1
|
Ren J, Chen P, Zhang Y, He X, Li L, Li P. Direct Implementation of MS n Using Frequency Scanning Collision Induced Dissociation in a Digital Ion Trap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:309-317. [PMID: 39711502 DOI: 10.1021/jasms.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tandem mass spectrometry (MSn) is one of the most effective methods to obtain the structures of organic molecules, enabling the observation of multigenerational ion fragments. Collision-induced dissociation (CID) is currently the most mature technique for mass spectrometry analysis. Ion trap mass spectrometry (ITMS) is favored for on-site detection field, due to its ability of MSn analysis with a single trap and its small size. However, conventional MSn analysis in ITMS requires repeated isolation and excitation processes multiple times, causing high complexity of the entire scanning process. Additionally, the fragment ion detection in ITMS is limited by low-mass cutoff (LMCO) and the weak fragmentation yield. In this study, a method named reverse scanning-collision induced dissociation (RS-CID) is proposed, which involves increasing RF and AC frequencies while maintaining RF voltage constant during the CID process. Twelve representative illegal drugs were analyzed adopting this method, enhancing the intensities of low-mass fragment ions compared to conventional dissociation method. Moreover, experimental results with ketamine and methamphetamine show that RS-CID effectively reduces the LMCO effect and slightly improves CID efficiency. It also enables direct acquisition of their multigeneration fragment ions spectra in a single sequence of ion injection, cooling, isolation, RS-CID, cooling, mass scanning and empty. The experiments to distinguish between the isomers ab-4en-pinaca and adb-3en-butinaca as well as the isomeric compounds 5f-cumyl-pegaclone and cumyl-pipetinaca were also successful by this method. In summary, RS-CID enables MSn analysis in a single sequence and improves the low-mass fragment ions intensity. It can simplify workflows, achieve faster analysis and provide more valuable mass spectral information.
Collapse
Affiliation(s)
- Jie Ren
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Pingping Chen
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Yunjing Zhang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Xingli He
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Lingfeng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| | - Peng Li
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
- Suzhou Weimu Intelligent System Co., Ltd., Suzhou 215163, China
| |
Collapse
|
2
|
Batty CA, Pearson VK, Olsson-Francis K, Morgan G. Volatile organic compounds (VOCs) in terrestrial extreme environments: implications for life detection beyond Earth. Nat Prod Rep 2025; 42:93-112. [PMID: 39431456 DOI: 10.1039/d4np00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Covering: 1961 to 2024Discovering and identifying unique natural products/biosignatures (signatures that can be used as evidence for past or present life) that are abundant, and complex enough that they indicate robust evidence of life is a multifaceted process. One distinct category of biosignatures being explored is organic compounds. A subdivision of these compounds not yet readily investigated are volatile organic compound (VOCs). When assessing these VOCs as a group (volatilome) a fingerprint of all VOCs within an environment allows the complex patterns in metabolic data to be unravelled. As a technique already successfully applied to many biological and ecological fields, this paper explores how analysis of volatilomes in terrestrial extreme environments could be used to enhance processes (such as metabolomics and metagenomics) already utilised in life detection beyond Earth. By overcoming some of the complexities of collecting VOCs in remote field sites, a variety of lab based analytical equipment and techniques can then be utilised. Researching volatilomics in astrobiology requires time to characterise the patterns of VOCs. They must then be differentiated from abiotic (non-living) signals within extreme environments similar to those found on other planetary bodies (analogue sites) or in lab-based simulated environments or microcosms. Such an effort is critical for understanding data returned from past or upcoming missions, but it requires a step change in approach which explores the volatilome as a vital additional tool to current 'Omics techniques.
Collapse
Affiliation(s)
- Claire A Batty
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| | | | | | - Geraint Morgan
- The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
3
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
4
|
Díaz-Galiano FJ. Alfred Otto Carl Nier: On the Shoulders of a Mass Spectrometry Giant. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1635-1643. [PMID: 38995662 PMCID: PMC11311244 DOI: 10.1021/jasms.4c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
This Perspective pays homage to Alfred Otto Carl Nier, whose substantial contributions were fundamental in shaping the mass spectrometry field into a key technology in research and industry. On the 30th anniversary of his passing, on May 16, 1994, this paper explores Nier's role in the field of mass spectrometry through an overview of his published works, key interviews, and archival material. Nier, originally an electrical engineer turned physicist, spent most of his scientific career at the University of Minnesota. His many innovations, both instrumental and methodological, encompassed advanced fields such as isotopic research, tracer studies, geochronology, or space research. Nier improved sector mass spectrometers, participated in the development of the isotope-ratio mass spectrometry field, developed a double-focusing sector mass spectrometer, and was a relevant member of the Manhattan Project. Today, Nier's influence persists, inspiring new generations of scientists engaged in cutting-edge research, from environmental studies to planetary exploration. His legacy thrives as current technologies and scientific strategies still echo his innovations and foresight.
Collapse
Affiliation(s)
- Francisco José Díaz-Galiano
- University of Almería, Department of Chemistry and Physics, Agrifood Campus
of International Excellence (ceiA3), Ctra. Sacramento s/n, La Cañada de
San Urbano, 04120 Almería, Spain
| |
Collapse
|
5
|
Dos Santos A, Schultz J, Almeida Trapp M, Modolon F, Romanenko A, Kumar Jaiswal A, Gomes L, Rodrigues-Filho E, Rosado AS. Investigating Polyextremophilic Bacteria in Al Wahbah Crater, Saudi Arabia: A Terrestrial Model for Life on Saturn's Moon Enceladus. ASTROBIOLOGY 2024; 24:824-838. [PMID: 39159439 DOI: 10.1089/ast.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.
Collapse
Affiliation(s)
- Alef Dos Santos
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Júnia Schultz
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marilia Almeida Trapp
- Analytical Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Fluvio Modolon
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrii Romanenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arun Kumar Jaiswal
- Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Gomes
- Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Alexandre Soares Rosado
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Nguyen T, Ober DC, Balaji A, Maiwald FW, Hodyss RP, Madzunkov SM, Okumura M, Nemchick DJ. Infrared Photodissociation Spectroscopy of Water-Tagged Ions with a Widely Tunable Quantum Cascade Laser for Planetary Science Applications. Anal Chem 2024; 96:8875-8879. [PMID: 38776223 PMCID: PMC11155675 DOI: 10.1021/acs.analchem.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
This work presents a benchtop method for collecting the room temperature gas phase infrared (IR) action spectra of protonated amino acids and their isomers. The adopted setup uses a minimally modified commercial electrospray ionization linear ion trap mass spectrometer (ESI-LIT-MS) coupled to a broadband continuous wave (cw) quantum cascade laser (QCL) source. This approach leverages messenger assisted action spectroscopic techniques using water-tagged molecular ions with complex formation, irradiation, and subsequent analysis, all taking place within a single linear ion trap stage. This configuration thus circumvents the use of multiple mass selection and analysis stages, cryogenic buffer cells, and complex high-power laser systems typically called upon to execute these techniques. The benchtop action spectrometer is used to collect the 935-1600 cm-1 (6.2-10.7 μm) IR action spectrum of a collection of amino acids and a dipeptide with results cross referenced against literature examples obtained with a free electron laser source. Recorded IR spectra are used for the analysis of binary mixture samples composed of constitutional isomers α-alanine and β-alanine with ratios determined to ∼4% measurement uncertainty without the aid of a front-end separation stage. This turn-key QCL-based approach is a major step in showing the viability of tag-based action spectroscopic techniques for use in future in situ planetary science sensors and general analytical applications.
Collapse
Affiliation(s)
- Tyler
M. Nguyen
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Douglas C. Ober
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Aadarsh Balaji
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Frank W. Maiwald
- NASA
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, United States
| | - Robert P. Hodyss
- NASA
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, United States
| | - Stojan M. Madzunkov
- NASA
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, United States
| | - Mitchio Okumura
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Deacon J. Nemchick
- NASA
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California 91109, United States
| |
Collapse
|
7
|
Ray S, Arévalo R, Southard A, Willhite L, Bardyn A, Ni Z, Danell R, Grubisic A, Gundersen C, Llano J, Yu A, Fahey M, Hernandez E, Graham J, Lee J, Ersahin A, Briois C, Thirkell L, Colin F, Makarov A. Characterization of Regolith And Trace Economic Resources (CRATER): An Orbitrap-based laser desorption mass spectrometry instrument for in situ exploration of the Moon. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9657. [PMID: 38342682 DOI: 10.1002/rcm.9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 02/13/2024]
Abstract
RATIONALE Characterization of Regolith And Trace Economic Resources (CRATER), an Orbitrap™-based laser desorption mass spectrometry instrument designed to conduct high-precision, spatially resolved analyses of planetary materials, is capable of answering outstanding science questions about the Moon's formation and the subsequent processes that have modified its (sub)surface. METHODS Here, we describe the baseline design of the CRATER flight model, which requires <20 000 cm3 volume, <10 kg mass, and <60 W peak power. The analytical capabilities and performance metrics of a prototype that meets the full functionality of the flight model are demonstrated. RESULTS The instrument comprises a high-power, solid-state, pulsed ultraviolet (213 nm) laser source to ablate the surface of the lunar sample, a custom ion optical interface to accelerate and collimate the ions produced at the ablation site, and an Orbitrap mass analyzer capable of discriminating competing isobars via ultrahigh mass resolution and high mass accuracy. The CRATER instrument can measure elemental and isotopic abundances and characterize the organic content of lunar surface samples, as well as identify economically valuable resources for future exploration. CONCLUSION An engineering test unit of the flight model is currently in development to serve as a pathfinder for near-term mission opportunities.
Collapse
Affiliation(s)
- Soumya Ray
- University of Maryland, College Park, Maryland, USA
| | | | | | | | - Anais Bardyn
- University of Maryland, College Park, Maryland, USA
| | - Ziqin Ni
- University of Maryland, College Park, Maryland, USA
| | - Ryan Danell
- Danell Consulting, Winterville, North Carolina, USA
| | | | | | | | - Anthony Yu
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Molly Fahey
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | - Jacob Graham
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Jane Lee
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Akif Ersahin
- MAE Aerospace, South Glastonbury, Connecticut, USA
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | - Fabrice Colin
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | | |
Collapse
|
8
|
Klenner F, Bönigk J, Napoleoni M, Hillier J, Khawaja N, Olsson-Francis K, Cable ML, Malaska MJ, Kempf S, Abel B, Postberg F. How to identify cell material in a single ice grain emitted from Enceladus or Europa. SCIENCE ADVANCES 2024; 10:eadl0849. [PMID: 38517965 PMCID: PMC10959401 DOI: 10.1126/sciadv.adl0849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/20/2024] [Indexed: 03/24/2024]
Abstract
Icy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations. Here, we report experiments simulating mass spectra of ice grains containing one bacterial cell, or fractions thereof, as encountered by advanced instruments on board future space missions to Enceladus or Europa, such as the SUrface Dust Analyzer onboard NASA's upcoming Europa Clipper mission at flyby speeds of 4 to 6 kilometers per second. Mass spectral signals characteristic of the bacteria are shown to be clearly identifiable by future missions, even if an ice grain contains much less than one cell. Our results demonstrate the advantage of analyses of individual ice grains compared to a diluted bulk sample in a heterogeneous plume.
Collapse
Affiliation(s)
- Fabian Klenner
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Janine Bönigk
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Maryse Napoleoni
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jon Hillier
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Nozair Khawaja
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Michael J. Malaska
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Sascha Kempf
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
| | - Bernd Abel
- Institute of Chemical Technology, University of Leipzig, Leipzig, Germany
- Leibniz-Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Frank Postberg
- Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Glidden A, Seager S, Petkowski JJ, Ono S. Can Isotopologues Be Used as Biosignature Gases in Exoplanet Atmospheres? Life (Basel) 2023; 13:2325. [PMID: 38137926 PMCID: PMC10744769 DOI: 10.3390/life13122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can lead to the same magnitude of fractionation. However, using isotopologues as biosignature gases in exoplanet atmospheres presents several challenges. Most significantly, we will only have limited knowledge of the underlying abiotic carbon reservoir of an exoplanet. Atmospheric carbon isotope ratios will thus have to be compared against the local interstellar medium or, better yet, their host star. A further substantial complication is the limited precision of remote atmospheric measurements using spectroscopy. The various metabolic processes that cause isotope fractionation cause less fractionation than anticipated measurement precision (biological fractionation is typically 2 to 7%). While this level of precision is easily reachable in the laboratory or with special in situ instruments, it is out of reach of current telescope technology to measure isotope ratios for terrestrial exoplanet atmospheres. Thus, gas isotopologues are poor biosignatures for exoplanets given our current and foreseeable technological limitations.
Collapse
Affiliation(s)
- Ana Glidden
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Janusz J. Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- JJ Scientific, Mazowieckie, 02-792 Warsaw, Poland
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Shuhei Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Assress H, Ferruzzi MG, Lan RS. Optimization of Mass Spectrometric Parameters in Data Dependent Acquisition for Untargeted Metabolomics on the Basis of Putative Assignments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1621-1631. [PMID: 37419493 PMCID: PMC10402710 DOI: 10.1021/jasms.3c00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Optimization of mass spectrometric parameters for a data dependent acquisition (DDA) experiment is essential to increase the MS/MS coverage and hence increase metabolite identifications in untargeted metabolomics. We explored the influence of mass spectrometric parameters including mass resolution, radio frequency (RF) level, signal intensity threshold, number of MS/MS events, cycle time, collision energy, maximum ion injection time (MIT), dynamic exclusion, and automatic gain control (AGC) target value on metabolite annotations on an Exploris 480-Orbitrap mass spectrometer. Optimal annotation results were obtained by performing ten data dependent MS/MS scans with a mass isolation window of 2.0 m/z and a minimum signal intensity threshold of 1 × 104 at a mass resolution of 180,000 for MS and 30,000 for MS/MS, while maintaining the RF level at 70%. Furthermore, combining an AGC target value of 5 × 106 and MIT of 100 ms for MS and an AGC target value of 1 × 105 and an MIT of 50 ms for MS/MS scans provided an improved number of annotated metabolites. A 10 s exclusion duration and a two stepped collision energy were optimal for higher spectral quality. These findings confirm that MS parameters do influence metabolomics results, and propose strategies for increasing metabolite coverage in untargeted metabolomics. A limitation of this work is that our parameters were only optimized for one RPLC method on single matrix and may be different for other protocols. Additionally, no metabolites were identified at level 1 confidence. The results presented here are based on metabolite annotations and need to be validated with authentic standards.
Collapse
Affiliation(s)
- Hailemariam
Abrha Assress
- Arkansas
Children’s Nutrition Center, Little Rock, Arkansas 72202, United States
- Department
of Pediatrics, University of Arkansas for
Medical Sciences, Little
Rock, Arkansas 72205, United States
| | - Mario G. Ferruzzi
- Arkansas
Children’s Nutrition Center, Little Rock, Arkansas 72202, United States
- Department
of Pediatrics, University of Arkansas for
Medical Sciences, Little
Rock, Arkansas 72205, United States
| | - Renny S. Lan
- Arkansas
Children’s Nutrition Center, Little Rock, Arkansas 72202, United States
- Department
of Pediatrics, University of Arkansas for
Medical Sciences, Little
Rock, Arkansas 72205, United States
| |
Collapse
|
11
|
Devata S, Cleaves HJ, Dimandja J, Heist CA, Meringer M. Comparative Evaluation of Electron Ionization Mass Spectral Prediction Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37390315 DOI: 10.1021/jasms.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
During the past decade promising methods for computational prediction of electron ionization mass spectra have been developed. The most prominent ones are based on quantum chemistry (QCEIMS) and machine learning (CFM-EI, NEIMS). Here we provide a threefold comparison of these methods with respect to spectral prediction and compound identification. We found that there is no unambiguous way to determine the best of these three methods. Among other factors, we find that the choice of spectral distance functions play an important role regarding the performance for compound identification.
Collapse
Affiliation(s)
- Sriram Devata
- International Institute of Information Technology, Hyderabad 500 032, India
- Blue Marble Space Institute of Science, 1001 4th Ave, Suite 3201, Seattle, Washington 98154, United States
| | - Henderson James Cleaves
- Blue Marble Space Institute of Science, 1001 4th Ave, Suite 3201, Seattle, Washington 98154, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - John Dimandja
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christopher A Heist
- Georgia Tech Research Institute (GTRI), Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Markus Meringer
- Department of Atmospheric Processors, German Aerospace Center (DLR), Münchner Straße 20, 82234 Oberpfaffenhofen-Wessling, Germany
| |
Collapse
|
12
|
Garcia A, Serra C, Remaury QB, Garcia AD, Righezza M, Meinert C, Poinot P, Danger G. Gas chromatography coupled-to Fourier transform orbitrap mass spectrometer for enantioselective amino acid analyses: Application to pre-cometary organic analog. J Chromatogr A 2023; 1704:464118. [PMID: 37315448 DOI: 10.1016/j.chroma.2023.464118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Gas chromatography (GC) is a separation technique commonly developed for targeted in situ analyses in planetary space missions. It is coupled with low-resolution mass spectrometry to obtain additional structural information and allow compound identification. However, ground-based analyses of extraterrestrial samples have shown the presence of large molecular diversities. For future targeted in situ analyses, it is therefore essential to develop new technologies. High resolution mass spectrometry (HRMS) is currently being spatialized using FT-orbitrap-MS technology. In this contribution, the coupling of gas chromatography with FT-orbitrap-MS is studied for targeted amino acid analyses. The method for enantioselective separation of amino acids was optimized on a standard mixture comprising 47 amino acid enantiomers. Different ionization modes were optimized, chemical ionization with three different reactive gasses (NH3, CH4 and NH3/CH4) and electron impact ionization at different electron energies. Single ion and full scan monitoring modes were compared, and detection and quantification limits were estimated by internal calibration under the optimized conditions. The GC-FT-orbitrap-MS demonstrated its ability to separate 47 amino acid enantiomers with minimal co-elution. Furthermore, due to the high mass resolution and accuracy of FT-orbitrap-MS, with mass extraction, the S/N is close to zero, allowing average LOD values of 10⁻7 M, orders of magnitude lower than conventional GC-MS techniques. Finally, these conditions were tested for enantioselective analysis of amino acids on an analog of a pre-cometary organic material showing similarities to that of extraterrestrial materials.
Collapse
Affiliation(s)
- A Garcia
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France
| | - C Serra
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France; UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team, University of Poitiers, 4 rue Michel-Brunet, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - Q Blancart Remaury
- UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team, University of Poitiers, 4 rue Michel-Brunet, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - A D Garcia
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS, F-06108 Nice, France
| | - M Righezza
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France
| | - C Meinert
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272 CNRS, F-06108 Nice, France
| | - P Poinot
- UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), E.BiCoM Team, University of Poitiers, 4 rue Michel-Brunet, TSA 51106, 86073, Poitiers, Cedex 9, France
| | - G Danger
- Aix-Marseille Université, CNRS, Institut Origines, Laboratoire PIIM, Marseille, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
13
|
Ni Z, Arevalo R, Bardyn A, Willhite L, Ray S, Southard A, Danell R, Graham J, Li X, Chou L, Briois C, Thirkell L, Makarov A, Brinckerhoff W, Eigenbrode J, Junge K, Nunn BL. Detection of Short Peptides as Putative Biosignatures of Psychrophiles via Laser Desorption Mass Spectrometry. ASTROBIOLOGY 2023; 23:657-669. [PMID: 37134219 DOI: 10.1089/ast.2022.0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Studies of psychrophilic life on Earth provide chemical clues as to how extraterrestrial life could maintain viability in cryogenic environments. If living systems in ocean worlds (e.g., Enceladus) share a similar set of 3-mer and 4-mer peptides to the psychrophile Colwellia psychrerythraea on Earth, spaceflight technologies and analytical methods need to be developed to detect and sequence these putative biosignatures. We demonstrate that laser desorption mass spectrometry, as implemented by the CORALS spaceflight prototype instrument, enables the detection of protonated peptides, their dimers, and metal adducts. The addition of silicon nanoparticles promotes the ionization efficiency, improves mass resolving power and mass accuracies via reduction of metastable decay, and facilitates peptide de novo sequencing. The CORALS instrument, which integrates a pulsed UV laser source and an Orbitrap™ mass analyzer capable of ultrahigh mass resolving powers and mass accuracies, represents an emerging technology for planetary exploration and a pathfinder for advanced technique development for astrobiological objectives. Teaser: Current spaceflight prototype instrument proposed to visit ocean worlds can detect and sequence peptides that are found enriched in at least one strain of microbe surviving in subzero icy brines via silicon nanoparticle-assisted laser desorption analysis.
Collapse
Affiliation(s)
- Ziqin Ni
- University of Maryland, College Park, Maryland, USA
| | | | - Anais Bardyn
- University of Maryland, College Park, Maryland, USA
| | | | - Soumya Ray
- University of Maryland, College Park, Maryland, USA
| | | | - Ryan Danell
- Danell Consulting, Winterville, North Carolina, USA
| | - Jacob Graham
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Christelle Briois
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | - Laurent Thirkell
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, Orléans, France
| | | | | | | | - Karen Junge
- University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Littlejohn C, Li M, O’Connor PB. In Silico Demonstration of Two-Dimensional Mass Spectrometry Using Spatially Dependent Fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:409-416. [PMID: 36744747 PMCID: PMC9983000 DOI: 10.1021/jasms.2c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional mass spectrometry (2DMS) allows for the analysis of complex mixtures of all kinds at high speed and resolution without data loss from isolation or biased acquisition, effectively generating tandem mass spectrometry information for all ions at once. Currently, this technique is limited to instruments utilizing an ion trap such as the Fourier transform ion cyclotron resonance or linear ion traps. To overcome this limitation, new fragmentation waveforms were used in either a temporal or spatial configuration, allowing for the application of 2DMS on a much wider array of instruments. A simulated example of a time-of-flight-based instrument is shown with the new waveforms, which allowed for the correlation of fragment ions to their respective precursors through the processing of the modulation of fragmentation intensity with a Fourier transform. This application indicated that 2D modulation and Fourier precursor/fragment intensity correlation are possible in any case where separation, either temporally or spatially, can be achieved, allowing 2DMS to be applied to almost every type of mass spectrometry instrument.
Collapse
Affiliation(s)
- Callan Littlejohn
- ASCDT,
Senate House, University of Warwick, Coventry, United KingdomCV4 7AL
| | - Meng Li
- Department
of Chemistry, University of Warwick, Coventry, United KingdomCV4 7AL
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Coventry, United KingdomCV4 7AL
| |
Collapse
|
15
|
Azua-Bustos A, Fairén AG, González-Silva C, Prieto-Ballesteros O, Carrizo D, Sánchez-García L, Parro V, Fernández-Martínez MÁ, Escudero C, Muñoz-Iglesias V, Fernández-Sampedro M, Molina A, Villadangos MG, Moreno-Paz M, Wierzchos J, Ascaso C, Fornaro T, Brucato JR, Poggiali G, Manrique JA, Veneranda M, López-Reyes G, Sanz-Arranz A, Rull F, Ollila AM, Wiens RC, Reyes-Newell A, Clegg SM, Millan M, Johnson SS, McIntosh O, Szopa C, Freissinet C, Sekine Y, Fukushi K, Morida K, Inoue K, Sakuma H, Rampe E. Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits. Nat Commun 2023; 14:808. [PMID: 36810853 PMCID: PMC9944251 DOI: 10.1038/s41467-023-36172-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/17/2023] [Indexed: 02/24/2023] Open
Abstract
Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.
Collapse
Affiliation(s)
- Armando Azua-Bustos
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain. .,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - Alberto G Fairén
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, 14853, NY, USA
| | | | | | - Daniel Carrizo
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain
| | | | - Victor Parro
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | | | - Antonio Molina
- Centro de Astrobiología (CAB) (CSIC-INTA), 28850, Madrid, Spain
| | | | | | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Teresa Fornaro
- INAF-Astrophysical Observatory of Arcetri, Florence, Italy
| | | | | | - Jose Antonio Manrique
- Universidad de Valladolid, Valladolid, Spain.,Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France
| | | | | | | | | | - Ann M Ollila
- Purdue University, Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA
| | - Roger C Wiens
- Purdue University, Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA
| | | | - Samuel M Clegg
- Purdue University, Earth, Atmospheric, and Planetary Sciences, West Lafayette, USA
| | - Maëva Millan
- Department of Biology, Georgetown University, Washington, DC, 20057, USA.,NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, MD, 20771, USA.,LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, 11 Bd d'Alembert, 78280, Guyancourt, France
| | - Sarah Stewart Johnson
- Department of Biology, Georgetown University, Washington, DC, 20057, USA.,Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Ophélie McIntosh
- INAF-Astrophysical Observatory of Arcetri, Florence, Italy.,Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Cyril Szopa
- Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Caroline Freissinet
- Science, Technology, and International Affairs Program, Georgetown University, Washington, DC, 20057, USA
| | - Yasuhito Sekine
- Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo, Japan.,Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan
| | - Koki Morida
- Division of Natural System, Kanazawa University, Kanazawa, Japan
| | - Kosuke Inoue
- Division of Natural System, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Sakuma
- National Institute for Materials Science, Tsukuba, Japan
| | - Elizabeth Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
16
|
Xu H, Hao Q, Liu H, Chen L, Wu R, Qin L, Guo H, Li J, Yang C, Hu H, Xue K, Feng J, Zhou Y, Liu B, Li G, Wang X. A concentration-descending washing strategy with methanol for the enhancement of protein imaging in biological tissues by MALDI-MS. Analyst 2023; 148:823-831. [PMID: 36637134 DOI: 10.1039/d2an01678h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a powerful approach that has been widely used for in situ detection of various endogenous compounds in tissues. However, there are still challenges with in situ analysis of proteins using MALDI-MSI due to the ion suppression effects of small molecules in tissue sections. Therefore, tissue-washing steps are crucial for protein MALDI tissue imaging to remove these interfering molecules. Here, we successfully developed a new method named the concentration-descending washing strategy (CDWS) with methanol (MeOH), i.e., washing of biological tissue with 100%, 95%, and 70% MeOH solutions, for the enhancement of endogenous in situ protein detection and imaging in tissues using MALDI-MS. The method of MeOH-based CDWS (MeOH-CDWS) led to the successful in situ detection of 272 ± 3, 185 ± 4, and 134 ± 2 protein ion signals from rat liver, rat brain, and germinating Chinese-yew seed tissue sections, respectively. By comparison, 161 ± 2, 121 ± 1, and 114 ± 2 protein ions were detected by three commonly used methods, i.e., Carnoy's wash, ethanol (EtOH)-based CAWS (i.e., concentration-ascending washing strategy, 70% EtOH followed by 90% EtOH/9% AcOH), and isopropanol (iPrOH)-based CAWS (70% iPrOH followed by 95% iPrOH), respectively, in rat liver tissue sections, indicating that 68.9 ± 3.1%, 124.8 ± 3.3%, and 138.6 ± 4.4% more protein ion signals could be detected by the use of MeOH-CDWS than the three abovementioned washing strategies. Our results show that the use of MeOH-CDWS improves the performance of MALDI-MSI for in situ protein detection such as the number and intensity of proteins. The use of MeOH-CDWS improves the fixation of proteins and thus reduces the loss of proteins, which significantly reduces protein delocalization in tissue and enhances the performance of MALDI tissue imaging of protein. Thus, the use of MeOH-CDWS improves the quality of protein images in tissue sections through MALDI-MSI and has the potential to be used as standard practice for MALDI tissue imaging of proteins.
Collapse
Affiliation(s)
- Hualei Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Qichen Hao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Haiqiang Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Ran Wu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Liang Qin
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hua Guo
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Jinrong Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Chenyu Yang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Hao Hu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Kun Xue
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Jinchao Feng
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| | - Gaopeng Li
- General Surgery Department, Shanxi Bethune Hospital, Taiyuan 030032, China.
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China. .,College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
17
|
Aloui T, Serpa RB, Abboud N, Horvath KL, Keogh J, Parker CB, Stern JC, Denton MB, Sartorelli ML, Glass JT, Gehm ME, Amsden JJ. A super-resolution proof of concept in a cycloidal coded aperture miniature mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023:e9477. [PMID: 36658103 DOI: 10.1002/rcm.9477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
RATIONALE Higher resolution in fieldable mass spectrometers (MS) is desirable in space flight applications to enable resolving isobaric interferences at m/z < 60 u. Resolution in portable cycloidal MS coupled with array detectors could be improved by reducing the slit width and/or by reducing the width of the detector pixels. However, these solutions are expensive and can result in reduced sensitivity. In this paper, we demonstrate high-resolution spectral reconstruction in a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) without changing the slit or detector pixel sizes using a class of signal processing techniques called super-resolution (SR). METHODS We developed an SR reconstruction algorithm using a sampling SR approach whereby a set of spatially shifted low-resolution measurements are reconstructed into a higher-resolution spectrum. This algorithm was applied to experimental data collected using the C-CAMMS prototype. It was then applied to synthetic data with additive noise, system response variation, and spatial shift nonuniformity to investigate the source of reconstruction artifacts in the experimental data. RESULTS Experimental results using two ½ pixel shifted spectra resulted in a resolution of ¾ pixel full width at half maximum (FWHM) at m/z = 28 u. This resolution is equivalent to 0.013 u, six times better than the resolution previously published at m/z = 28 for N2 + using C-CAMMS. However, the reconstructed spectra exhibited some artifacts. The results of the synthetic data study indicate that the artifacts are most likely caused by the system response variation. CONCLUSIONS This paper demonstrates super-resolution spectral reconstruction in C-CAMMS without changing the slit or detector pixel sizes using a sampling SR approach. With improvements, this technique could be used to resolve isobaric interferences in a portable cycloidal MS for space flight applications.
Collapse
Affiliation(s)
- Tanouir Aloui
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Rafael Bento Serpa
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Nabil Abboud
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Kathleen L Horvath
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Justin Keogh
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Charles B Parker
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | | | - M Bonner Denton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Maria Luisa Sartorelli
- Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, Brazil
| | - Jeffrey T Glass
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Michael E Gehm
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Jason J Amsden
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
18
|
Madzunkova S, Nikolić D. Method for Accurate Detection of Amino Acids and Mycotoxins in Planetary Atmospheres. Life (Basel) 2022; 12:2122. [PMID: 36556487 PMCID: PMC9784085 DOI: 10.3390/life12122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
We present a systematic analysis of a large number of mass spectra accumulated as the number of ion fragments recorded in unit mass-to-charge detector channels. The method retrieves the abundances of detected species using an efficient deconvolution algorithm, which relies on fragment pattern recognition, mass calibration, and background correction. The abundance analysis identifies target species, amino acids, and mycotoxins through their characteristic fragmentation patterns in the presence of an increasing number of interfering species. The method offered robust and efficient retrieval of abundances of metabolic molecules in complex mixtures obscured by a wide range of toxic compounds.
Collapse
Affiliation(s)
- Sigrid Madzunkova
- La Cañada High School, 4463 Oak Grove Dr, La Cañada Flintridge, CA 91011, USA
| | - Dragan Nikolić
- California Institute of Technology, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| |
Collapse
|
19
|
Billi D, Blanco Y, Ianneo A, Moreno-Paz M, Aguirre J, Baqué M, Moeller R, de Vera JP, Parro V. Mars-like UV Flux and Ionizing Radiation Differently Affect Biomarker Detectability in the Desert Cyanobacterium Chroococcidiopsis as Revealed by the Life Detector Chip Antibody Microarray. ASTROBIOLOGY 2022; 22:1199-1209. [PMID: 36194868 DOI: 10.1089/ast.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.
Collapse
Affiliation(s)
- Daniela Billi
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Yolanda Blanco
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Andrea Ianneo
- University of Rome Tor Vergata, Department of Biology, Rome, Italy
| | - Mercedes Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Jacobo Aguirre
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, Planetary Laboratories Department, Berlin, Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Space Operations and Astronaut Training, Microgravity User Support Center, Cologne, Germany
| | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Department of Molecular Evolution, Torrejón de Ardoz, Madrid, Spain
| |
Collapse
|
20
|
Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. UNIVERSE 2022. [DOI: 10.3390/universe8080410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectroscopic instruments were a part of payloads on orbiter and lander missions and delivered vast data sets to explore minerals, elements and molecules on air-less rocky planets, asteroids and comets on global and local scales. To answer current space science questions, the chemical composition of planetary rocks and soils at grain scale is required, as well as measurements of element (isotope) concentrations down to the part per million or lower. Only mass spectrometric methods equipped with laser sampling ion sources can deliver the necessary information. Laser sampling techniques can reduce the dimensions of the investigated sample material down to micrometre scale, allowing for the composition analysis of grain-sized objects or thin mineral layers with sufficiently high spatial resolution, such that important geological processes can be recognised and studied as they progressed in time. We describe the performance characteristics, when applied to meteorite and geological samples, of a miniaturised laser ablation/ionisation mass spectrometer (named LMS) system that has been developed in our group. The main advantages of the LMS instrument over competing techniques are illustrated by examples of high spatial (lateral and vertical) resolution studies in different meteorites, terrestrial minerals and fossil-like structures in ancient rocks for most elements of geochemical interest. Top-level parameters, such as dimension, weight, and power consumption of a possible flight design of the LMS system are presented as well.
Collapse
|
21
|
Gevi F, Leo P, Cassaro A, Pacelli C, de Vera JPP, Rabbow E, Timperio AM, Onofri S. Metabolomic Profile of the Fungus Cryomyces antarcticus Under Simulated Martian and Space Conditions as Support for Life-Detection Missions on Mars. Front Microbiol 2022; 13:749396. [PMID: 35633719 PMCID: PMC9133366 DOI: 10.3389/fmicb.2022.749396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
The identification of traces of life beyond Earth (e.g., Mars, icy moons) is a challenging task because terrestrial chemical-based molecules may be destroyed by the harsh conditions experienced on extraterrestrial planetary surfaces. For this reason, studying the effects on biomolecules of extremophilic microorganisms through astrobiological ground-based space simulation experiments is significant to support the interpretation of the data that will be gained and collected during the ongoing and future space exploration missions. Here, the stability of the biomolecules of the cryptoendolithic black fungus Cryomyces antarcticus, grown on two Martian regolith analogues and on Antarctic sandstone, were analysed through a metabolomic approach, after its exposure to Science Verification Tests (SVTs) performed in the frame of the European Space Agency (ESA) Biology and Mars Experiment (BIOMEX) project. These tests are building a set of ground-based experiments performed before the space exposure aboard the International Space Station (ISS). The analysis aimed to investigate the effects of different mineral mixtures on fungal colonies and the stability of the biomolecules synthetised by the fungus under simulated Martian and space conditions. The identification of a specific group of molecules showing good stability after the treatments allow the creation of a molecular database that should support the analysis of future data sets that will be collected in the ongoing and next space exploration missions.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Patrick Leo
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
- Department of Environmental Sciences, Informatics and Statistics, University Ca’ Foscari of Venice, Venice, Italy
| | - Alessia Cassaro
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | | | - Elke Rabbow
- German Aerospace Centre, Institute of Aerospace Medicine (DLR), Cologne, Germany
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Silvano Onofri
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| |
Collapse
|
22
|
Azov VA, Mueller L, Makarov AA. LASER IONIZATION MASS SPECTROMETRY AT 55: QUO VADIS? MASS SPECTROMETRY REVIEWS 2022; 41:100-151. [PMID: 33169900 DOI: 10.1002/mas.21669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Laser ionization mass spectrometry (LIMS) was one of the first practical methods developed for in situ analysis of the surfaces of solid samples. This review will encompass several aspects related to this analytical method. First, we will discuss the process of laser ionization, the influence of the laser type on its performance, and imaging capabilities of this method. In the second chapter, we will follow the historic development of LIMS instrumentation. After a brief overview of the first-generation instruments developed in 1960-1990 years, we will discuss in detail more recent designs, which appeared during the last 2-3 decades. In the last part of our review, we will cover the recent applications of LIMS for surface analysis. These applications include various types of analyses of solid inorganic, organic, and heterogeneous samples, often in combination with depth profiling and imaging capability.
Collapse
Affiliation(s)
- Vladimir A Azov
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | | | - Alexander A Makarov
- Thermo Fisher Scientific GmbH, Bremen, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Ventura C, Torres V, Vieira L, Gomes B, Rodrigues AS, Rueff J, Penque D, Silva MJ. New “Omics” Approaches as Tools to Explore Mechanistic Nanotoxicology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:179-194. [DOI: 10.1007/978-3-030-88071-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Lukmanov RA, Riedo A, Wacey D, Ligterink NFW, Grimaudo V, Tulej M, de Koning C, Neubeck A, Wurz P. On Topological Analysis of fs-LIMS Data. Implications for in Situ Planetary Mass Spectrometry. Front Artif Intell 2021; 4:668163. [PMID: 34497998 PMCID: PMC8419467 DOI: 10.3389/frai.2021.668163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
In this contribution, we present results of non-linear dimensionality reduction and classification of the fs laser ablation ionization mass spectrometry (LIMS) imaging dataset acquired from the Precambrian Gunflint chert (1.88 Ga) using a miniature time-of-flight mass spectrometer developed for in situ space applications. We discuss the data generation, processing, and analysis pipeline for the classification of the recorded fs-LIMS mass spectra. Further, we define topological biosignatures identified for Precambrian Gunflint microfossils by projecting the recorded fs-LIMS intensity space into low dimensions. Two distinct subtypes of microfossil-related spectra, a layer of organic contamination and inorganic quartz matrix were identified using the fs-LIMS data. The topological analysis applied to the fs-LIMS data allows to gain additional knowledge from large datasets, formulate hypotheses and quickly generate insights from spectral data. Our contribution illustrates the utility of applying spatially resolved mass spectrometry in combination with topology-based analytics in detecting signatures of early (primitive) life. Our results indicate that fs-LIMS, in combination with topological methods, provides a powerful analytical framework and could be applied to the study of other complex mineralogical samples.
Collapse
Affiliation(s)
- Rustam A Lukmanov
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Andreas Riedo
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - David Wacey
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
| | - Niels F W Ligterink
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Valentine Grimaudo
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Marek Tulej
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Coenraad de Koning
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Wurz
- Space Research and Planetary Sciences (WP), University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Miles HN, Delafield DG, Li L. Recent Developments and Applications of Quantitative Proteomics Strategies for High-Throughput Biomolecular Analyses in Cancer Research. RSC Chem Biol 2021; 4:1050-1072. [PMID: 34430874 PMCID: PMC8341969 DOI: 10.1039/d1cb00039j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022] Open
Abstract
Innovations in medical technology and dedicated focus from the scientific community have inspired numerous treatment strategies for benign and invasive cancers. While these improvements often lend themselves to more positive prognoses and greater patient longevity, means for early detection and severity stratification have failed to keep pace. Detection and validation of cancer-specific biomarkers hinges on the ability to identify subtype-specific phenotypic and proteomic alterations and the systematic screening of diverse patient groups. For this reason, clinical and scientific research settings rely on high throughput and high sensitivity mass spectrometry methods to discover and quantify unique molecular perturbations in cancer patients. Discussed within is an overview of quantitative proteomics strategies and a summary of recent applications that enable revealing potential biomarkers and treatment targets in prostate, ovarian, breast, and pancreatic cancer in a high throughput manner.
Collapse
Affiliation(s)
- Hannah N. Miles
- School of Pharmacy, University of Wisconsin-Madison777 Highland AvenueMadisonWI53705-2222USA+1-608-262-5345+1-608-265-8491
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison777 Highland AvenueMadisonWI53705-2222USA+1-608-262-5345+1-608-265-8491
- Department of Chemistry, University of Wisconsin-MadisonMadisonWI53706USA
| |
Collapse
|
26
|
Lee S, Chintalapudi K, Badu-Tawiah AK. Clinical Chemistry for Developing Countries: Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:437-465. [PMID: 33979544 PMCID: PMC8932337 DOI: 10.1146/annurev-anchem-091520-085936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early disease diagnosis is necessary to enable timely interventions. Implementation of this vital task in the developing world is challenging owing to limited resources. Diagnostic approaches developed for resource-limited settings have often involved colorimetric tests (based on immunoassays) due to their low cost. Unfortunately, the performance/sensitivity of such simplistic tests are often limited and significantly hinder opportunities for early disease detection. A new criterion for selecting diagnostic tests in low- and middle-income countries is proposed here that is based on performance-to-cost ratio. For example, modern mass spectrometry (MS) now involves analysis of the native sample in the open laboratory environment, enabling applications in many fields, including clinical research, forensic science, environmental analysis, and agriculture. In this critical review, we summarize recent developments in chemistry that enable MS to be applied effectively in developing countries. In particular, we argue that closed automated analytical systems may not offer the analytical flexibility needed in resource-limited settings. Alternative strategies proposed here have potential to be widely accepted in low- and middle-income countries through the utilization of the open-source ambient MS platform that enables microsampling techniques such as dried blood spot to be coupled with miniature mass spectrometers in a centralized analytical platform. Consequently, costs associated with sample handling and maintenance can be reduced by >50% of the total ownership cost, permitting analytical measurements to be operated at high performance-to-cost ratios in the developing world.
Collapse
Affiliation(s)
- Suji Lee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Kavyasree Chintalapudi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
27
|
Mudge MC, Nunn BL, Firth E, Ewert M, Hales K, Fondrie WE, Noble WS, Toner J, Light B, Junge KA. Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environ Microbiol 2021; 23:3840-3866. [PMID: 33760340 PMCID: PMC8475265 DOI: 10.1111/1462-2920.15485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 11/26/2022]
Abstract
Colwellia psychrerythraea is a marine psychrophilic bacterium known for its remarkable ability to maintain activity during long-term exposure to extreme subzero temperatures and correspondingly high salinities in sea ice. These microorganisms must have adaptations to both high salinity and low temperature to survive, be metabolically active, or grow in the ice. Here, we report on an experimental design that allowed us to monitor culturability, cell abundance, activity and proteomic signatures of C. psychrerythraea strain 34H (Cp34H) in subzero brines and supercooled sea water through long-term incubations under eight conditions with varying subzero temperatures, salinities and nutrient additions. Shotgun proteomics found novel metabolic strategies used to maintain culturability in response to each independent experimental variable, particularly in pathways regulating carbon, nitrogen and fatty acid metabolism. Statistical analysis of abundances of proteins uniquely identified in isolated conditions provide metabolism-specific protein biosignatures indicative of growth or survival in either increased salinity, decreased temperature, or nutrient limitation. Additionally, to aid in the search for extant life on other icy worlds, analysis of detected short peptides in -10°C incubations after 4 months identified over 500 potential biosignatures that could indicate the presence of terrestrial-like cold-active or halophilic metabolisms on other icy worlds.
Collapse
Affiliation(s)
- Miranda C. Mudge
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA
- Astrobiology Program, University of Washington, Seattle, WA
| | - Erin Firth
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| | - Marcela Ewert
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| | - Kianna Hales
- Department of Genome Sciences, University of Washington, Seattle, WA
| | | | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA
| | - Jonathan Toner
- Department of Earth and Space Sciences, University of Washington, Seattle, WA
| | - Bonnie Light
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| | - Karen A. Junge
- Applied Physics Lab, Polar Science Center, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Vyas R, Aloui T, Horvath K, Herr PJ, Kirley MP, Parker CB, Keil AD, Carlson JB, Keogh J, Sperline RP, Denton MB, Sartorelli ML, Stoner BR, Gehm ME, Glass JT, Amsden JJ. Improving the Performance of a Cycloidal Coded-Aperture Miniature Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:509-518. [PMID: 33382610 DOI: 10.1021/jasms.0c00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cycloidal sector mass analyzers have, in principle, perfect focusing due to perpendicularly oriented uniform electric and magnetic fields, making them ideal candidates for incorporation of spatially coded apertures. We have previously demonstrated a proof-of-concept cycloidal-coded aperture miniature mass spectrometer (C-CAMMS) instrument and achieved a greater than 10-fold increase in throughput without sacrificing resolution, compared with a single slit instrument. However, artifacts were observed in the reconstructed mass spectrum due to nonuniformity in the electric field and misalignment of the detector and the ion source with the mass analyzer focal plane. In this work, we modified the mass analyzer design of the previous C-CAMMS instrument to improve electric field uniformity, improve the alignment of the ion source and the mass analyzer with the detector, and increase the depth-of-focus to further facilitate alignment. A comparison of reconstructed spectra of a mixture of dry air and toluene at different electric fields was performed using the improved C-CAMMS prototype. A reduction in reconstruction artifacts compared to our proof-of-concept C-CAMMS instrument highlights the improved performance enabled by the design changes.
Collapse
Affiliation(s)
- Raul Vyas
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tanouir Aloui
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Kathleen Horvath
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Philip J Herr
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Matthew P Kirley
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Charles B Parker
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Adam D Keil
- Broadway Analytical, LLC, Monmouth, Illinois 61462, United States
| | - James B Carlson
- Engineering and Applied Physics Division, RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Justin Keogh
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Roger P Sperline
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - M Bonner Denton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - M Luisa Sartorelli
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
- Departamento de Física, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-000 Florianópolis, Santa Catarina, Brazil
| | - Brian R Stoner
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Michael E Gehm
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey T Glass
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Jason J Amsden
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|