1
|
Ndou DL, Ndhlala AR, Tavengwa NT, Madala NE. A Relook into the Flavonoid Chemical Space of Moringa oleifera Lam. Leaves through a Combination of LC-MS and Molecular Networking. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2023; 2023:1327886. [PMID: 37790601 PMCID: PMC10545469 DOI: 10.1155/2023/1327886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Moringa oleifera Lam. is a functional tree that is known to produce a variety of metabolites with purported pharmacological activities. It is frequently called the "miracle tree" due to its utilization in numerous nutraceutical and pharmacological contexts. This study was aimed at studying the chemical space of M. oleifera leaf extracts through molecular networking (MN), a tool that identifies metabolites by classifying them based on their MS-based fragmentation pattern similarities and signals. In this case, a special emphasis was placed on the flavonoid composition. The MN unraveled different molecular families such as flavonoids, carboxylic acids and derivatives, lignin glycosides, fatty acyls, and macrolactams that are found within the plant. In silico annotation tools such as network annotation propagation (NAP) and DEREPLICATOR, an unsupervised substructure identification tool (MS2LDA), and MolNet enhancer were also explored to further compliment the classic molecular networking output within the Global Natural Product Social (GNPS) site. In this study, common flavonoids found within Moringa oleifera were further annotated using MS2LDA. Utilizing computational tools allowed for the discovery of a wide range of structurally diverse flavonoid molecules within M. oleifera leaf extracts. The expansion of the flavonoid chemical repertoire in this plant arises from intricate glycosylation modifications, leading to the creation of structural isomers that manifest as isobaric ions during mass spectrometry (MS) analyses.
Collapse
Affiliation(s)
- Dakalo Lorraine Ndou
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ashwell Rungano Ndhlala
- Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa
| |
Collapse
|
2
|
Schmeda-Hirschmann G, Burgos-Edwards A, Rojas de Arias A, López-Torres C, Palominos C, Fuentes-Retamal S, Herrera Y, Dubois-Camacho K, Urra FA. A paraguayan toad Rhinella schneideri preparation based on Mbya tradition increases mitochondrial bioenergetics with migrastatic effects dependent on AMPK in breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115344. [PMID: 35526731 DOI: 10.1016/j.jep.2022.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/17/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Paraguay, healers from the Mbya culture treat cancer with a recipe prepared with the native toad Rhinella schneideri. However, the chemical composition and biological effects of the recipe remain unknown. AIM OF THE STUDY The aim is to determine the composition of the traditional preparation made using the toad R. schneideri and to evaluate its effect on human breast cancer (BC) cells. MATERIALS AND METHODS The metabolites contained in the preparation were concentrated using XAD-7 resin, and the concentrate was analyzed by HPLC-MS/MS. The effect of the preparation was assessed in normal (MCF10F) and BC cells (MDA-MB-231 and MCF7). The mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) levels, and cell cycle progression were determined by flow cytometry. The oxygen consumption rate (OCR) was measured by Clark electrode, and fibronectin-dependent migration in normoxia and hypoxia-like conditions were evaluated by transwell assay. RESULTS From the Amberlite-retained extract from the preparation, 24 compounds were identified, including alkaloids, amino acids, bufadienolides, and flavonoids, among others. The crude extract (CE) did not affect cell cycle progression and viability of BC cell lines. Moreover, it did not make cancer cells more sensitive to the cytotoxic effect of the chemotherapeutics doxorubicin and teniposide. On the other hand, the CE reduced the menadione-induced ROS production and increased NADH, Δψm, and the OCR. Respiratory complexes I and III as well as ATP synthase levels were increased in an AMPK-dependent manner. Moreover, the CE inhibited the migration of BC cells in normoxia and a hypoxia-like condition using CoCl2 as a HIF1α-stabilizing agent. This latter effect involved an AMPK-dependent reduction of HIF1α levels. CONCLUSIONS The Paraguayan toad recipe contains metabolites from the toad ingredient, including alkaloids and bufadienolide derivatives. The CE lacks cytotoxic effects alone or in combination with chemotherapeutics. However, it increases mitochondrial bioenergetics and inhibits the cancer cell migration in an AMPK-dependent manner in BC cells. This is the first report of the in vitro anticancer effect of a traditional Rhinella sp. toad preparation based on Mbya tradition.
Collapse
Affiliation(s)
- Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, 3460000, Chile.
| | - Alberto Burgos-Edwards
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Campus Lircay, Talca, 3460000, Chile; Universidad Nacional de Asunción, Facultad de Ciencias Químicas, Campus San Lorenzo, P.O. Box 1055, Paraguay
| | - Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC), Manduvira 635 entre 15 de Agosto y O' Leary, Barrio La Encarnación, Asunción, Código Postal 1255, Paraguay
| | - Camila López-Torres
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Charlotte Palominos
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Yarela Herrera
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Karen Dubois-Camacho
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Félix A Urra
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| |
Collapse
|
3
|
Beszterda M, Frański R. Seasonal Qualitative Variations of Phenolic Content in the Stem Bark of
Prunus persica
var.
nucipersica
‐ Implication for the Use of the Bark as a Source of Bioactive Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Monika Beszterda
- Poznań University of Life Sciences Department of Food Biochemistry and Analysis Mazowiecka 48 60-623 Poznań Poland
| | - Rafał Frański
- Faculty of Chemistry Adam Mickiewicz University Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
4
|
Li T, Jia L, Du R, Liu C, Huang S, Yu H, Han L, Chen X, Wang Y, Jiang M. Comparative investigation of aerial part and root in Lamiophlomis rotata using UPLC-Q-Orbitrap-MS coupled with chemometrics. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Masike K, de Villiers A, Hoffman EW, Brand DJ, Causon T, Stander MA. Detailed Phenolic Characterization of Protea Pure and Hybrid Cultivars by Liquid Chromatography-Ion Mobility-High Resolution Mass Spectrometry (LC-IM-HR-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:485-502. [PMID: 31805232 DOI: 10.1021/acs.jafc.9b06361] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study we report a detailed investigation of the polyphenol composition of Protea pure (P. cynaroides and P. neriifolia) and hybrid cultivars (Black beauty and Limelight). Aqueous methanol extracts of leaf and bract tissues were analyzed by ultrahigh pressure liquid chromatography hyphenated to photodiode array and ion mobility-high resolution mass spectrometric (UHPLC-PDA-IM-HR-MS) detection. A total of 67 metabolites were characterized based on their relative reversed phase (RP) retention, UV-vis spectra, low and high collision energy HR-MS data, and collisional cross section (CCS) values. These metabolites included 41 phenolic acid esters and 25 flavonoid derivatives, including 5 anthocyanins. In addition, an undescribed hydroxycinnamic acid-polygalatol ester, caffeoyl-O-polygalatol (1,5-anhydro-[6-O-caffeoyl]-sorbitol(glucitol)) was isolated and characterized by 1D and 2D NMR for the first time. This compound and its isomer are shown to be potential chemo-taxonomic markers.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - Eleanor W Hoffman
- Department of Horticultural Science , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| | - D Jacobus Brand
- Department of Chemistry, Central Analytical Facility (NMR Unit) , Stellenbosch University , Matieland, 7602 Stellenbosch , South Africa
| | - Tim Causon
- University of Natural Resources and Life Sciences (BOKU) , Department of Chemistry, Institute of Analytical Chemistry , 1180 Vienna , Austria
| | - Maria A Stander
- Department of Biochemistry , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
- Central Analytical Facility , Stellenbosch University , Private Bag X1, Matieland , 7602 Stellenbosch , South Africa
| |
Collapse
|
6
|
Kirwa HK, Murungi LK, Beck JJ, Torto B. Elicitation of Differential Responses in the Root-Knot Nematode Meloidogyne incognita to Tomato Root Exudate Cytokinin, Flavonoids, and Alkaloids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11291-11300. [PMID: 30346752 DOI: 10.1021/acs.jafc.8b05101] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root exudates of plants mediate interactions with a variety of organisms in the rhizosphere, including root-knot nematodes (RKNs, Meloidogyne spp.) We investigated the responses of the motile stage second-stage juveniles (J2s) of Meloidogyne incognita to non-volatile components identified in the root exudate of tomato. Using stylet thrusting, chemotaxis assays, and chemical analysis, we identified specific metabolites in the root exudate that attract and repel J2s. Liquid chromatography quadrupole time-of-flight mass spectrometry analysis of bioactive fractions obtained from the root exudate revealed a high diversity of compounds, of which five were identified as the phytohormone zeatin (cytokinin), the flavonoids quercetin and luteolin, and alkaloids solasodine and tomatidine. In stylet thrusting and chemotaxis assays, the five compounds elicited concentration-dependent responses in J2s relative to 2% dimethyl sulfoxide (negative control) and methyl salicylate (positive control). These results indicate that J2 herbivory is influenced by root exudate chemistry and concentrations of specific compounds, which may have potential applications in RKN management.
Collapse
Affiliation(s)
- Hillary K Kirwa
- Behavioural and Chemical Ecology Unit , International Centre of Insect Physiology and Ecology (ICIPE) , Post Office Box 30772, 00100 Nairobi , Kenya
- Department of Horticulture , Jomo Kenyatta University of Agriculture and Technology , Post Office Box 62000, 00200 Nairobi , Kenya
| | - Lucy K Murungi
- Department of Horticulture , Jomo Kenyatta University of Agriculture and Technology , Post Office Box 62000, 00200 Nairobi , Kenya
| | - John J Beck
- Chemistry Research Unit, Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service (ARS) , United States Department of Agriculture (USDA) , 1700 Southwest 23rd Drive , Gainesville , Florida 32608 , United States
| | - Baldwyn Torto
- Behavioural and Chemical Ecology Unit , International Centre of Insect Physiology and Ecology (ICIPE) , Post Office Box 30772, 00100 Nairobi , Kenya
| |
Collapse
|
7
|
Lamari N, Zhendre V, Urrutia M, Bernillon S, Maucourt M, Deborde C, Prodhomme D, Jacob D, Ballias P, Rolin D, Sellier H, Rabier D, Gibon Y, Giauffret C, Moing A. Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding. Metabolomics 2018; 14:132. [PMID: 30830438 PMCID: PMC6208756 DOI: 10.1007/s11306-018-1427-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/06/2018] [Indexed: 11/11/2022]
Abstract
INTRODUCTION In Northern Europe, maize early-sowing used to maximize yield may lead to moderate damages of seedlings due to chilling without visual phenotypes. Genetic studies and breeding for chilling tolerance remain necessary, and metabolic markers would be particularly useful in this context. OBJECTIVES Using an untargeted metabolomic approach on a collection of maize hybrids, our aim was to identify metabolite signatures and/or metabolites associated with chilling responses at the vegetative stage, to search for metabolites differentiating groups of hybrids based on silage-earliness, and to search for marker-metabolites correlated with aerial biomass. METHODS Thirty genetically-diverse maize dent inbred-lines (Zea mays) crossed to a flint inbred-line were sown in a field to assess metabolite profiles upon cold treatment induced by a modification of sowing date, and characterized with climatic measurements and phenotyping. RESULTS NMR- and LC-MS-based metabolomic profiling revealed the biological variation of primary and specialized metabolites in young leaves of plants before flowering-stage. The effect of early-sowing on leaf composition was larger than that of genotype, and several metabolites were associated to sowing response. The metabolic distances between genotypes based on leaf compositional data were not related to the genotype admixture groups, and their variability was lower under early-sowing than normal-sowing. Several metabolites or metabolite-features were related to silage-earliness groups in the normal-sowing condition, some of which were confirmed the following year. Correlation networks involving metabolites and aerial biomass suggested marker-metabolites for breeding for chilling tolerance. CONCLUSION After validation in other experiments and larger genotype panels, these marker-metabolites can contribute to breeding.
Collapse
Affiliation(s)
- Nadia Lamari
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- 0000 0001 0768 2743grid.7886.1Present Address: Earth Institute, O’Brien Centre for Science, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Vanessa Zhendre
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Maria Urrutia
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- INRA, UR AgroImpact, Estrées-Mons, 80203 Péronne, France
- Present Address: Enza Zaden Centro de Investigacion S.L., 04710 Santa Maria del Aguila, Almería, Spain
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Mickaël Maucourt
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Catherine Deborde
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Duyen Prodhomme
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Daniel Jacob
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Patricia Ballias
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Dominique Rolin
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | | | | | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | | | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, INRA, Univ. Bordeaux, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
- Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux, MetaboHUB, IBVM, Centre INRA de Nouvelle Aquitaine - Bordeaux, 71 av Edouard Bourlaux, 33140 Villenave d’Ornon, France
| |
Collapse
|
8
|
Masike K, Madala N. Synchronized Survey Scan Approach Allows for Efficient Discrimination of Isomeric and Isobaric Compounds during LC-MS/MS Analyses. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:2046709. [PMID: 29805830 PMCID: PMC5901820 DOI: 10.1155/2018/2046709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/28/2018] [Indexed: 05/10/2023]
Abstract
Liquid chromatography-mass spectrometry- (LC-MS-) based multiple reaction monitoring (MRM) methods have been used to detect and quantify metabolites for years. These approaches rely on the monitoring of various fragmentation pathways of multiple precursors and the subsequent corresponding product ions. However, MRM methods are incapable of confidently discriminating between isomeric and isobaric molecules and, as such, the development of methods capable of overcoming this challenge has become imperative. Due to increasing scanning rates of recent MS instruments, it is now possible to operate MS instruments both in the static and dynamic modes. One such method is known as synchronized survey scan (SSS), which is capable of acquiring a product ion scan (PIS) during MRM analysis. The current study shows, for the first time, the use of SSS-based PIS approach as a feasible identification feature of MRM. To achieve the above, five positional isomers of dicaffeoylquinic acids (diCQAs) were studied with the aid of SSS-based PIS method. Here, the MRM transitions were automatically optimized using a 3,5-diCQA isomer by monitoring fragmentation transitions common to all five isomers. Using the mixture of these isomers, fragmentation spectra of the five isomers achieved with SSS-based PIS were used to identify each isomer based on previously published hierarchical fragmentation keys. The optimized method was also used to detect and distinguish between diCQA components found in Bidens pilosa and their isobaric counterparts found in Moringa oleifera plants. Thus, the method was shown to distinguish (by differences in fragmentation patterns) between diCQA and their isobars, caffeoylquinic acid (CQA) glycosides. In conclusion, SSS allowed the detection and discrimination of isomeric and isobaric compounds in a single chromatographic run by producing a PIS spectrum, triggered in the automatic MS/MS synchronized survey scan mode.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| |
Collapse
|
9
|
Kachlicki P, Piasecka A, Stobiecki M, Marczak Ł. Structural Characterization of Flavonoid Glycoconjugates and Their Derivatives with Mass Spectrometric Techniques. Molecules 2016; 21:E1494. [PMID: 27834838 PMCID: PMC6273528 DOI: 10.3390/molecules21111494] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/05/2022] Open
Abstract
Mass spectrometry is currently one of the most versatile and sensitive instrumental methods applied to structural characterization of plant secondary metabolite mixtures isolated from biological material including flavonoid glycoconjugates. Resolution of the applied mass spectrometers plays an important role in structural studies of mixtures of the target compounds isolated from biological material. High-resolution analyzers allow obtaining information about elemental composition of the analyzed compounds. Application of various mass spectrometric techniques, including different systems of ionization, analysis of both positive and negative ions of flavonoids, fragmentation of the protonated/deprotonated molecules and in some cases addition of metal ions to the studied compounds before ionization and fragmentation, may improve structural characterization of natural products. In our review we present different strategies allowing structural characterization of positional isomers and isobaric compounds existing in class of flavonoid glycoconjugates and their derivatives, which are synthetized in plants and are important components of the human food and drugs as well as animal feed.
Collapse
Affiliation(s)
- Piotr Kachlicki
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Maciej Stobiecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
10
|
Wu L, Li L, Wang M, Shan C, Cui X, Wang J, Ding N, Yu D, Tang Y. Target and non-target identification of chemical components in Lamiophlomis rotata by liquid chromatography/quadrupole time-of-flight mass spectrometry using a three-step protocol. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2145-2154. [PMID: 27470976 DOI: 10.1002/rcm.7695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/27/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE As a herbal plant used in traditional Chinese medicine, Lamiophlomis rotata (Benth.) Kudo mainly displays its pharmacological effect by promoting blood circulation and hemostasis, dispelling wind, and acting as an analgesic. To identify the components contained in L. rotata, global detection and structural elucidation of both target and non-target components in the medicinal material was performed. METHODS L. rotata was ultrasonically extracted with methanol. Separation and analysis were achieved using liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS). A three-step protocol which included (1) potential components screening, (2) collection of qualitative information, and (3) database searching and structural elucidation was used for target and non-target identification. RESULTS A total of 42 components were tentatively identified, which included 12 iridoids (2 aglycones and 10 glucosides), 11 flavonoids (4 aglycones and 7 glucosides), and 13 phenylethanoid glycosides. Moreover, components of L. rotata extract belonging to the three main structural categories could be well separated in a 3D point plot according to their retention times, mass defects and degrees of unsaturation, facilitating the structural classification and identification in the subsequent studies. CONCLUSIONS The results provide a reasonable picture of the components contained in L. rotata extract and promote the further pharmacodynamic and/or pharmacokinetic characterization of this medical material, meanwhile demonstrating the utility of a universal methodology for the systematical study of herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Analytical Instrumentation Center, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Analytical Instrumentation Center, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaying Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ning Ding
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Dan Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Center for Drug Safety Evaluation and Research, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuping Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
11
|
Dong X, Wang R, Zhou X, Li P, Yang H. Current mass spectrometry approaches and challenges for the bioanalysis of traditional Chinese medicines. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:15-26. [DOI: 10.1016/j.jchromb.2015.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
|
12
|
Zheng L, Fang L, Cong H, Xiang T, Xue M, Yao Z, Wu B, Lin W. Identification of chemical constituents and rat metabolites of Kangxianling granule by HPLC-Q-TOF-MS/MS. Biomed Chromatogr 2015; 29:1750-8. [DOI: 10.1002/bmc.3489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/13/2015] [Accepted: 04/04/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Lu Zheng
- Yangtze River Pharmaceutical Group Co. Ltd; Taizhou 225321 People's Republic of China
- Shanghai Haini Pharmaceutical Co. Ltd, Yangtze River Pharmaceutical Group; Shanghai 201318 People's Republic of China
| | - Lianxiang Fang
- Shanghai Haini Pharmaceutical Co. Ltd, Yangtze River Pharmaceutical Group; Shanghai 201318 People's Republic of China
| | - Haijian Cong
- Shanghai Haini Pharmaceutical Co. Ltd, Yangtze River Pharmaceutical Group; Shanghai 201318 People's Republic of China
| | - Ting Xiang
- Yangtze River Pharmaceutical Group Co. Ltd; Taizhou 225321 People's Republic of China
| | - Ming Xue
- Yangtze River Pharmaceutical Group Co. Ltd; Taizhou 225321 People's Republic of China
| | - Zhongqing Yao
- Yangtze River Pharmaceutical Group Co. Ltd; Taizhou 225321 People's Republic of China
| | - Bin Wu
- Yangtze River Pharmaceutical Group Co. Ltd; Taizhou 225321 People's Republic of China
- Shanghai Haini Pharmaceutical Co. Ltd, Yangtze River Pharmaceutical Group; Shanghai 201318 People's Republic of China
| | - Wenhui Lin
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 People's Republic of China
| |
Collapse
|
13
|
Abrankó L, Szilvássy B. Mass spectrometric profiling of flavonoid glycoconjugates possessing isomeric aglycones. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:71-80. [PMID: 25601677 DOI: 10.1002/jms.3474] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 05/17/2023]
Abstract
In fields such as food and nutrition science or plant physiology, interest in untargeted profiling of flavonoids continues to expand. The group of flavonoids encompasses several thousands of chemically distinguishable compounds, among which are a number of isobaric compounds with the same elemental composition. Thus, the mass spectrometric identification of these compounds is challenging, especially when reference standards are not available to support their identification. Many different types of isomers of flavonoid glycoconjugates are known, i.e. compounds that differ in their glycosylation position, glycan sequence or type of interglycosidic linkage. This work focuses on the mass spectrometric identification of flavonoid glycoconjugate isomers possessing the same glycan mass and differing only in their aglycone core. A non-targeted HPLC-ESI-MS/MS profiling method using a triple quadrupole MS is presented herein, which utilizes in-source fragmentation and a pseudo-MS(3) approach for the selective analysis of flavonoid glycoconjugates with isomeric/isobaric aglycones. A selective MRM-based identification of the in-source formed isobaric aglycone fragments was established. Additionally, utilizing the precursor scanning capability of the employed triple quadrupole instrument, the developed method enabled the determination of the molecular weight of the studied intact flavonoid glycoconjugate. The versatility of the method was proven with various types of flavonoid aglycones, i.e. anthocyanins, flavonols, flavones, flavanones and isoflavones, along with their representative glycoconjugates. The developed method was also successfully applied to a commercially available sour cherry sample, in which 16 different glycoconjugates of pelargonidin, genistein, cyanidin, kaempferol and quercetin could be tentatively identified, including a number of compounds containing isomeric/isobaric aglycones.
Collapse
Affiliation(s)
- László Abrankó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok krt., Budapest, 1117, Hungary; Department of Applied Chemistry, Faculty of Food Science, Corvinus University of Budapest, 29-33 Villányi, Budapest, 1118, Hungary
| | | |
Collapse
|