1
|
Bai Y, Cai G, Guo N, Huang X, Gong J, Liu S, Guo Y, Wang W. UHPLC-HRMS based saponins profiling of three morphological regions in American ginseng ( Panax quinquefolium L.) and their correlation with the antioxidant activity. Food Sci Biotechnol 2024; 33:1685-1696. [PMID: 38623439 PMCID: PMC11016038 DOI: 10.1007/s10068-023-01453-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 04/17/2024] Open
Abstract
American ginseng (Panax quinquefolium L.) is used as tonic plant and high-grade nourishment. Ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was established for identifying the chemical constituent in three morphological regions of American ginseng, including main root (MR), rhizome (RH) and lateral root (LR). The 63 saponins was identified in different morphological regions of 10 American ginseng samples. The chemical maker compounds in corresponding morphological region, while the major compounds of MR (malonyl-ginsenoside Rb1, ginsenoside Rd, Rs2 and pseudo-RC1), LR (stipuleanoside R2, ginsenoside Re and malonyl-ginsenoside Rc), and RH (malonyl-ginsenoside Rd, Rb3, and chikusetsu saponin II) were discovered. Correlation analysis showed that 11 compounds were positively correlated with the antioxidant activity of American ginseng. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01453-4.
Collapse
Affiliation(s)
- Yuxin Bai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Guangzhi Cai
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Na Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Xin Huang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Jiyu Gong
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Yunlong Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Wei Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117 China
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 China
| |
Collapse
|
2
|
Cai X, Wu J, Lian Y, Yang S, Xue Q, Li D, Wu D. Characterization and Discrimination of Marigold Oleoresin from Different Origins Based on UPLC-QTOF-MS Combined Molecular Networking and Multivariate Statistical Analysis. Metabolites 2024; 14:225. [PMID: 38668353 PMCID: PMC11051770 DOI: 10.3390/metabo14040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Marigold oleoresin is an oil-soluble natural colorant mainly extracted from marigold flowers. Xinjiang of China, India, and Zambia of Africa are the three main production areas of marigold flowers. Therefore, this study utilized ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technology, combined with Global Natural Products Social Molecular Networking (GNPS) and multivariate statistical analysis, for the qualitative and discriminant analysis of marigold oleoresin obtained from three different regions. Firstly, 83 compounds were identified in these marigold oleoresin samples. Furthermore, the results of a principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated significant differences in the chemical compositions of the marigold oleoresin samples from different regions. Finally, 12, 23, and 38 differential metabolites were, respectively, identified by comparing the marigold oleoresin from Africa with Xinjiang, Africa with India, and Xinjiang with India. In summary, these results can be used to distinguish marigold oleoresin samples from different regions, laying a solid foundation for further quality control and providing a theoretical basis for assessing its safety and nutritional aspects.
Collapse
Affiliation(s)
- Xingfu Cai
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Juanjuan Wu
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Handan 057250, China
| | - Yunhe Lian
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Shuaiyao Yang
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Qiang Xue
- Chenguang Biological Technology Group HanDan Co., Ltd., Handan 056000, China
| | - Dewang Li
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Di Wu
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Handan 057250, China
| |
Collapse
|
3
|
Tian L, Gao R, Cai Y, Chen J, Dong H, Chen S, Yang Z, Wang Y, Huang L, Xu Z. A systematic review of ginsenoside biosynthesis, spatiotemporal distribution, and response to biotic and abiotic factors in American ginseng. Food Funct 2024; 15:2343-2365. [PMID: 38323507 DOI: 10.1039/d3fo03434h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
American ginseng (Panax quinquefolius) has gained recognition as a medicinal and functional food homologous product with several pharmaceutical, nutritional, and industrial applications. However, the key regulators involved in ginsenoside biosynthesis, the spatiotemporal distribution characteristics of ginsenosides, and factors influencing ginsenosides are largely unknown, which make it challenging to enhance the quality and chemical extraction processes of the cultivated American ginseng. This review presents an overview of the pharmacological effects, biosynthesis and spatiotemporal distribution of ginsenosides, with emphasis on the impacts of biotic and abiotic factors on ginsenosides in American ginseng. Modern pharmacological studies have demonstrated that American ginseng has neuroprotective, cardioprotective, antitumor, antidiabetic, and anti-obesity effects. Additionally, most genes involved in the upregulation of ginsenoside biosynthesis have been identified, while downstream regulators (OSCs, CYP450, and UGTs) require further investigation. Futhermore, limited knowledge exists regarding the molecular mechanisms of the impact of biotic and abiotic factors on ginsenosides. Notably, the nonmedicinal parts of American ginseng, particularly its flowers, fibrous roots, and leaves, exhibit higher ginsenoside content than its main roots and account for a considerable amount of weight in the whole plant, representing promising resources for ginsenosides. Herein, the prospects of molecular breeding and metabolic engineering based on multi-omics to improve the unstable quality of cultivated American ginseng and the shortage of ginsenosides are proposed. This review highlights the gaps in the current research on American ginseng and proposes solutions to address these limitations, providing a guide for future investigations into American ginseng ginsenosides.
Collapse
Affiliation(s)
- Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Ranran Gao
- The Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China
| | - Yuxiang Cai
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Junxian Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Hongmei Dong
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, 100700, China
| | - Zaichang Yang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Yu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, 150006, China.
| |
Collapse
|
4
|
Luo S, Yang X, Zhang Y, Kuang T, Tang C. Spatial metabolomics method to reveal differential metabolomes in microregions of Panax quinquefolius roots by using ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry and desorption electrospray ionization mass spectrometry imaging. Food Chem 2024; 435:137504. [PMID: 37813026 DOI: 10.1016/j.foodchem.2023.137504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Panax quinquefolius is a natural homology medicine and food that is rich in bioactive ingredients, such as ginsenosides and polysaccharides. The combination of ultra-performance liquid chromatography quadrupole/time of flight-mass spectrometry (UPLC-Q-TOF/MS) and desorption electrospray ionization mass spectrometry imaging (DESI-MSI) was used for the first time in a spatial metabolomics analysis to comprehensively evaluate the differential components in different microregions of P. quinquefolius. UPLC-Q-TOF/MS and DESI-MSI combined with principal component analysis and orthogonal partial least squares-discriminant analysis were used to screen differential metabolites. UPLC-Q-TOF/MS and DESI-MSI screened 27 and 23 differential metabolites, respectively, among which 15 differential metabolites were identified by both methods. It was found that some components, such as ginsenoside Rg1 and malonyl-ginsenoside Rc, were mainly distributed in P of the transverse slice of P. quinquefolius roots, while ginsenoside Ro and malonyl-ginsenoside Rd were mainly distributed in C. The methods and results of this study could be used to understand the precise localization, biosynthesis, and biological functions of special metabolites in P. quinquefolius.
Collapse
Affiliation(s)
- Shiying Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China
| | - Xuexin Yang
- Waters Technology (Beijing) Co. Ltd., Jinghai Industrial Park, 156 Jinghai 4th Road, Beijing Economic-Technological Development Area, Beijing 100076, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu 611137, China.
| |
Collapse
|
5
|
Fan A, Hou BL, Tang Z, Wang T, Zhang D, Liang Y, Wang Z. Liquid Chromatography-Tandem Mass Spectrometry-Based Metabolomics Analysis of Indigo Naturalis Treatment of Ulcerative Colitis in Mice. J Med Food 2023; 26:877-889. [PMID: 38010862 DOI: 10.1089/jmf.2023.k.0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ulcerative colitis (UC), often known as UC, is an inflammatory disease of the intestines that has frequent and long-lasting flare-ups. It is unknown precisely how the traditional Chinese drug Indigo Naturalis (IN) heals inflammatory bowel disease, despite its long-standing use in China and Japan. Finding new metabolite biomarkers linked to UC could improve our understanding of the disease, speed up the diagnostic process, and provide insight into how certain drugs work to treat the condition. Our work is designed to use a metabolomic method to analyze potential alterations in endogenous substances and their impact on metabolic pathways in a mouse model of UC. To determine which biomarkers and metabolisms are more frequently connected with IN's effects on UC, liquid chromatography-tandem mass spectrometry analysis of the serum metabolomics of UC mice and normal mice was performed. The outcomes demonstrated that IN boosted the health of UC mice and reduced the severity of their metabolic dysfunction. In the UC model, it was also found that IN changed the way 17 biomarkers and 3 metabolisms functioned.
Collapse
Affiliation(s)
- Anqi Fan
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Bao-Long Hou
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Ting Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Dongbo Zhang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Yanni Liang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Zheng Wang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xian Yang, China
| |
Collapse
|
6
|
Lv Y, Xu X, Wei Y, Shen Y, Chen W, Wei X, Wang J, Xin J, He J, Zu X. Characterization and Discrimination of Ophiopogonis Radix with Different Levels of Sulfur Fumigation Based on UPLC-QTOF-MS Combined Molecular Networking with Multivariate Statistical Analysis. Metabolites 2023; 13:metabo13020204. [PMID: 36837823 PMCID: PMC9963253 DOI: 10.3390/metabo13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Ophiopogonis Radix, also known as "Maidong" (MD) in China, is frequently sulfur-fumigated (SF) in the pretreatment process of MD to improve the appearance and facilitate preservation. However, the process leads to changes in chemical composition, so it is essential to develop an approach to identify the chemical characteristics between nonfumigated and sulfur-fumigated products. This paper provided a practical method based on UPLC-QTOF-MS combined Global Natural Products Social Molecular Networking (GNPS) with multivariate statistical analysis for the characterization and discrimination of MD with different levels of sulfur fumigation, high concentration sulfur fumigation (HS), low concentration sulfur fumigation (LS) and without sulfur fumigation (WS). First, a number of 98 compounds were identified in those MD samples. Additionally, the results of Principal component analysis (PCA) and Orthogonal partial least-squares-discriminant analysis (OPLS-DA) demonstrated that there were significant chemical differences in the chemical composition of MD with different degrees of SF. Finally, fourteen and sixteen chemical markers were identified upon the comparison between HS and WS, LS and WS, respectively. Overall, these results can be able to discriminate MD with different levels of SF as well as establish a solid foundation for further quality control and pharmacological research.
Collapse
Affiliation(s)
- Yanhui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yanping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xintong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jie Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiayun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jixiang He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (J.H.); (X.Z.); Tel.: +086-0531-89628200 (J.H.); +086-021-81871248 (X.Z.)
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Correspondence: (J.H.); (X.Z.); Tel.: +086-0531-89628200 (J.H.); +086-021-81871248 (X.Z.)
| |
Collapse
|
7
|
Zhou B, Liu J, Wang Y, Wu F, Wang C, Wang C, Liu J, Li P. Protective Effect of Ethyl Rosmarinate against Ulcerative Colitis in Mice Based on Untargeted Metabolomics. Int J Mol Sci 2022; 23:1256. [PMID: 35163182 PMCID: PMC8836019 DOI: 10.3390/ijms23031256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Aiming at assessing the therapeutic effect of ethyl rosmarinate (ER) on ulcerative colitis (UC), the following activities were performed in vitro and in vivo in the present study. Firstly, a lipopolysaccharide (LPS)-induced RAW264.7 cell inflammation model was established to determine the level of inflammatory factors. Then, a UC mice model induced by dextran sodium sulfate (DSS) was established to further investigate the effects of ER on symptoms, inflammatory factors and colon histopathology. Finally, serum and colon metabolomics studies were performed to identify the biomarkers and metabolisms closely related to the protective effect of ER on UC. The results showed that after ER intervention, the levels of inflammatory factors (NO, TNF-α, IL-1β and IL-6) and key enzyme (MPO) in cell supernatant, serum or colon were significantly decreased, and the disease activity index and colon tissue damage in mice were also effectively improved or restored. In addition, 28 biomarkers and 6 metabolisms were found to be re-regulated by ER in the UC model mice. Therefore, it could be concluded that ER could effectively ameliorate the progression of UC and could be used as a new natural agent for the treatment of UC.
Collapse
Affiliation(s)
- Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Yaru Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (B.Z.); (J.L.); (F.W.); (C.W.); (C.W.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
| |
Collapse
|