1
|
Sarkar J, Singh R, Chandel S. Understanding LC/MS-Based Metabolomics: A Detailed Reference for Natural Product Analysis. Proteomics Clin Appl 2025; 19:e202400048. [PMID: 39474988 DOI: 10.1002/prca.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 01/14/2025]
Abstract
Liquid chromatography, when used in conjunction with mass spectrometry (LC/MS), is a powerful tool for conducting accurate and reproducible investigations of numerous metabolites in natural products (NPs). LC/MS has gained prominence in metabolomic research due to its high throughput, the availability of multiple ionization techniques and its ability to provide comprehensive metabolite coverage. This unique method can significantly influence various scientific domains. This review offers a comprehensive overview of the current state of LC/MS-based metabolomics in the investigation of NPs. This review provides a thorough overview of the state of the art in LC/MS-based metabolomics for the investigation of NPs. It covers the principles of LC/MS, various aspects of LC/MS-based metabolomics such as sample preparation, LC modes, method development, ionization techniques and data pre-processing. Moreover, it presents the applications of LC/MS-based metabolomics in numerous fields of NPs research such as including biomarker discovery, the agricultural research, food analysis, the study of marine NPs and microbiological research. Additionally, this review discusses the challenges and limitations of LC/MS-based metabolomics, as well as emerging trends and developments in this field.
Collapse
Affiliation(s)
- Jyotirmay Sarkar
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
2
|
McKinnon JC, Balez R, Young RSE, Brown ML, Lum JS, Robinson L, Belov ME, Ooi L, Tortorella S, Mitchell TW, Ellis SR. MALDI-2-Enabled Oversampling for the Mass Spectrometry Imaging of Metabolites at Single-Cell Resolution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2729-2742. [PMID: 39137242 DOI: 10.1021/jasms.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide valuable insights into the metabolome of complex biological systems such as organ tissues and cells. However, obtaining metabolite data at single-cell spatial resolutions presents a few technological challenges. Generally, spatial resolution is defined by the increment the sample stage moves between laser ablation spots. Stage movements less than the diameter of the focused laser beam (i.e., oversampling) can improve spatial resolution; however, such oversampling conditions result in a reduction in sensitivity. To overcome this, we combine an oversampling approach with laser postionization (MALDI-2), which allows for both higher spatial resolution and improved analyte ionization efficiencies. This approach provides significant enhancements to sensitivity for various metabolite classes (e.g., amino acids, purines, carbohydrates etc.), with mass spectral intensities from 6 to 8 μm pixel sizes (from a laser spot size of ∼13 μm) being commensurate with or higher than those obtained by conventional MALDI at 20 μm pixel sizes for many different metabolites. This technique has been used to map the distribution of metabolites throughout mouse spinal cord tissue to observe how metabolite localizations change throughout specific anatomical regions, such as those distributed to the somatosensory area of the dorsal horn, white matter, gray matter, and ventral horn. Furthermore, this method is utilized for single-cell metabolomics of human iPSC-derived astrocytes at 10 μm pixel sizes whereby many different metabolites, including nucleotides, were detected from individual cells while providing insight into cellular localizations.
Collapse
Affiliation(s)
- Jayden C McKinnon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Rachelle Balez
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikayla L Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Jeremy S Lum
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Liam Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Mikhail E Belov
- Spectroglyph LLC, Kennewick, Washington 99338, United States
| | - Lezanne Ooi
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Sara Tortorella
- Molecular Horizon srl, Via Montelino 30, Bettona, PG 06084, Italy
| | - Todd W Mitchell
- Molecular Horizons, School of Medical, Indigenous and Health Science, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Shane R Ellis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
3
|
Barrera-Adame D, Schuster S, Niedermeyer THJ. Mass Spectrometry Imaging of Coniine and Other Hemlock Alkaloids after On-Tissue Derivatization Reveals Distinct Alkaloid Distributions in the Plant. JOURNAL OF NATURAL PRODUCTS 2024; 87:2376-2383. [PMID: 38904441 PMCID: PMC11519914 DOI: 10.1021/acs.jnatprod.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Specialized metabolites play important roles in plants and can, for example, protect plants from predators or pathogens. Alkaloids, due to their pronounced biological activity on higher animals, are one of the most intriguing groups of specialized metabolites, and many of them are known as plant defense compounds. Poison hemlock, Conium maculatum, is well-known for its high content of piperidine alkaloids, of which coniine is the most famous. The distribution, localization, and diversity of these compounds in C. maculatum tissues have not yet been studied in detail. The hemlock alkaloids are low molecular weight compounds with relatively high volatility. They are thus difficult to analyze on-tissue by MALDI mass spectrometry imaging due to delocalization, which occurs even when using an atmospheric pressure ion source. In this manuscript, we describe an on-tissue derivatization method that allows the subsequent determination of the spatial distribution of hemlock alkaloids in different plant tissues by mass spectrometry imaging. Coniferyl aldehyde was found to be a suitable reagent for derivatization of the secondary amine alkaloids. The imaging analysis revealed that even chemically closely related hemlock alkaloids are discretely distributed in different plant tissues. Additionally, we detected a yet undescribed hemlock alkaloid in Conium maculatum seeds.
Collapse
Affiliation(s)
- Diana
A. Barrera-Adame
- Department
of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department
of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sabine Schuster
- Department
of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Timo H. J. Niedermeyer
- Department
of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Department
of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
4
|
Zhou H, Yuan J, Xu J, Wang Y, Xiong P, Zhao G, Jiang X, Peng Y, Ye Y, Cheng G, Zheng J, Liu J. Mass Spectrometry Imaging of Amino Acids Enabled by Quaternized Pyridinium Salt MALDI Probe. Anal Chem 2024. [PMID: 39149969 DOI: 10.1021/acs.analchem.4c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The distribution of small biomolecules, particularly amino acids (AAs), differs between normal cells and cancer cells. Imaging this distribution is crucial for gaining a deeper understanding of their physiological and pathological significance. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) provides accurate in situ visualization information. However, the analysis of AAs remains challenging due to the background interference by conventional MALDI matrices. On tissue chemical derivatization (OTCD) MSI serves as an important approach to resolve this issue. We designed, synthesized, and tested a series of pyridinium salt probes and screened out the 1-(4-(((2,5-dioxopyrrolidin-1-yl)oxy)carbonyl)phenyl)-2,4,6-triphenylpyridin-1-ium (DCT) probe with the highest reaction efficiency and the most effective detection. Moreover, a quantum chemistry calculation was executed to address mechanistic insight into the chemical nature of the novel probes. DCT was found to map 20 common AAs in normal mouse tissues for the first time, which allowed differentiation of AA distribution in normal, normal interstitium, tumor, and tumor interstitium regions and provided potential mechanistic insights for cancer research and other biomedical studies.
Collapse
Affiliation(s)
- Hao Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jie Yuan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Jianfeng Xu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- Cancer Metastasis Institute, Fudan University, Shanghai, 201206, P. R. China
| | - Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
| | - Pei Xiong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
| | - Xianhuan Jiang
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310058, P. R. China
| |
Collapse
|
5
|
García-Rojas NS, Sierra-Álvarez CD, Ramos-Aboites HE, Moreno-Pedraza A, Winkler R. Identification of Plant Compounds with Mass Spectrometry Imaging (MSI). Metabolites 2024; 14:419. [PMID: 39195515 DOI: 10.3390/metabo14080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The presence and localization of plant metabolites are indicative of physiological processes, e.g., under biotic and abiotic stress conditions. Further, the chemical composition of plant parts is related to their quality as food or for medicinal applications. Mass spectrometry imaging (MSI) has become a popular analytical technique for exploring and visualizing the spatial distribution of plant molecules within a tissue. This review provides a summary of mass spectrometry methods used for mapping and identifying metabolites in plant tissues. We present the benefits and the disadvantages of both vacuum and ambient ionization methods, considering direct and indirect approaches. Finally, we discuss the current limitations in annotating and identifying molecules and perspectives for future investigations.
Collapse
Affiliation(s)
- Nancy Shyrley García-Rojas
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | | | - Hilda E Ramos-Aboites
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| | - Abigail Moreno-Pedraza
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e.V., Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Robert Winkler
- Unidad de Genómica Avanzada, Cinvestav, Km. 9.6 Libramiento Norte Carr. Irapuato-León, Irapuato 36824, Mexico
| |
Collapse
|
6
|
Zhang H, Lu KH, Ebbini M, Huang P, Lu H, Li L. Mass spectrometry imaging for spatially resolved multi-omics molecular mapping. NPJ IMAGING 2024; 2:20. [PMID: 39036554 PMCID: PMC11254763 DOI: 10.1038/s44303-024-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The recent upswing in the integration of spatial multi-omics for conducting multidimensional information measurements is opening a new chapter in biological research. Mapping the landscape of various biomolecules including metabolites, proteins, nucleic acids, etc., and even deciphering their functional interactions and pathways is believed to provide a more holistic and nuanced exploration of the molecular intricacies within living systems. Mass spectrometry imaging (MSI) stands as a forefront technique for spatially mapping the metabolome, lipidome, and proteome within diverse tissue and cell samples. In this review, we offer a systematic survey delineating different MSI techniques for spatially resolved multi-omics analysis, elucidating their principles, capabilities, and limitations. Particularly, we focus on the advancements in methodologies aimed at augmenting the molecular sensitivity and specificity of MSI; and depict the burgeoning integration of MSI-based spatial metabolomics, lipidomics, and proteomics, encompassing the synergy with other imaging modalities. Furthermore, we offer speculative insights into the potential trajectory of MSI technology in the future.
Collapse
Affiliation(s)
- Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Kelly H. Lu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Malik Ebbini
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705 USA
| |
Collapse
|
7
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
8
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
9
|
Zemaitis KJ, Lin VS, Ahkami AH, Winkler TE, Anderton CR, Veličković D. Expanded Coverage of Phytocompounds by Mass Spectrometry Imaging Using On-Tissue Chemical Derivatization by 4-APEBA. Anal Chem 2023; 95:12701-12709. [PMID: 37594382 DOI: 10.1021/acs.analchem.3c01345] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Probing the entirety of any species metabolome is an analytical grand challenge, especially on a cellular scale. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a common spatial metabolomics assay, but this technique has limited molecular coverage for several reasons. To expand the application space of spatial metabolomics, we developed an on-tissue chemical derivatization (OTCD) workflow using 4-APEBA for the confident identification of several dozen elusive phytocompounds. Overall, this new OTCD method enabled the annotation of roughly 280 metabolites, with only a 10% overlap in metabolic coverage when compared to analog negative ion mode MALDI-MSI on serial sections. We demonstrate that 4-APEBA outperforms other derivatization agents by providing: (1) broad specificity toward carbonyls, (2) low background, and (3) introduction of bromine isotopes. Notably, the latter two attributes also facilitate more confidence in our bioinformatics for data processing. The workflow detailed here trailblazes a path toward spatial hormonomics within plant samples, enhancing the detection of carboxylates, aldehydes, and plausibly other carbonyls. As such, several phytohormones, which have various roles within stress responses and cellular communication, can now be spatially profiled, as demonstrated in poplar root and soybean root nodule.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vivian S Lin
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Amir H Ahkami
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tanya E Winkler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Dušan Veličković
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Wittek O, Römpp A. Autofocusing MALDI MS imaging of processed food exemplified by the contaminant acrylamide in German gingerbread. Sci Rep 2023; 13:5400. [PMID: 37012286 PMCID: PMC10070467 DOI: 10.1038/s41598-023-32004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Acrylamide is a toxic reaction product occurring in dry-heated food such as bakery products. To meet the requirements laid down in recent international legal norms calling for reduction strategies in food prone to acrylamide formation, efficient chromatography-based quantification methods are available. However, for an efficient mitigation of acrylamide levels, not only the quantity, but also the contaminant's distributions are of interest especially in inhomogeneous food consisting of multiple ingredients. A promising tool to investigate the spatial distribution of analytes in food matrices is mass spectrometry imaging (MS imaging). In this study, an autofocusing MALDI MS imaging method was developed for German gingerbread as an example for highly processed and instable food with uneven surfaces. Next to endogenous food constituents, the process contaminant acrylamide was identified and visualized keeping a constant laser focus throughout the measurement. Statistical analyses based on relative acrylamide intensities suggest a higher contamination of nut fragments compared to the dough. In a proof-of-concept experiment, a newly developed in-situ chemical derivatization protocol is described using thiosalicylic acid for highly selective detection of acrylamide. This study presents autofocusing MS imaging as a suitable complementary method for the investigation of analytes' distributions in complex and highly processed food.
Collapse
Affiliation(s)
- Oliver Wittek
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitaetsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
11
|
Wang L, Zang Q, Zhu Y, Liu J, Li X, Tu X, Li X, Abliz Z, Zhang R. On-Tissue Chemical Oxidation Followed by Derivatization for Mass Spectrometry Imaging Enables Visualization of Primary and Secondary Hydroxyl-Containing Metabolites in Biological Tissues. Anal Chem 2023; 95:1975-1984. [PMID: 36629515 DOI: 10.1021/acs.analchem.2c04316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
On-tissue chemical derivatization combined with mass spectrometry imaging (MSI) can effectively visualize low-abundance and poorly ionizable molecules in biological tissues. Owing to the lack of an effective chemical reaction environment on the tissue surface, the development of direct one-step derivatization reactions is challenging. Herein, we present a two-step reaction involving on-tissue chemical oxidation followed by derivatization combined with airflow-assisted desorption electrospray ionization-MSI, enabling the visualization of primary and secondary hydroxyl-containing metabolites (PSHMs) within the tissue sections. This method indirectly achieved on-tissue derivatization by combining two reactions. Hydroxyl was converted to carbonyl using chemical oxidants, and subsequently, carbonyl was derived using Girard's P reagent. Using this methodology, 169 PSHMs, including hydroxy fatty acids (OH-FAs), fatty alcohols (FOHs), and sterol lipids, were detected and imaged in the tissues of rat brain, kidney, and liver. Moreover, we found that the abundant PSHMs, fatty aldehydes, and oxo fatty acids were significantly dysregulated in the liver and kidney tissues of type 2 diabetic rats; in particular, OH-FAs and FOHs were remarkably up-regulated in the diabetic rat liver tissues. The aberrations of these oxidative metabolites provide insights into the understanding of the molecular pathological mechanism of diabetes. This study demonstrates a novel, two-step reaction strategy for on-tissue derivatization with the analysis of previously inaccessible molecules using MSI.
Collapse
Affiliation(s)
- Lingzhi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingce Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ying Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jialin Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinzhu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xinyi Tu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| |
Collapse
|
12
|
Hou JJ, Zhang ZJ, Wu WY, He QQ, Zhang TQ, Liu YW, Wang ZJ, Gao L, Long HL, Lei M, Wu WY, Guo DA. Mass spectrometry imaging: new eyes on natural products for drug research and development. Acta Pharmacol Sin 2022; 43:3096-3111. [PMID: 36229602 PMCID: PMC9712638 DOI: 10.1038/s41401-022-00990-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Natural products (NPs) and their structural analogs represent a major source of novel drug development for disease prevention and treatment. The development of new drugs from NPs includes two crucial aspects. One is the discovery of NPs from medicinal plants/microorganisms, and the other is the evaluation of the NPs in vivo at various physiological and pathological states. The heterogeneous spatial distribution of NPs in medicinal plants/microorganisms or in vivo can provide valuable information for drug development. However, few molecular imaging technologies can detect thousands of compounds simultaneously on a label-free basis. Over the last two decades, mass spectrometry imaging (MSI) methods have progressively improved and diversified, thereby allowing for the development of various applications of NPs in plants/microorganisms and in vivo NP research. Because MSI allows for the spatial mapping of the production and distribution of numerous molecules in situ without labeling, it provides a visualization tool for NP research. Therefore, we have focused this mini-review on summarizing the applications of MSI technology in discovering NPs from medicinal plants and evaluating NPs in preclinical studies from the perspective of new drug research and development (R&D). Additionally, we briefly reviewed the factors that should be carefully considered to obtain the desired MSI results. Finally, the future development of MSI in new drug R&D is proposed.
Collapse
Affiliation(s)
- Jin-Jun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Jia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Yong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Qing-Qing He
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Teng-Qian Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Wen Liu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhao-Jun Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Gao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Li Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Ying Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Hirai A, Yamazaki R, Kobayashi A, Kimura T, Nomiyama K, Shimma S, Nakayama SMM, Ishizuka M, Ikenaka Y. Detection of Changes in Monoamine Neurotransmitters by the Neonicotinoid Pesticide Imidacloprid Using Mass Spectrometry. TOXICS 2022; 10:696. [PMID: 36422903 PMCID: PMC9695199 DOI: 10.3390/toxics10110696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Monoamine neurotransmitters (MAs), including dopamine (DA) and serotonin (5-HT), regulate brain functions such as behavior, memory, and learning. Neonicotinoids are pesticides that are being used more frequently. Neonicotinoid exposure has been observed to produce neurological symptoms, such as altered spontaneous movements and anxiety-like behaviors, which are suspected to be caused by altered MA levels. However, current neurotoxicity tests are not sufficiently sensitive enough to make these determinations. In this study, we performed some behavior tests, and derivatization reagents to improve the ionization efficiency, which was applied to liquid chromatography mass spectrometry (LC-MS/MS) to reveal the effect of neonicotinoid administration on MAs in the brain. We orally administered the neonicotinoid imidacloprid (0, 10, and 50 mg/kg body weight) to C57BL/6NCrSlc mice. In the behavior tests, a decrease in activity was observed. The LC-MS/MS quantification of MAs in various brain regions showed a decrease in some MA levels in the olfactory bulb and the striatum. These results showed, for the first time, that even a low dose of imidacloprid could alter MA levels in various parts of the brain.
Collapse
Affiliation(s)
- Anri Hirai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ryo Yamazaki
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | - Shuichi Shimma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
14
|
Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans. Pharmaceuticals (Basel) 2022; 15:ph15111356. [PMID: 36355528 PMCID: PMC9698097 DOI: 10.3390/ph15111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
On-tissue enzymatic digestion is a prerequisite for MALDI mass spectrometry imaging (MSI) and spatialomic analysis of tissue proteins and their N-glycan conjugates. Despite the more widely accepted importance of N-glycans as diagnostic and prognostic biomarkers of many diseases and their potential as pharmacodynamic markers, the crucial sample preparation step, namely on-tissue digestion with enzymes like PNGaseF, is currently mainly carried out by specialized laboratories using home-built incubation arrangements, e.g., petri dishes placed in an incubator. Standardized spatially confined enzyme digests, however, require precise control and possible regulation of humidity and temperature, as high humidity increases the risk of analyte dislocation and low humidity compromises enzyme function. Here, a digestion device that controls humidity by cyclic ventilation and heating of the slide holder and the chamber lid was designed to enable controlled micro-condensation on the slide and to stabilize and monitor the digestion process. The device presented here may help with standardization in MSI. Using sagittal mouse brain sections and xenografted human U87 glioblastoma cells in CD1 nu/nu mouse brain, a device-controlled workflow for MALDI MSI of N-glycans was developed.
Collapse
|
15
|
Jiang H, Zhang Y, Liu Z, Wang X, He J, Jin H. Advanced applications of mass spectrometry imaging technology in quality control and safety assessments of traditional Chinese medicines. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114760. [PMID: 34678417 PMCID: PMC9715987 DOI: 10.1016/j.jep.2021.114760] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicines (TCMs) have made great contributions to the prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating studies of toxicity mechanisms. AIM OF THE REVIEW The aim of this paper is therefore to summarize the advanced applications of mass spectrometry imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of TCMs. MATERIALS AND METHODS Relevant studies from the literature have been collected from scientific databases, such as "PubMed", "Scifinder", "Elsevier", "Google Scholar" using the keywords "MSI", "traditional Chinese medicines", "quality control", "metabolomics", and "mechanism". RESULTS MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high-throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the therapeutic/toxic mechanisms of TCMs. CONCLUSIONS As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to explore the safety and toxicology of TCMs.
Collapse
Affiliation(s)
- Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yaxin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhigang Liu
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiangyi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China; NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 100050, China.
| |
Collapse
|
16
|
Buszewska-Forajta M, Rafińska K, Buszewski B. Tissue sample preparations for preclinical research determined by molecular imaging mass spectrometry using MALDI. J Sep Sci 2022; 45:1345-1361. [PMID: 35122386 DOI: 10.1002/jssc.202100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Matrix-assisted laser desorption/ionization - imaging mass spectrometry is an alternative tool, which can be implemented in order to obtain and visualize the "omic" signature of tissue samples. Its application to clinical study enables simultaneous imaging-based morphological observations and mass spectrometry analysis. Application of fully informative material like tissue, allows to obtain the complex and unique profile of analyzed samples. This knowledge leads to diagnose disease, study the mechanism of cancer development, select the potential biomarkers as well as correlating obtained image with prognosis. Nevertheless, it is worth to notice that this method is found to be objective but the result of analysis is mainly influenced by the sample preparation protocol, included collection of biological material, its preservation and processing. However, application of this approach requires a special sample preparation procedure. The main goal of the study is to present the current knowledge on the clinical application of matrix-assisted laser desorption/ionization - imaging mass spectrometry in cancer research, with particular emphasis on the sample preparation step. For this purpose, several protocols based on cryosections and formalin-fixed paraffin embedded tissue were compiled and compared, taking into account the measured metabolites of potential diagnostic importance for a given type of cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Magdalena Buszewska-Forajta
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., Torun, 87-100, Poland
| | - Boguslaw Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Str., Torun, 87-100, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., Torun, 87-100, Poland
| |
Collapse
|
17
|
Merdas M, Lagarrigue M, Umbdenstock T, Lhumeau A, Dartiguelongue F, Vanbellingen Q, Da Violante G, Pineau C. Study of the Distribution of Acetaminophen and Its Metabolites in Rats, from the Whole-Body to Isolated Organ Levels, by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging after On-Tissue Chemical Derivatization. Anal Chem 2021; 93:13242-13250. [PMID: 34546718 DOI: 10.1021/acs.analchem.1c02487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During drug development, detailed investigations of the pharmacokinetic profile of the drug are required to characterize its absorption, distribution, metabolism, and excretion properties. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an established technique for studies of the distribution of drugs and their metabolites. It has advantages over autoradiography, which is conventionally used for distribution studies: it does not require the radiolabeling of drugs and can distinguish between the drug and its metabolites directly in the tissue. However, its lack of sensitivity in certain cases remains challenging. Novel procedures, such as on-tissue chemical derivatization (OTCD), could be developed to increase sensitivity. We used OTCD to enhance the sensitivity of MALDI-MSI for one of the most widely used drugs, acetaminophen, and to study its distribution in tissues. Without derivatization, this drug and some of its metabolites are undetectable by MALDI-MSI in the tissues of treated rats. We used 2-fluoro-1-methylpyridinium p-toluene sulfonate as a derivatization reagent, to increase the ionization yield of acetaminophen and some of its metabolites. The OTCD protocol made it possible to study the distribution of acetaminophen and its metabolites in whole-body sections at a spatial resolution of 400 μm and in complex anatomical structures, such as the testis and epididymis, at a spatial resolution <50 μm. The OTCD is also shown to be compatible with the quantification of acetaminophen by MALDI-MSI in whole-body tissues. This protocol could be applied to other molecules bearing phenol groups and presenting a low ionization efficiency.
Collapse
Affiliation(s)
- Mira Merdas
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France.,DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Mélanie Lagarrigue
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| | - Thierry Umbdenstock
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Antoine Lhumeau
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Françoise Dartiguelongue
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Quentin Vanbellingen
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Georges Da Violante
- DMPK Department, Technologie Servier, 25/27 rue Eugène Vignat - CS 11749 - Orléans Cedex 145007, France
| | - Charles Pineau
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes F-35042 Cedex, France.,Protim, Univ Rennes, Rennes F-35042, France
| |
Collapse
|