1
|
Di Stasio D, Guida A, Romano A, Petruzzi M, Marrone A, Fiori F, Lucchese A. Hepatitis C Virus (HCV) Infection: Pathogenesis, Oral Manifestations, and the Role of Direct-Acting Antiviral Therapy: A Narrative Review. J Clin Med 2024; 13:4012. [PMID: 39064052 PMCID: PMC11278420 DOI: 10.3390/jcm13144012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis C virus (HCV) infection is a global health concern with significant systemic implications, including a range of oral manifestations. This review aims to provide a comprehensive overview of the oral and dental pathologies related to HCV, the etiopathogenetic mechanisms linking such conditions to HCV and the impact of direct-acting antiviral (DAA) therapy. Common oral manifestations of HCV include oral lichen planus (OLP), periodontal disease, and xerostomia. The pathogenesis of these conditions involves both direct viral effects on oral tissues and indirect effects related to the immune response to HCV. Our literature analysis, using PubMed, Scopus, Web of Science, and Google Scholar, suggests that both the HCV infection and the immune response to HCV contribute to the increased prevalence of these oral diseases. The introduction of DAA therapy represents a significant advancement in HCV treatment, but its effects on oral manifestations, particularly OLP, are still under evaluation. Although a possible mechanism linking HCV to OSCC is yet to be determined, existing evidence encourages further investigation in this sense. Our findings highlight the need for established protocols for managing the oral health of patients with HCV, aiming to improve outcomes and quality of life.
Collapse
Affiliation(s)
- Dario Di Stasio
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Agostino Guida
- U.O.C. Odontostomatologia, A.O.R.N. “A. Cardarelli”, 95123 Naples, Italy
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Massimo Petruzzi
- Section of Dentistry, Interdisciplinary Department of Medicine (DIM), University “Aldo Moro” of Bari, Clinica Odontoiatrica del Policlinico di Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Aldo Marrone
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Fausto Fiori
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy (A.M.); (A.L.)
| |
Collapse
|
2
|
Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. Tight Junction Proteins and the Biology of Hepatobiliary Disease. Int J Mol Sci 2020; 21:ijms21030825. [PMID: 32012812 PMCID: PMC7038100 DOI: 10.3390/ijms21030825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/24/2022] Open
Abstract
Tight junctions (TJ) are intercellular adhesion complexes on epithelial cells and composed of integral membrane proteins as well as cytosolic adaptor proteins. Tight junction proteins have been recognized to play a key role in health and disease. In the liver, TJ proteins have several functions: they contribute as gatekeepers for paracellular diffusion between adherent hepatocytes or cholangiocytes to shape the blood-biliary barrier (BBIB) and maintain tissue homeostasis. At non-junctional localizations, TJ proteins are involved in key regulatory cell functions such as differentiation, proliferation, and migration by recruiting signaling proteins in response to extracellular stimuli. Moreover, TJ proteins are hepatocyte entry factors for the hepatitis C virus (HCV)—a major cause of liver disease and cancer worldwide. Perturbation of TJ protein expression has been reported in chronic HCV infection, cholestatic liver diseases as well as hepatobiliary carcinoma. Here we review the physiological function of TJ proteins in the liver and their implications in hepatobiliary diseases.
Collapse
Affiliation(s)
- Natascha Roehlen
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Armando Andres Roca Suarez
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Houssein El Saghire
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Antonio Saviano
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
| | - Catherine Schuster
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Joachim Lupberger
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm UMR1110, F-67000 Strasbourg, France; (N.R.); (A.A.R.S.); (H.E.S.); (A.S.); (C.S.); (J.L.)
- Université de Strasbourg, F-67000 Strasbourg, France
- Pôle Hepato-digestif, Institut Hopitalo-universitaire, Hôpitaux Universitaires de Strasbourg, F-67000 Strasbourg, France
- Correspondence: ; Tel.: +33-3688-53703
| |
Collapse
|
3
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
4
|
Pombo JP, Sanyal S. Perturbation of Intracellular Cholesterol and Fatty Acid Homeostasis During Flavivirus Infections. Front Immunol 2018; 9:1276. [PMID: 29915602 PMCID: PMC5994796 DOI: 10.3389/fimmu.2018.01276] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Cellular lipid homeostasis is maintained through an intricately linked array of anabolic and catabolic pathways. Upon flavivirus infections, these are significantly altered: on the one hand, these viruses can co-opt lipid metabolic pathways to generate ATP to facilitate replication, or to synthesize membrane components to generate replication sites; on the other hand, more recent evidence suggests counter strategies employed by host cells, which actively modulate several of these networks in response to infection, enhancing interferon signaling by doing so, and thus creating an antiviral environment. In this review, we discuss recent data on mechanisms of alteration of lipid metabolic pathways during infection by flaviviruses, with a focus on cholesterol and fatty acid biosynthesis, which can be manipulated by the invading viruses to support replication, but can also be modulated by the host immune system itself, as a means to fight infection.
Collapse
Affiliation(s)
- Joao Palma Pombo
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
5
|
Riad SE, Elhelw DS, Shawer H, El-Ekiaby N, Salah A, Zekri A, Esmat G, Amleh A, Abdelaziz AI. Disruption of Claudin-1 Expression by miRNA-182 Alters the Susceptibility to Viral Infectivity in HCV Cell Models. Front Genet 2018; 9:93. [PMID: 29616082 PMCID: PMC5869927 DOI: 10.3389/fgene.2018.00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
HCV entry involves a complex interplay between viral and host molecules. During post-binding interactions, the viral E2 complexes with CD81 receptor for delivery to the tight junction proteins CLDN1 and OCLN, which aid in viral internalization. Targeting HCV entry receptors represents an appealing approach to inhibit viral infectivity. This study aimed at investigating the impact of targeting CLDN1 by microRNAs on HCV infectivity. miR-155 was previously shown to target the 3′UTR of CLDN1 mRNA. Therefore, miR-155 was used as a control in this study. In-silico analysis and luciferase reporter assay were utilized to identify potential targeting miRNAs. The impact of the identified miRNAs on CLDN1 mRNA and protein expression was examined by qRT-PCR, indirect immunofluorescence and western blotting, respectively. The role of the selected miRNAs on HCV infectivity was assessed by measuring the viral load following the ectopic expression of the selected miRNAs. miR-182 was identified in-silico and by experimental validation to target CLDN1. Both miR-155 and miR-182 inhibited CLDN1 mRNA and protein expression in infected Huh7 cells. Ectopic expression of miR-155 increased, while miR-182 reduced the viral load. In conclusion, despite repressing CLDN1, the impact of miR-155 and miR-182 on HCV infectivity is contradictory. Ectopic miR-182 expression is suggested as an upstream regulator of the entry factor CLDN1, harnessing HCV infection.
Collapse
Affiliation(s)
- Sarah E Riad
- Pharmacology and Toxicology Department, German University in Cairo, New Cairo, Egypt
| | - Dalia S Elhelw
- Pharmaceutical Chemistry Department, German University in Cairo, New Cairo, Egypt
| | - Heba Shawer
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo, Egypt
| | - Nada El-Ekiaby
- Pharmacology and Toxicology Department, German University in Cairo, New Cairo, Egypt.,School of Medicine, NewGiza University, Cairo, Egypt
| | - Ayman Salah
- Department of Surgery, Cairo University, Cairo, Egypt
| | - Abdelrahman Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Asma Amleh
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo, Egypt
| | - Ahmed I Abdelaziz
- Pharmacology and Toxicology Department, German University in Cairo, New Cairo, Egypt.,School of Medicine, NewGiza University, Cairo, Egypt
| |
Collapse
|
6
|
Branche E, Conzelmann S, Parisot C, Bedert L, Lévy PL, Bartosch B, Clément S, Negro F. Hepatitis C Virus Increases Occludin Expression via the Upregulation of Adipose Differentiation-Related Protein. PLoS One 2016; 11:e0146000. [PMID: 26731658 PMCID: PMC4701191 DOI: 10.1371/journal.pone.0146000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022] Open
Abstract
The hepatitis C virus (HCV) life cycle is closely associated with lipid metabolism. In particular, HCV assembly initiates at the surface of lipid droplets. To further understand the role of lipid droplets in HCV life cycle, we assessed the relationship between HCV and the adipose differentiation-related protein (ADRP), a lipid droplet-associated protein. Different steps of HCV life cycle were assessed in HCV-infected human Huh-7 hepatoma cells overexpressing ADRP upon transduction with a lentiviral vector. HCV infection increased ADRP mRNA and protein expression levels by 2- and 1.5-fold, respectively. The overexpression of ADRP led to an increase of (i) the surface of lipid droplets, (ii) the total cellular neutral lipid content (2.5- and 5-fold increase of triglycerides and cholesterol esters, respectively), (iii) the cellular free cholesterol level (5-fold) and (iv) the HCV particle production and infectivity (by 2- and 3.5-fold, respectively). The investigation of different steps of the HCV life cycle indicated that the ADRP overexpression, while not affecting the viral replication, promoted both virion egress and entry (~12-fold), the latter possibly via an increase of its receptor occludin. Moreover, HCV infection induces an increase of both ADRP and occludin expression. In HCV infected cells, the occludin upregulation was fully prevented by the ADRP silencing, suggesting a specific, ADRP-dependent mechanism. Finally, in HCV-infected human livers, occludin and ADRP mRNA expression levels correlated with each other. Alltogether, these findings show that HCV induces ADRP, which in turns appears to confer a favorable environment to viral spread.
Collapse
Affiliation(s)
- Emilie Branche
- Department of Immunology and Pathology, Faculty of Medicine, Geneva, Switzerland
| | - Stéphanie Conzelmann
- Department of Immunology and Pathology, Faculty of Medicine, Geneva, Switzerland
| | - Clotilde Parisot
- Department of Immunology and Pathology, Faculty of Medicine, Geneva, Switzerland
| | - Ludmila Bedert
- Department of Immunology and Pathology, Faculty of Medicine, Geneva, Switzerland
| | - Pierre L. Lévy
- Department of Immunology and Pathology, Faculty of Medicine, Geneva, Switzerland
| | - Birke Bartosch
- CRCL, INSERM U1052, CNRS 5286, University of Lyon, Lyon, France
| | - Sophie Clément
- Divisions of Clinical Pathology, University Hospital, Geneva, Switzerland
- * E-mail: (FN); (SC)
| | - Francesco Negro
- Divisions of Clinical Pathology, University Hospital, Geneva, Switzerland
- Gastroenterology and Hepatology, University Hospital, Geneva, Switzerland
- * E-mail: (FN); (SC)
| |
Collapse
|
7
|
Jiménez Macías FM, Barrero Alor F, Casado Monge PG, Ramos Lora M, Pujol de la Llave E, Ruíz-Frutos C. [Lipid kinetics during dual antiviral therapy in patients with chronic hepatitis C]. Med Clin (Barc) 2015; 144:536-43. [PMID: 24726260 DOI: 10.1016/j.medcli.2013.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE We analyzed baseline and kinetic characteristics of lipid metabolism during the first month of bitherapy in patients with chronic hepatitis C genotype 1 (CHC-1). PATIENTS AND METHODS A longitudinal, prospective study including 99 naïve CHC-1 patients with liver biopsy who were treated with bitherapy. Our patients were assigned to one of 5 different "degrees of lipid requirement" that we established depending on the degree of liver fibrosis, baseline viral load and infectivity ratio (ratio between the median level of triglycerides and high densitity lipoproteins-cholesterol during the first month). The goal was to achieve "a favorable lipid metabolism" (FLM) by establishing a necessary minimum level of low density lipoproteins (LDL)-cholesterol during this period for each one of them. We also analyzed the relationship with the rate of sustained virological response. RESULTS Patients with liver fibrosis F3-F4 who had higher baseline levels of LDL-cholesterol achieved higher rates of sustained virological response. Those patients who had a lower value of infectivity ratio and median levels of LDL-cholesterol during the first month of bitherapy also achieved higher rates of sustained virological response: SVR group 100 (23) mg/dl against non-SVR group: 89 (28) mg/dl; odds ratio 1.1; 95% confidence interval (1.0-1.2); P<.05, these differences being more significant for genotype IL-28B-CC (P=.013). Patients with sustained virological response had higher rates of FLM. CONCLUSIONS Not every patient with CHC-1 has the same lipid kinetics during the first month of bitherapy, and it is necessary to achieve a sustained virological response and/or a FLM to keep higher plasma levels of LDL-cholesterol during this period. Those subjects without FLM could benefit from statins.
Collapse
Affiliation(s)
| | - Fátima Barrero Alor
- Departamento de Biología Molecular y Bioquímica, Hospital Juan Ramón Jiménez, Huelva, España
| | | | | | | | - Carlos Ruíz-Frutos
- Departamento de Biología Ambiental y Salud Pública, Universidad de Huelva, Huelva, España
| |
Collapse
|
8
|
Kohjima M, Yoshimoto T, Enjoji M, Fukushima N, Fukuizumi K, Nakamura T, Kurokawa M, Fujimori N, Sasaki Y, Shimonaka Y, Murata Y, Koyama S, Kawabe K, Haraguchi K, Sumida Y, Harada N, Kato M, Kotoh K, Nakamuta M. Hepcidin/ferroportin expression levels involve efficacy of pegylated-interferon plus ribavirin in hepatitis C virus-infected liver. World J Gastroenterol 2015; 21:3291-3299. [PMID: 25805936 PMCID: PMC4363759 DOI: 10.3748/wjg.v21.i11.3291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 12/08/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship between the iron-metabolism-related gene expression profiles and efficacy of antiviral therapy in chronic hepatitis C patients.
METHODS: The hepatic expression profile of iron-metabolism-related genes was analyzed and its association with virological response to pegylated-interferon plus ribavirin combination therapy was evaluated. A hundred patients with chronic hepatitis C (genotype1b, n = 50; genotype 2, n = 50) were enrolled and retrospectively analyzed. Liver biopsy samples were subjected to quantitative polymerase chain reaction for iron-metabolism-related genes and protein expression (Western blotting analysis) for ferroportin. As a control, normal liver tissue was obtained from 18 living donors of liver transplantation. Serum hepcidin level was measured by sensitive liquid chromatography/electrospray ionization tandem mass spectrometry.
RESULTS: Iron overload is associated with liver damage by increasing oxidative stress and hepatitis C virus (HCV) is reported to induce iron accumulation in hepatocytes in vivo. Conversely, iron administration suppresses HCV replication in vitro. Therefore, the association between HCV infection and iron metabolism remains unclear. Compared with controls, patients had significantly higher gene expression for transferrin, iron-regulatory proteins 1 and 2, divalent metal transporter 1, and ferroportin, but similar for transferrin receptors 1 and 2, and hepcidin. When the expression profiles were compared between sustained virological response (SVR) and non-SVR patients, the former showed significantly lower transcription and protein expression of hepcidin and ferroportin. Expression of hepcidin-regulating genes, BMPR1, BMPR2, and hemojuvelin, was significantly increased, whereas BMP2 was decreased in HCV-infected liver. BMPR2 and hemojuvelin expression was significantly lower in the SVR than non-SVR group. HCV infection affects the expression of iron-metabolism-related genes, leading to iron accumulation in hepatocytes.
CONCLUSION: Decreased expression of hepcidin and ferroportin in SVR patients indicates the importance of hepatocytic iron retention for viral response during pegylated-interferon plus ribavirin treatment.
Collapse
|
9
|
Romero-Gómez M, Rojas Á. Sofosbuvir modulates the intimate relationship between hepatitis C virus and lipids. Hepatology 2015; 61:744-7. [PMID: 25345724 DOI: 10.1002/hep.27581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Manuel Romero-Gómez
- UCM Digestive Diseases and CIBERehd, Valme University Hospital, University of Sevilla, Sevilla, Spain
| | | |
Collapse
|
10
|
Gelley F, Zadori G, Nemes B, Fassan M, Lendvai G, Sarvary E, Doros A, Gerlei Z, Nagy P, Schaff Z, Kiss A. MicroRNA profile before and after antiviral therapy in liver transplant recipients for hepatitis C virus cirrhosis. J Gastroenterol Hepatol 2014; 29:121-7. [PMID: 24033414 DOI: 10.1111/jgh.12362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIM Management of hepatitis C virus (HCV) recurrence is a major challenge after liver transplantation. Significant dysregulated expression of HCV receptors (i.e. claudin-1, occludin, tetraspanin CD81, scavenger receptor type B1) has been shown recently during HCV infection. This might facilitate hepatocytic entry and reinfection of HCV. MicroRNAs (miRs) play role in the regulation of gene expression. We aimed to characterize miR expression profiles related to HCV infection and antiviral therapy in adult liver transplant recipients, with special emphasis on miRs predicted to target HCV receptors. METHODS Twenty-eight adult liver transplant recipients were enrolled in the study. Paired biopsies were obtained at the time of HCV recurrence and at the end of antiviral treatment. MiRs for HCV receptors were selected using target prediction software. Expression levels of miR-21, miR-23a miR-34a, miR-96, miR-99a*, miR-122, miR-125b, miR-181a-2*, miR-194, miR-195, miR-217, miR-221, and miR-224 were determined by reverse transcription-quantitative polymerase chain reaction. RESULTS miR-99a* and miR-224 expressions were increased in HCV recurrence samples, while miR-21 and miR-194 were decreased in comparison to normal liver tissue. Increased expressions of miR-221, miR-224, and miR-217 were observed in samples taken after antiviral therapy when compared with HCV recurrence samples. High HCV titer at recurrence was associated with higher level of miR-122. CONCLUSIONS Samples at recurrence of HCV and after antiviral therapy revealed distinct HCV-related miR expression profiles, with significant dysregulation of those miRNAs potentially targeting mRNAs of HCV receptors. In particular, miR-194 and miR-21 might be involved in the regulation of HCV receptor proteins' expression during HCV infection and antiviral therapy.
Collapse
Affiliation(s)
- Fanni Gelley
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Evasion of superinfection exclusion and elimination of primary viral RNA by an adapted strain of hepatitis C virus. J Virol 2013; 87:13354-69. [PMID: 24089557 DOI: 10.1128/jvi.02465-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cells that are productively infected by hepatitis C virus (HCV) are refractory to a second infection by HCV via a block in viral replication known as superinfection exclusion. The block occurs at a postentry step and likely involves translation or replication of the secondary viral RNA, but the mechanism is largely unknown. To characterize HCV superinfection exclusion, we selected for an HCV variant that could overcome the block. We produced a high-titer HC-J6/JFH1 (Jc1) viral genome with a fluorescent reporter inserted between NS5A and NS5B and used it to infect Huh7.5 cells containing a Jc1 replicon. With multiple passages of these infected cells, we isolated an HCV variant that can superinfect cells at high levels. Notably, the superinfectious virus rapidly cleared the primary replicon from superinfected cells. Viral competition experiments, using a novel strategy of sequence-barcoding viral strains, as well as superinfection of replicon cells demonstrated that mutations in E1, p7, NS5A, and the poly(U/UC) tract of the 3' untranslated region were important for superinfection. Furthermore, these mutations dramatically increased the infectivity of the virus in naive cells. Interestingly, viruses with a shorter poly(U/UC) and an NS5A domain II mutation were most effective in overcoming the postentry block. Neither of these changes affected viral RNA translation, indicating that the major barrier to postentry exclusion occurs at viral RNA replication. The evolution of the ability to superinfect after less than a month in culture and the concomitant exclusion of the primary replicon suggest that superinfection exclusion dramatically affects viral fitness and dynamics in vivo.
Collapse
|
12
|
Pécheur EI. Lipoprotein receptors and lipid enzymes in hepatitis C virus entry and early steps of infection. SCIENTIFICA 2012; 2012:709853. [PMID: 24278733 PMCID: PMC3820461 DOI: 10.6064/2012/709853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 06/02/2023]
Abstract
Viruses are obligate intracellular agents that depend on host cells for successful propagation, hijacking cellular machineries to their own profit. The molecular interplay between host factors and invading viruses is a continuous coevolutionary process that determines viral host range and pathogenesis. The hepatitis C virus (HCV) is a strictly human pathogen, causing chronic liver injuries accompanied by lipid disorders. Upon infection, in addition to protein-protein and protein-RNA interactions usual for such a positive-strand RNA virus, HCV relies on protein-lipid interactions at multiple steps of its life cycle to establish persistent infection, making use of hepatic lipid pathways. This paper focuses on lipoproteins in HCV entry and on receptors and enzymes involved in lipid metabolism that HCV exploits to enter hepatocytes.
Collapse
Affiliation(s)
- Eve-Isabelle Pécheur
- Department of Mechanisms of Chronic Hepatitis B and C, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
- Inserm U1052/CNRS UMR 5286, CRCL, Université de Lyon, 151 Cours Albert Thomas, 69424 Lyon Cedex 03, France
| |
Collapse
|
13
|
Kohjima M, Enjoji M, Yoshimoto T, Yada R, Fujino T, Aoyagi Y, Fukushima N, Fukuizumi K, Harada N, Yada M, Kato M, Kotoh K, Nakashima M, Sakamoto N, Tanaka Y, Nakamuta M. Add-on therapy of pitavastatin and eicosapentaenoic acid improves outcome of peginterferon plus ribavirin treatment for chronic hepatitis C. J Med Virol 2012; 85:250-60. [PMID: 23161429 DOI: 10.1002/jmv.23464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
Despite the use of pegylated-interferon (peg-IFN) plus ribavirin combination therapy, many patients infected with hepatitis C virus (HCV)-1b remain HCV-positive. To determine whether addition of pitavastatin and eicosapentaenoic acid (EPA) is beneficial, the "add-on" therapy option (add-on group) was compared retrospectively with unmodified peg-IFN/ribavirin therapy (standard group). Association of host- or virus-related factors with sustained virological response was assessed. In HCV replicon cells, the effects of pitavastatin and/or EPA on HCV replication and expression of innate-immunity- and lipid-metabolism-associated genes were investigated. In patients infected with HCV-1b, sustained virological response rates were significantly higher in the add-on than standard group. In both groups, sustained virological response rates were significantly higher in patients with genotype TT of IL-28B (rs8099917) than in those with non-TT genotype. Among the patients with non-TT genotype, sustained virological response rates were markedly higher in the add-on than standard group. By multivariate analysis, genome variation of IL28B but not add-on therapy remained as a predictive factor of sustained virological response. In replicon cells, pitavastatin and EPA suppressed HCV replication. Activation of innate immunity was obvious in pitavastatin-treated cells and EPA suppressed the expression of sterol regulatory element binding protein-1c and low-density lipoprotein receptor. Addition of pitavastatin and EPA to peg-IFN/ribavirin treatment improved sustained virological response in patients infected with HCV-1b. Genotype variation of IL-28B is a strong predictive factor in add-on therapy.
Collapse
Affiliation(s)
- Motoyuki Kohjima
- Department of Gastroenterology, Kyushu Medical Center, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rapid intracellular competition between hepatitis C viral genomes as a result of mitosis. J Virol 2012; 87:581-96. [PMID: 23097449 DOI: 10.1128/jvi.01047-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells infected with hepatitis C virus (HCV) become refractory to further infection by HCV (T. Schaller et al., J. Virol. 81:4591-4603, 2007; D. M. Tscherne et al., J. Virol. 81:3693-3703, 2007). This process, termed superinfection exclusion, does not involve downregulation of surface viral receptors but instead occurs inside the cell at the level of RNA replication. The originally infecting virus may occupy replication niches or sequester host factors necessary for viral growth, preventing effective growth of viruses that enter the cell later. However, there appears to be an additional level of intracellular competition between viral genomes that occurs at or shortly following mitosis. In the setting of cellular division, when two viral replicons of equivalent fitness are present within a cell, each has an equal opportunity to exclude the other. In a population of dividing cells, the competition between viral genomes proceeds apace, randomly clearing one or the other genome from cells in the span of 9 to 12 days. These findings demonstrate a new mechanism of intracellular competition between HCV strains, which may act to further limit HCV's genetic diversity and ability to recombine in vivo.
Collapse
|
15
|
Takeda M, Ikeda M, Ariumi Y, Wakita T, Kato N. Development of hepatitis C virus production reporter-assay systems using two different hepatoma cell lines. J Gen Virol 2012; 93:1422-1431. [DOI: 10.1099/vir.0.040725-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A hepatitis C virus (HCV) infection system was developed previously using the HCV JFH-1 strain (genotype 2a) and HuH-7 cells, and this cell culture is so far the only robust production system for HCV. In patients with chronic hepatitis C, the virological effects of pegylated interferon and ribavirin therapy differ depending on the HCV strain and the genetic background of the host. Recently, we reported the hepatoma-derived Li23 cell line, in which the JFH-1 life cycle is reproduced at a level almost equal to that in HuH-7-derived RSc cells. To monitor the HCV life cycle more easily, we here developed JFH-1 reporter-assay systems using both HuH-7- and Li23-derived cell lines. To identify any genetic mutations by long-term cell culture, HCV RNAs in HuH-7 cells were amplified 130 days after infection and subjected to sequence analysis to find adaptive mutation(s) for robust virus replication. We identified two mutations, H2505Q and V2995L, in the NS5B region. V2995L but not H2505Q enhanced JFH-1 RNA replication. However, we found that H2505Q but not V2995L enhanced HCV RNA replication of strain O (genotype 1b). We also selected highly permissive D7 cells by serial subcloning of Li23 cells. The expression levels of claudin-1 and Niemann–Pick C1-like 1 in D7 cells are higher than those in parental Li23 cells. In this study, we developed HCV JFH-1 reporter-assay systems using two distinct hepatoma cell lines, HuH-7 and Li23. The mutations in NS5B resulted in different effects on strains O and JFH-1 HCV RNA replication.
Collapse
Affiliation(s)
- Midori Takeda
- Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8544, Japan
| | - Masanori Ikeda
- Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8544, Japan
| | - Yasuo Ariumi
- Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8544, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Disease, Tokyo 162-8640, Japan
| | - Nobuyuki Kato
- Department of Tumor Virology, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8544, Japan
| |
Collapse
|
16
|
Metabolic disorders and steatosis in patients with chronic hepatitis C: metabolic strategies for antiviral treatments. Int J Hepatol 2012; 2012:264017. [PMID: 22701799 PMCID: PMC3373124 DOI: 10.1155/2012/264017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/14/2012] [Indexed: 02/06/2023] Open
Abstract
It has been reported that hepatitis C virus (HCV) infection is closely associated with hepatic metabolic disorders. Hepatic steatosis and insulin resistance are both relatively common in patients with chronic hepatitis C. Recent investigations suggest that HCV infection changes the expression profile of lipid-metabolism-associated factors in the liver, conferring advantages to the life cycle of HCV. Moreover, insulin resistance and steatosis are independent predictors of impaired response to antiviral treatment in chronic hepatitis C. In this paper, we summarize our current knowledge of hepatic metabolic disorders and describe how HCV leads to and exploits these hepatic disorders. We also discuss the clinical significance of insulin sensitizers used to improve insulin resistance and lipid modulators used to manage lipid metabolism as potential treatment options for chronic hepatitis C.
Collapse
|
17
|
Kanduc D. HCV: Written in our DNA. SELF NONSELF 2011; 2:108-113. [PMID: 22299062 DOI: 10.4161/self.2.2.15795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022]
Abstract
An inspection of the sequence similarity between the hepatitis C virus (HCV) polyprotein and human proteins revealed a high level of peptide sharing, with a limited number of motifs unique to the virus (i.e., with no counterpart in the human proteome). Using pentapeptide matching, only 214 motifs out of a total of 3,007 (7.11%) identified HCV as nonself compared to the Homo sapiens proteome. However, this virus-versus-human phenetic difference disappeared at the genetic level. Indeed, a BLAST analysis of pentadecameric oligodeoxynucleotide sequences corresponding to the 214 pentapeptides unique to HCV revealed that almost all of them are present in the human genome, located in the non-coding strand, introns, and/or pseudogenes, thus being, as such, untranslatable. The present data warn against using DNA-based vaccines to fight HCV infection and emphasize peptide uniqueness as the molecular basis for designing effective anti-HCV immunotherapeutic approaches.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biochemistry and Molecular Biology; University of Bari; Bari, Italy
| |
Collapse
|