inducing selective peptide cleavages.
Collapse
Affiliation(s)
| | | | | | - Scott A. McLuckey
- Address reprint requests to: Dr. S. A. McLuckey 560 Oval Drive Department of Chemistry Purdue University West Lafayette, IN 47907-2084, USA Phone: (765) 494-5270 Fax: (765) 494-0239
| |
Collapse
|
15
|
Nonose S, Yamashita K, Sudo A, Kawashima M. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Stutzman JR, Blanksby SJ, McLuckey SA. Gas-phase transformation of phosphatidylcholine cations to structurally informative anions via ion/ion chemistry. Anal Chem 2013; 85:3752-7. [PMID: 23469867 DOI: 10.1021/ac400190k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC(16:0/18:1)) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC(18:1/16:0)), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, [PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating [PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of [PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry.
Collapse
Affiliation(s)
- John R Stutzman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2084, United States
| | | | | |
Collapse
|
17
|
Prentice BM, McLuckey SA. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries. Chem Commun (Camb) 2013; 49:947-65. [PMID: 23257901 PMCID: PMC3557538 DOI: 10.1039/c2cc36577d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.
Collapse
Affiliation(s)
- Boone M. Prentice
- Purdue University – Department of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| | - Scott A. McLuckey
- Purdue University – Department of Chemistry, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA
| |
Collapse
|
18
|
Prentice BM, Gilbert JD, Stutzman JR, Forrest WP, McLuckey SA. Gas-phase reactivity of carboxylic acid functional groups with carbodiimides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013. [PMID: 23208744 PMCID: PMC3554847 DOI: 10.1007/s13361-012-0506-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Gas-phase modification of carboxylic acid functionalities is performed via ion/ion reactions with carbodiimide reagents [N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide (CMC) and [3-(3-Ethylcarbodiimide-1-yl)propyl]trimethylaminium (ECPT)]. Gas-phase ion/ion covalent chemistry requires the formation of a long-lived complex. In this instance, the complex is stabilized by an electrostatic interaction between the fixed charge quaternary ammonium group of the carbodiimide reagent cation and the analyte dianion. Subsequent activation results in characteristic loss of an isocyanate derivative from one side of the carbodiimide functionality, a signature for this covalent chemistry. The resulting amide bond is formed on the analyte at the site of the original carboxylic acid. Reactions involving analytes that do not contain available carboxylic acid groups (e.g., they have been converted to sodium salts) or reagents that do not have the carbodiimide functionality do not undergo a covalent reaction. This chemistry is demonstrated using PAMAM generation 0.5 dendrimer, ethylenediaminetetraacetic acid (EDTA), and the model peptide DGAILDGAILD. This work demonstrates the selective gas-phase covalent modification of carboxylic acid functionalities.
Collapse
Affiliation(s)
| | | | | | | | - Scott A. McLuckey
- Address reprint requests to: Dr. S. A. McLuckey, 560 Oval Drive, Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA, Phone: (765) 494-5270, Fax: (765) 494-0239,
| |
Collapse
|
19
|
Stutzman JR, McLuckey SA. Ion/ion reactions of MALDI-derived peptide ions: increased sequence coverage via covalent and electrostatic modification upon charge inversion. Anal Chem 2012; 84:10679-85. [PMID: 23078018 PMCID: PMC3525744 DOI: 10.1021/ac302374p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-derived tryptic peptide ions have been subjected to ion/ion reactions with doubly deprotonated 4-formyl-1,3-benzenedisulfonic acid (FBDSA) in the gas-phase. The ion/ion reaction produces a negatively charged electrostatic complex composed of the peptide cation and reagent dianion, whereupon dehydration of the complex via collision-induced dissociation (CID) produces a Schiff base product anion. Collisional activation of modified lysine-terminated tryptic peptide anions is consistent with a covalent modification of unprotonated primary amines (i.e., N-terminus and ε-NH(2) of lysine). Modified arginine-terminated tryptic peptides have shown evidence of a covalent modification at the N-terminus and a noncovalent interaction with the arginine residue. The modified anions yield at least as much sequence information upon CID as the unmodified cations for the small tryptic peptides examined here and more sequence information for the large tryptic peptides. This study represents the first demonstration of gas-phase ion/ion reactions involving MALDI-derived ions. In this case, covalent and electrostatic modification charge inversion is shown to enhance MALDI tandem mass spectrometry of tryptic peptides.
Collapse
Affiliation(s)
- John R. Stutzman
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084
| |
Collapse
|