1
|
Romano A, Capozzi V, Khomenko I, Biasioli F. Advances in the Application of Direct Injection Mass Spectrometry Techniques to the Analysis of Grape, Wine and Other Alcoholic Beverages. Molecules 2023; 28:7642. [PMID: 38005363 PMCID: PMC10675140 DOI: 10.3390/molecules28227642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Direct injection mass spectrometry (DIMS) entails the direct introduction of a gaseous sample into a mass analyser without prior treatment or separation. DIMS techniques offer the opportunity to monitor processes in time, with limits of detection as low as 0.5 parts per trillion in volume (for a 1 s measurement time) while providing results with high informational content. This review provides insight into current and promising future developments of DIMS in the analysis of grape, wine and other alcoholic beverages. Thanks to its unique characteristics, DIMS allows the online monitoring of volatile organic compounds (VOCs) released by grapes during fermentative bioprocesses or by wine directly from the glass headspace or during drinking. A DIMS-based approach can also be adopted to perform quality control and high-throughput analysis, allowing us to characterise the volatile profile of large sample sets rapidly and in a comprehensive fashion. Furthermore, DIMS presents several characteristic elements of green analytical chemistry approaches, catalysing an interest linked to the development of sustainable paths in research and development activities in the field of viticulture and oenology.
Collapse
Affiliation(s)
- Andrea Romano
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach, 1, 38010 San Michele all’Adige, Italy;
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, c/o CS-DAT, 71122 Foggia, Italy;
| | - Iuliia Khomenko
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach, 1, 38010 San Michele all’Adige, Italy;
| | - Franco Biasioli
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach, 1, 38010 San Michele all’Adige, Italy;
| |
Collapse
|
2
|
Le Quéré JL, Schoumacker R. Dynamic Instrumental and Sensory Methods Used to Link Aroma Release and Aroma Perception: A Review. Molecules 2023; 28:6308. [PMID: 37687137 PMCID: PMC10489873 DOI: 10.3390/molecules28176308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Perception of flavor is a dynamic process during which the concentration of aroma molecules at the olfactory epithelium varies with time as they are released progressively from the food in the mouth during consumption. The release kinetics depends on the food matrix itself but also on food oral processing, such as mastication behavior and food bolus formation with saliva, for which huge inter-individual variations exist due to physiological differences. Sensory methods such as time intensity (TI) or the more-recent methods temporal dominance of sensations (TDS) and temporal check-all-that-apply (TCATA) are used to account for the dynamic and time-related aspects of flavor perception. Direct injection mass spectrometry (DIMS) techniques that measure in real time aroma compounds directly in the nose (nosespace), aimed at obtaining data that reflect the pattern of aroma release in real time during food consumption and supposed to be representative of perception, have been developed over the last 25 years. Examples obtained with MS operated in chemical ionization mode at atmospheric or sub-atmospheric pressure (atmospheric pressure chemical ionization APCI or proton-transfer reaction PTR) are given, with emphases on studies conducted with simultaneous dynamic sensory evaluation. Inter-individual variations in terms of aroma release and their relevance for understanding flavor perception are discussed as well as the evidenced cross-modal interactions.
Collapse
Affiliation(s)
- Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l’Alimentation (CSGA), CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | | |
Collapse
|
3
|
Li M, Zhang Y, Xi H, Fu Y, Wang H, Zhang Y, Sun S. Characterization of Rose Essential Oils by Double-Region Atmospheric Pressure Chemical Ionization Mass Spectrometry (DRAPCI-MS) with Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Heatmap Analysis. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2055563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Minglei Li
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Yihan Zhang
- Technology Center, China Tobacco Hebei Tobacco Company, Shijiazhuang China
| | - Hui Xi
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Yingjie Fu
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Hui Wang
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Yipeng Zhang
- Technology Center, China Tobacco Yunan Industrial Company, Kunming China
| | - Shihao Sun
- Key Laboratory in Flavor & Fragrance Basic Research, China National Tobacco, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| |
Collapse
|
4
|
Malfondet N, Brunerie P, Le Quéré JL. Discrimination of French wine brandy origin by PTR-MS headspace analysis using ethanol ionization and sensory assessment. Anal Bioanal Chem 2021; 413:3349-3368. [PMID: 33713144 DOI: 10.1007/s00216-021-03275-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
The headspace volatile organic compound (VOC) fingerprints (volatilome) of French wine brandies were investigated by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). Protonated ethanol chemical ionization was used with dedicated experimental conditions that were previously validated for model wines. These included a reference vial containing a hydro-alcoholic solution with the same ethanol content (20% v/v) as the diluted sample spirits, which was used to establish steady-state ionization conditions. A low electric field strength to number density ratio E/N (85 Td) was used in the drift tube in order to limit the fragmentation of the protonated analytes. The obtained headspace fingerprints were used to investigate the origin of French brandies produced within a limited geographic production area. Brandies of two different vintages (one freshly distilled and one aged for 14 years in French oak barrels) were successfully classified according to their growth areas using unsupervised (principal component analysis, PCA) and supervised (partial least squares regression discriminant analysis, PLS-DA) multivariate analyses. The models obtained by PLS-DA allowed the identification of discriminant volatile compounds that were mainly characterised as key aroma compounds of wine brandies. The discrimination was supported by sensory evaluation conducted with free sorting tasks. The results showed that this ethanol ionization method was suitable for direct headspace analysis of brandies. They also demonstrated its ability to distinguish French brandies according to their growth areas, and this effect on brandy VOC composition was confirmed at a perceptive level.
Collapse
Affiliation(s)
- Nicolas Malfondet
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 17, rue Sully, 21065, Dijon, France
- Centre de Recherche Pernod Ricard, 94046, Créteil, France
| | | | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 17, rue Sully, 21065, Dijon, France.
| |
Collapse
|
5
|
|
6
|
Lebedev AV. The H3O+(H2O)n Reagent Ion: Calculations of the Structure, Thermodynamic Parameters of Hydration, Equilibrium Composition, and Mobility. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819130082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Direct analysis of volatile components from intact jujube by carbon fiber ionization mass spectrometry. BMC Chem 2019; 13:125. [PMID: 31696162 PMCID: PMC6823938 DOI: 10.1186/s13065-019-0641-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022] Open
Abstract
In situ analysis of odor is an important approach to connect odor with chemical composition. However, it is difficult to conduct a rapid direct analysis of the odor sample because of low analyte concentration and sampling. To achieve the direct analysis, a carbon fiber ionization mass spectrometry (CFI-MS) method has been developed and applied to measure volatile components releasing from intact jujube. To build the CFI source, a 2.0-cm long carbon fiber bundle was integrated on the pin of a commercial corona discharge needle by mean of a 1.3-cm long stainless hollow tube. Odor sample driven by N2 gas can be directly introduced to the carbon fiber bundle to complete the ionization of analytes. Acetic acid, ethyl acetate, ethyl caproate, octyl acetate, and damascone present in jujube were selected to evaluate the performance of the CFI-MS method on quantitative analysis of the gaseous sample. Good lineary was obtained (R2 ≥ 0.9946) between 5.0 and 500.0 ng/L with limits of detection (LOD) ranging from 0.5 to 1.5 ng/L. Recoveries of five volatile compounds for the spiked jujube samples were between 94.36 and 106.74% with relative standard deviations (RSDs) less than 7.27% (n = 5). Jujube of different varieties can be distinguished by principal components analysis based on the analytical results of volatile compounds. The developed method demonstrated obvious advantages such as simplicity, high throughput, good sensitivity and wide range of applicability, which will be an alternative way for in situ analysis of the odor sample.![]()
Collapse
|
8
|
Hatakeyama J, Taylor AJ. Optimization of atmospheric pressure chemical ionization triple quadropole mass spectrometry (MS Nose 2) for the rapid measurement of aroma release
in vivo. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Huang J, Yang B, Shu J, Zhang Z, Li Z, Jiang K. Kinetic Understanding of the Ultrahigh Ionization Efficiencies (up to 28%) of Excited-State CH 2Cl 2-Induced Associative Ionization: A Case Study with Nitro Compounds. Anal Chem 2019; 91:5605-5612. [PMID: 30841695 DOI: 10.1021/acs.analchem.8b04813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Excited-state CH2Cl2-induced associative ionization (AI) is a newly developed ionization method that is very effective for oxygenated organics. However, this method is not widely known. In this study, an unprecedented ionization efficiency and ultrafast reaction rate of AI toward nitro compounds were observed. The ionization efficiencies of o-nitrotoluene (o-NT), m-nitrotoluene (m-NT), and nitrobenzene (NB) were as high as (28 ± 3)%, (27 ± 2)%, and (13 ± 1)%, respectively (∼1-3 ions for every 10 molecules). The measured reaction rate coefficients of these nitroaromatics were (0.5-1.3) × 10-7 molecule-1 cm3 s-1 (∼300 K). These unusual rate coefficients indicated strong long-range interactions between the two neutral reactants, which was regarded as a key factor leading to the ultrahigh ionization efficiency. The detection sensitivities of the nitroaromatics, (1.01-2.16) × 104 counts pptv-1 in 10 s acquisition time, were obtained by an AI time-of-flight mass spectrometer (AI-TOFMS). These experimental results not only provide new insight into the AI reaction but also reveal an excellent ionization method that can improve the detection sensitivity of nitroaromatics to an unprecedented degree.
Collapse
Affiliation(s)
- Jingyun Huang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Bo Yang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China
| | - Jinian Shu
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Zuojian Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Zhen Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China
| | - Kui Jiang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China.,State Key Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Zhao W, Wang D, Zhang H, Chai G, Zhang Q, Lu B, Sun S, Zhang J. Direct Analysis of Carbonyl Compounds by Mass Spectrometry with Double-Region Atmospheric Pressure Chemical Ionization. Anal Chem 2019; 91:5715-5721. [PMID: 30951291 DOI: 10.1021/acs.analchem.8b05834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Direct analysis of highly reactive volatile species such as the aliphatic aldehydes as vital biomarkers remains a great challenge due to difficulties in the sample pretreatment. To address such a challenge, we herein report the development of a novel double-region atmospheric pressure chemical ionization mass spectrometry (DRAPCI-MS) method. The DRAPCI source implements a separated structural design that uses a focus electrode to divide the discharge and ionization region to reduce sample fragmentation in the ionization process. Counterflow introduction (CFI) configuration was adopted in the DRAPCI source to reduce background noise, while ion transmission efficiency was optimized through simulating the voltage of the focus electrode and the ion trajectory of the ion source. The limits of detection (LODs) of four carbonyl compounds cyclohexanone, hexanal, heptanal, and octanal by DRAPCI-MS were between 0.1 and 3 μg·m-3, approximately two to eight times lower than those by atmospheric pressure chemical ionization mass spectrometry. Additionally, the DRAPCI-MS method carried out effective in situ analyses of the volatile components in expired milk and the exhaled breath of smokers, demonstrating the DRAPCI-MS as a practical tool to analyze complex mixtures. The DRAPCI-MS method provides a rapid, sensitive, and high-throughput technique in the real-time analysis of gaseous small-molecule compounds.
Collapse
Affiliation(s)
- Yihan Zhang
- Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001 , China
| | - Wuduo Zhao
- Center for Advanced Analysis and Computational Science , Zhengzhou University , Zhengzhou 450001 , China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001 , China
| | - Hongtu Zhang
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001 , China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001 , China
| | - Binbin Lu
- Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001 , China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001 , China
| | - Jianxun Zhang
- Zhengzhou Tobacco Research Institute , China National Tobacco Corporation , Zhengzhou 450001 , China
| |
Collapse
|
11
|
Deuscher Z, Andriot I, Sémon E, Repoux M, Preys S, Roger JM, Boulanger R, Labouré H, Le Quéré JL. Volatile compounds profiling by using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). The case study of dark chocolates organoleptic differences. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:92-119. [PMID: 30478865 DOI: 10.1002/jms.4317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 05/28/2023]
Abstract
Direct-injection mass spectrometry (DIMS) techniques have evolved into powerful methods to analyse volatile organic compounds (VOCs) without the need of chromatographic separation. Combined to chemometrics, they have been used in many domains to solve sample categorization issues based on volatilome determination. In this paper, different DIMS methods that have largely outperformed conventional electronic noses (e-noses) in classification tasks are briefly reviewed, with an emphasis on food-related applications. A particular attention is paid to proton transfer reaction mass spectrometry (PTR-MS), and many results obtained using the powerful PTR-time of flight-MS (PTR-ToF-MS) instrument are reviewed. Data analysis and feature selection issues are also summarized and discussed. As a case study, a challenging problem of classification of dark chocolates that has been previously assessed by sensory evaluation in four distinct categories is presented. The VOC profiles of a set of 206 chocolate samples classified in the four sensory categories were analysed by PTR-ToF-MS. A supervised multivariate data analysis based on partial least squares regression-discriminant analysis allowed the construction of a classification model that showed excellent prediction capability: 97% of a test set of 62 samples were correctly predicted in the sensory categories. Tentative identification of ions aided characterisation of chocolate classes. Variable selection using dedicated methods pinpointed some volatile compounds important for the discrimination of the chocolates. Among them, the CovSel method was used for the first time on PTR-MS data resulting in a selection of 10 features that allowed a good prediction to be achieved. Finally, challenges and future needs in the field are discussed.
Collapse
Affiliation(s)
- Zoé Deuscher
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- CIRAD, UMR 95 QUALISUD, F-34000, Montpellier, France
| | - Isabelle Andriot
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- ChemoSens Platform, CSGA, F-21000, Dijon, France
| | - Etienne Sémon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- ChemoSens Platform, CSGA, F-21000, Dijon, France
| | | | | | - Jean-Michel Roger
- IRSTEA, Information, Technologies and Environmental Assessment for Agro-Processes, F-34000, Montpellier, France
| | | | - Hélène Labouré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
12
|
Sémon E, Arvisenet G, Guichard E, Le Quéré JL. Modified proton transfer reaction mass spectrometry (PTR-MS) operating conditions for in vitro and in vivo analysis of wine aroma. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:65-77. [PMID: 28981178 DOI: 10.1002/jms.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 06/07/2023]
Abstract
With proton transfer reaction-mass spectrometry standard operating conditions, analysis of alcoholic beverages is an analytical challenge. Ethanol reacts with the primary ion H3 O+ leading to its depletion and to formation of ethanol-related ions and clusters, resulting in unstable ionization and in significant fragmentation of analytes. Different methods were proposed but generally resulted in lowering the sensitivity and/or complicating the mass spectra. The aim of the present study was to propose a simple, sensitive, and reliable method with fragmentation as low as possible, linearity within a realistic range of volatile organic compounds concentrations, and applicability to in vivo dynamic aroma release (nosespace) studies of wines. For in vitro analyses, a reference flask containing a hydro-alcoholic solution (10% ethanol) was permanently connected to the PTR-MS inlet in order to establish ethanol chemical ionization conditions. A low electric field strength to number density ratio E/N (80 Td) was used in the drift-tube. A stable reagent ion distribution was obtained with the primary protonated ethanol ion C2 H5 OH2+ accounting for more than 80% of the ionized species. The ethanol dimer (C2 H5 OH)2 H+ accounted for only 10%. Fragmentation of some aroma molecules important for white wine flavor (various esters, linalool, cis-rose oxide, 2-methylpropan-1-ol, 3-methylbutan-1-ol, and 2-phenylethanol) was studied from same ethanol content solutions connected alternatively with the reference solution to the instrument inlet. Linear dynamic range and limit of detection (LOD) were determined for ethyl hexanoate. Fragmentation of the protonated analytes was limited to a few ions of low intensity, or to specific fragment ions with no further fragmentation. Association and/or ligand switching reactions from ethanol clusters were only significant for the primary alcohols. Interpretation of the mass spectra was straightforward with easy detection of diagnostic ions. These results made this ethanol ionization method suitable for direct headspace analyses of model wines and to their nosespace analyses.
Collapse
Affiliation(s)
- Etienne Sémon
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
- ChemoSens Platform, CSGA, F-21000, Dijon, France
| | - Gaëlle Arvisenet
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Elisabeth Guichard
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Jean-Luc Le Quéré
- Centre des Sciences du Goût et de l'Alimentation (CSGA), AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
13
|
Beauchamp J, Herbig J. Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOFMS) for Aroma Compound Detection in Real-Time: Technology, Developments, and Applications. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1191.ch017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- J. Beauchamp
- Fraunhofer Institute of Process Engineering and Packaging IVV, Department of Sensory Analytics, Giggenhauser Str. 35, 85354 Freising, Germany
- IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| | - J. Herbig
- Fraunhofer Institute of Process Engineering and Packaging IVV, Department of Sensory Analytics, Giggenhauser Str. 35, 85354 Freising, Germany
- IONICON Analytik GmbH, Eduard-Bodem-Gasse 3, 6020 Innsbruck, Austria
| |
Collapse
|