1
|
Demelenne A, Nys G, Nix C, Fjeldsted JC, Crommen J, Fillet M. Separation of phosphorothioated oligonucleotide diastereomers using multiplexed drift tube ion mobility mass spectrometry. Anal Chim Acta 2022; 1191:339297. [PMID: 35033277 DOI: 10.1016/j.aca.2021.339297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Hydrophilic interaction liquid chromatography (HILIC) coupled to drift tube ion mobility spectrometry (DTIMS) was used to separate diastereomers of five-unit oligonucleotides containing 0, 1, 2 or 3 phosphorothioate (PS) linkages. Multiplexed DTIMS (where ions are pulsed into the drift tube according to a pre-encoded sequence) and post-acquisition processing using an innovative demultiplexing tool were investigated. The electric field inside the drift tube was optimized to achieve the highest resolving power. The entrance voltage providing the best two-peak resolution was -1000V with 3-bit multiplexing. Under optimized conditions, the eight diastereomers of an oligonucleotide with three PS linkages (5'-TC∗G∗T∗G-3') could be separated unambiguously. Indeed, those diastereomers differed in their collision cross section (CCS) values. The minimal CCS values difference between two adjacent diastereomers was 0.9% with maximal RSD on CCS values of 0.3%. The use of multiplexed ion mobility and the novel high-resolution demultiplexing tool represents a real breakthrough for resolution enhancement of diastereomers in linear DTIMS.
Collapse
Affiliation(s)
- Alice Demelenne
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Gwenael Nys
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Cindy Nix
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | | | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000, Liege, Belgium.
| |
Collapse
|
2
|
Domalain V, Hubert-Roux M, Quéguiner L, Fouque DJ, Arnoult E, Speybrouck D, Guillemont J, Afonso C. Ion mobility-mass spectrometry analysis of diarylquinoline diastereomers: Drugs used for tuberculosis treatment. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:291-299. [PMID: 30518251 DOI: 10.1177/1469066718813226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mycobacterium tuberculosis infection results in more than two million deaths per year and is the leading cause of mortality in people infected with HIV. A new structural class of antimycobacterials, the diarylquinolines, has been synthesized and is being highly effective against both M. tuberculosis and multidrug-resistant tuberculosis. As diarylquinolines are biologically active only under their ( R,S) stereoisomeric form, it is essential to differentiate the stereoisomers ( R,S) and ( R,R). To achieve this, tandem mass spectrometry and ion mobility spectrometry-mass spectrometry have been performed with 10 diarylquinoline diastereomers couples. In this study, we investigated cationization with alkali metal cations and several ion mobility drift gases in order to obtain diastereomer differentiations. We have shown that diastereomers of the diarylquinolines family can be differentiated separately by tandem mass spectrometry and in mixture by ion mobility spectrometry-mass spectrometry. However, although the structure of each diastereomer is close, several behaviors could be observed concerning the cationization and the ion mobility spectrometry separation. The ion mobility spectrometry isomer separation efficiency is not easily predictable; it was however observed for all diastereomeric couples with a significant improvement of separation using alkali adducts compared to protonated molecules. With the use of drift gas with higher polarizability only an improvement of separation was obtained in a few cases. Finally, a good correlation of the experimental collision cross section (relative to three-dimensional structure of ions) and the theoretical collision cross section has been shown.
Collapse
Affiliation(s)
- Virginie Domalain
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| | - Marie Hubert-Roux
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| | - Laurence Quéguiner
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - Dany Jd Fouque
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| | - Eric Arnoult
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - David Speybrouck
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - Jérôme Guillemont
- 2 JANSSEN, Research & Development, a division of Janssen-Cilag, Val de Reuil Cedex, France
| | - Carlos Afonso
- 1 Normandie Université, COBRA, UMR 6014 et FR 3038; Université de Rouen; INSA de Rouen; CNRS, IRCOF, Mont Saint Aignan Cedex, France
| |
Collapse
|
3
|
Nie X, Meng L, Wang H, Chen Y, Guo X, Song C. DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO 2 over Fe-based catalysts. Phys Chem Chem Phys 2018; 20:14694-14707. [PMID: 29774346 DOI: 10.1039/c8cp02218f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catalytic conversion of CO2 including hydrogenation has attracted great attention as a method for chemical fixation of CO2 in combination with other techniques such as CO2 capture and storage. Potassium is a well-known promotor for many industrial catalytic processes such as in Fischer-Tropsch synthesis. In this work, we performed density functional theory (DFT) calculations to investigate the effect of potassium on the adsorption, activation, and dissociation of CO2 over Fe(100), Fe5C2(510) and Fe3O4(111) surfaces. The function of K was analyzed in terms of electronic interactions between co-adsorbed CO2 and K-surfaces which showed conspicuous promotion in the presence of K of the adsorption and activation of CO2. The adsorption strength of CO2 on these surfaces ranks as oct2-Fe3O4(111) > Fe(100) > Fe5C2(510). Generally, we observed a direct proportional correlation between the adsorption strength and the charges on the adsorbates. Adding K on the catalyst surface also reduces the kinetic barrier for CO2 dissociation. CO2 dissociation is more facile to occur on Fe(100) and Fe5C2(510) in the presence of K whereas the Fe3O4(111) surfaces impede CO2 dissociation regardless of the existence of K. Instead, a stable CO3- species is formed upon CO2 adsorption on Fe3O4(111) which will be directly hydrogenated when sufficient H* are available on the surface. Our results highlight the origin of the promotion effect of potassium and provide insight for the future design of K-promoted Fe-based catalysts for CO2 hydrogenation.
Collapse
Affiliation(s)
- Xiaowa Nie
- School of Chemical Engineering, PSU-DUT Joint Center for Energy Research, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | |
Collapse
|
4
|
Regueiro J, Negreira N, Hannisdal R, Berntssen MH. Targeted approach for qualitative screening of pesticides in salmon feed by liquid chromatography coupled to traveling-wave ion mobility/quadrupole time-of-flight mass spectrometry. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Negreira N, Regueiro J, Valdersnes S, Berntssen MHG, Ørnsrud R. Comprehensive characterization of ethoxyquin transformation products in fish feed by traveling-wave ion mobility spectrometry coupled to quadrupole time-of-flight mass spectrometry. Anal Chim Acta 2017; 965:72-82. [PMID: 28366214 DOI: 10.1016/j.aca.2017.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 11/30/2022]
Abstract
Feed additives are typically used in intensive farming production over long periods, and hence, they can accumulate in farmed animal tissues. Concerns regarding the use of ethoxyquin as an antioxidant feed additive, have recently arisen due to its potential conversion into a series of transformation products (TPs). The aim of this work was to characterize the TPs of ethoxyquin in fish feed by a novel approach based on the use of traveling-wave ion mobility spectrometry (TWIMS) coupled to high-resolution quadrupole time-of-flight mass spectrometry (QTOFMS). First, ethoxyquin was oxidized under controlled conditions and the generated TPs were added to a comprehensive database. Atlantic salmon feeds were then screened for ethoxyquin TPs using both targeted and untargeted approaches. Twenty-seven TPs were tentatively identified during the oxidation experiments, fifteen of them also being present in the feed samples. In addition, ten other potential TPs were detected in fish feed following the untargeted approach. Thirty-one of these TPs have been reported for the first time in this work through the oxidation experiments and the feed samples. Therefore, this study provides valuable information on the oxidative fate of ethoxyquin in feed, which can be used for future evaluations of potential risk related to this additive.
Collapse
Affiliation(s)
- Noelia Negreira
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029 Nordnes, N-5817 Bergen, Norway; Institute for Food Analysis and Research (IIAA), Department of Analytical Chemistry, Nutrition and Food Sciences, University of Santiago de Compostela, Constantino Candeira S/N, 15782 Santiago de Compostela, Spain. http://www.nifes.no
| | - Jorge Regueiro
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Stig Valdersnes
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Robin Ørnsrud
- National Institute of Nutrition and Seafood Research (NIFES), PO Box 2029 Nordnes, N-5817 Bergen, Norway
| |
Collapse
|
6
|
Regueiro J, Negreira N, Berntssen MHG. Ion-Mobility-Derived Collision Cross Section as an Additional Identification Point for Multiresidue Screening of Pesticides in Fish Feed. Anal Chem 2016; 88:11169-11177. [PMID: 27779869 DOI: 10.1021/acs.analchem.6b03381] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry allows for the measurement of the collision cross section (CCS), which provides information about the shape of an ionic molecule in the gas phase. Although the hyphenation of traveling-wave ion mobility spectrometry (TWIMS) with high-resolution quadrupole time-of-flight mass spectrometry (QTOFMS) has been mainly used for structural elucidation purposes, its potential for fast screening of small molecules in complex samples has not yet been thoroughly evaluated. The current work explores the capabilities of ultrahigh-performance liquid chromatography (UHPLC) coupled to a new design TWIMS-QTOFMS for the screening and identification of a large set of pesticides in complex salmon feed matrices. A database containing TWIMS-derived CCS values for more than 200 pesticides is hereby presented. CCS measurements showed high intra- and interday repeatability (RSD < 1%), and they were not affected by the complexity of the investigated matrices (ΔCCS ≤ 1.8%). The use of TWIMS in combination with QTOFMS was demonstrated to provide an extra-dimension, which resulted in increased peak capacity and selectivity in real samples. Thus, many false-positive detections could be straightforwardly discarded just by applying a maximum ΔCCS tolerance of ±2%. CCS was proposed as a valuable additional identification point in the pesticides screening workflow. Several commercial fish feed samples were finally analyzed to demonstrate the applicability of the proposed approach. Ethoxyquin and pirimiphos-methyl were identified in most of the analyzed samples, whereas tebuconazole and piperonil butoxide were identified for the first time in fish feed samples.
Collapse
Affiliation(s)
- Jorge Regueiro
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Noelia Negreira
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| | - Marc H G Berntssen
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N-5817 Bergen, Norway
| |
Collapse
|