1
|
Velikzhanina EI, Sashina TA, Morozova OV, Kashnikov AY, Epifanova NV, Novikova NA. Unusual BA222-like strains of Rotavirus A (Sedoreoviridae: Rotavirus: Rotavirus A): molecular and genetic analysis based on all genome segments. Vopr Virusol 2024; 69:363-376. [PMID: 39361930 DOI: 10.36233/0507-4088-254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Rotavirus infection is the major cause of severe dehydrating diarrhea requiring hospitalization in young children worldwide. Due to their segmented genome, rotaviruses are capable of gene reassortment, which makes the emergence and spread of genetically novel strains possible. The purpose of this study was to search for unusual rotaviruses circulating in Nizhny Novgorod in 2021‒2023 and their molecular genetic characterization based on all genome segments. MATERIALS AND METHODS Rotavirus-positive stool samples of children were examined by PCR genotyping and electrophoresis in PAAG. cDNA fragments of each of the 11 genes (VP1‒VP4, VP6, VP7, NSP1‒NSP5), 570 to 850 nucleotide pairs in length were sequenced for the selected strains. The phylogenetic analysis was performed in the MEGA X program. RESULTS In the study period 2021‒2023, 11 G[P] combinations with a predominance of G3P[8] (59.5%) were identified. Six atypical Rotavirus А (RVA) strains were identified: 2 strains of the G2P[4] genotype (G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E2-H3, G2-P[4]-I2-R2-C2-M2-A3-N2-T3-E3-H2) and 4 G3P[9] strains (all strains had the genotype G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3). Phylogenetic analysis based on all genes showed an evolutionary relationship between rotaviruses similar to rotaviruses of cats and dogs (BA222-like) and unusual strains of the G2P[4] genotype, for which a mixed combination of genotypes was identified and characterized for the first time. DISCUSSION The results obtained expand the understanding of the diversity of reassortant RVAs, as well as complement the data on the genotypic structure of the rotavirus population in Nizhny Novgorod. CONCLUSION The wide genetic diversity of reassortant RVA can help rotaviruses overcome the immunological pressure provided by natural and vaccine-induced immunity. In this regard, to control the emergence of new variants and assess changes in the virulence of rotaviruses after reassortment processes, continuous molecular monitoring for circulating RVA is necessary.
Collapse
Affiliation(s)
- E I Velikzhanina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - T A Sashina
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - O V Morozova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A Y Kashnikov
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N V Epifanova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - N A Novikova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
2
|
Chamsai E, Charoenkul K, Udom K, Jairak W, Chaiyawong S, Amonsin A. Genetic characterization and evidence for multiple reassortments of rotavirus A G3P[3] in dogs and cats in Thailand. Front Vet Sci 2024; 11:1415771. [PMID: 38855413 PMCID: PMC11157116 DOI: 10.3389/fvets.2024.1415771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024] Open
Abstract
Rotavirus A (RVA) causes gastroenteritis in humans and animals. The zoonotic potential of RVA has been reported and raises major concerns, especially in animal-human interface settings. The study aimed to characterize and investigate the genetic diversity among RVAs in dogs and cats in Thailand. We collected 572 rectal swab samples from dogs and cats in Bangkok animal hospitals from January 2020 to June 2021. The one-step RT-PCR assay detected RVAs in 1.92% (11/572) of the samples, with 2.75% (8/290) in dogs and 1.06% (3/282) in cats. Two canine RVA and one feline RVA were subjected to whole genome sequencing. Our results showed that all three viruses were identified as RVA genotype G3P[3]. The genetic constellation of RVAs is unique for different species. For canine RVAs is G3-P [3]-I3-R3-C3-M3-A9-N2-T3-E3-H6, while Feline RVA is G3-P [3]-I8-R3-C3-M3-A9-N3-T3-E3-H6. Notably, both canine and feline RVAs contained the AU-1 genetic constellation with multiple reassortments. The results of phylogenetic, genetic, and bootscan analyses showed that canine RVAs may have reassorted from dog, human, and cat RVAs. While feline RVA was closely related to RVAs in humans, bats, and simians. This study provided genetic characteristics and diversity of RVAs in dogs and cats and suggested possible multiple reassortments, suggesting the zoonotic potential of the viruses. Thus, public health awareness should be raised regarding the zoonotic potential of RVAs in dogs and cats. Further studies on RVAs on a larger scale in dogs and cats in Thailand are needed.
Collapse
Affiliation(s)
- Ekkapat Chamsai
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Charoenkul
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kitikhun Udom
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Waleemas Jairak
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supassama Chaiyawong
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
França Y, Medeiros RS, Viana E, de Azevedo LS, Guiducci R, da Costa AC, Luchs A. Genetic diversity and evolution of G12P[6] DS-1-like and G12P[9] AU-1-like Rotavirus strains in Brazil. Funct Integr Genomics 2024; 24:92. [PMID: 38733534 DOI: 10.1007/s10142-024-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.
Collapse
Affiliation(s)
- Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil
| | - Antonio Charlys da Costa
- Medical Parasitology Laboratory (LIM/46), São Paulo Tropical Medicine Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Zou W, Yu Q, Liu Y, Li Q, Chen H, Gao J, Shi C, Wang Y, Chen W, Bai X, Yang B, Zhang J, Dong B, Ruan B, Zhou L, Xu G, Hu Z, Yang X. Genotype analysis of rotaviruses isolated from children during a phase III clinical trial with the hexavalent rotavirus vaccine in China. Virol Sin 2023; 38:889-899. [PMID: 37972894 PMCID: PMC10786658 DOI: 10.1016/j.virs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
The oral hexavalent live human-bovine reassortant rotavirus vaccine (RV6) developed by Wuhan Institute of Biological Products Co., Ltd (WIBP) has finished a randomized, placebo-controlled phase III clinical trial in four provinces of China in 2021. The trail demonstrated that RV6 has a high vaccine efficacy against the prevalent strains and is safe for use in infants. During the phase III clinical trial (2019-2021), 200 rotavirus-positive fecal samples from children with RV gastroenteritis (RVGE) were further studied. Using reverse transcription-polymerase chain reaction and high-throughput sequencing, VP7 and VP4 sequences were obtained and their genetic characteristics, as well as the differences in antigenic epitopes of VP7, were analyzed in detail. Seven rotavirus genotypes were identified. The predominant rotavirus genotype was G9P [8] (77.0%), followed by prevalent strains G8P [8] (8.0%), G3P [8] (3.5%), G3P [9] (1.5%), G1P [8] (1.0%), G2P [4] (1.0%), and G4P [6] (1.0%). The amino acid sequence identities of G1, G2, G3, G4, G8, and G9 genotypes of isolates compared to the vaccine strains were 98.8%, 98.2%-99.7%, 88.4%-99.4%, 98.2%, 94.2%-100%, and 93.9%-100%, respectively. Notably, the vaccine strains exhibited high similarity in amino acid sequence, with only minor differences in antigenic epitopes compared to the Chinese endemic strains. This supports the potential application of the vaccine in preventing diseases caused by rotaviruses.
Collapse
Affiliation(s)
- Wenqi Zou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Qingchuan Yu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Yan Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Qingliang Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Hong Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Jiamei Gao
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Chen Shi
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Ying Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Wei Chen
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Xuan Bai
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Biao Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Jiuwei Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Ben Dong
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Bo Ruan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Liuyifan Zhou
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Gelin Xu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China
| | - Zhongyu Hu
- National Institutes for Food and Drug Control, Beijing, 100050, China.
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan Institute of Biological Products Co., Ltd, Wuhan, 430207, China; China National Biotec Group, Beijing, 100024, China.
| |
Collapse
|
5
|
Cao M, Yuan F, Zhang W, Wang X, Ma J, Ma X, Kuai W, Ma X. Genomic analysis of two rare human G3P[9] rotavirus strains in Ningxia, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105518. [PMID: 37890809 DOI: 10.1016/j.meegid.2023.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
G3P (Matthijnssens et al., 2008b [9]) is a rare combination of human rotavirus VP7/VP4 genotypes with a complex evolutionary pattern but limited related studies. Detailed genomic characterisation and genetic evolutionary analyses of G3P (Matthijnssens et al., 2008b [9]) rotaviruses have helped to enhance our understanding of rotavirus diversity. For the first time, we detected two human G3P (Matthijnssens et al., 2008b [9]) Rotavirus A (RVA) strains, RVA/Human-tc/CHN/2020999/2020/G3P (Matthijnssens et al., 2008b [9]) and RVA/Human-wt/CHN/23582009/2023/G3P (Matthijnssens et al., 2008b [9]), in diarrhoea patients from the Ningxia region of China, and carried out a whole-genome analysis of these strains. 2,020,999 and 23,582,009 have identical gene constellations: G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3, and this genotypic constellation was reported first time in China. They are closely related in 11 genome segments. The genotypes of these two strains are different from the human RVA strains L621 and E2451, which are only G3P (Matthijnssens et al., 2008b [9]) strains reported so far in China, but are identical to those of the Thai feline strain Meesuk and the Korean human strain CAU12-2-51.Phylogenetic analysis showed that the VP6, VP1-VP3, and NSP2 genes of the two strains in this study clustered with human/bovine and feline/bovine rotavirus strains to form a sublineage distinct from the common DS-1-like G2 human rotavirus. In contrast, the VP7, VP4, NSP1, and NSP3-NSP5 gene segments were closely associated with human/feline rotavirus and feline rotavirus strains. These findings suggest that the evolutionary origin of the G3P (Matthijnssens et al., 2008b [9]) human rotavirus found in Ningxia, China, is consistent with the Meesuk and CAU12-2-51 strains, may have arisen through reassortment between uncommon human/bovine, feline/bovine rotavirus strains and human/feline, feline rotaviruses. However, VP1-VP2 gene segments did not have the same lineage as strains Meesuk and CAU12-2-51, suggesting that these genes might be derived from additional reassortment event.
Collapse
Affiliation(s)
- Min Cao
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Fang Yuan
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Wei Zhang
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xiuqin Wang
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Jiangtao Ma
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xuemin Ma
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Wenhe Kuai
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China
| | - Xueping Ma
- Ningxia center for Disease Control and Prevention, NO. 528 Shengli South Road, Yingchuan 750004, Ningxia Province, China.
| |
Collapse
|
6
|
Azevedo LS, Costa FF, Ghani MBA, Viana E, França Y, Medeiros RS, Guiducci R, Morillo SG, Primo D, Lopes RD, Gomes-Gouvêa MS, da Costa AC, Luchs A. Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012-2021) of rotavirus infection in domestic dogs and cats. Arch Virol 2023; 168:176. [PMID: 37306860 DOI: 10.1007/s00705-023-05807-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/25/2023] [Indexed: 06/13/2023]
Abstract
There is a dearth of information on the molecular epidemiology of rotaviruses in pets in Brazil. The aim of this study was to monitor rotavirus infections in household dogs and cats, determine full-genotype constellations, and obtain data on evolutionary relationships. Between 2012 and 2021, 600 fecal samples from dogs and cats (516 and 84, respectively) were collected at small animal clinics in São Paulo state, Brazil. Rotavirus screening was conducted using ELISA, PAGE, RT-PCR, sequencing, and phylogenetic analysis. Rotavirus type A (RVA) was detected in 0.5% (3/600) of the animals. No non-RVA types were detected. The three canine RVA strains were found to have a novel genetic constellation, G3-P[3] -I2-R3-C2-M3-A9-N2-T3-E3-H6, which has never been reported in dogs. As expected, all of the viral genes, except those encoding NSP2 and VP7, were closely related to the corresponding genes from canine, feline, and canine-like-human RVA strains. A novel N2 (NSP2) lineage was identified, grouping together Brazilian canine, human, rat and bovine strains, suggesting that genetic reassortment had occurred. Uruguayan G3 strains obtained from sewage contained VP7 genes that were phylogenetically close to those of the Brazilian canine strains, which suggests that these strains are widely distributed in pet populations in South American countries. For the NSP2 (I2), NSP3 (T3), NSP4 (E3), NSP5 (H6), VP1 (R3), VP3 (M3), and VP6 (I2) segments, phylogenetic analysis revealed possibly new lineages. The epidemiological and genetic data presented here point out the necessity for collaborative efforts to implement the One Health strategy in the field of RVA research and to provide an updated understanding of RVA strains circulating canines in Brazil.
Collapse
Affiliation(s)
- Lais Sampaio Azevedo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | - Ellen Viana
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | - Yasmin França
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Raquel Guiducci
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Dieli Primo
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Michele Soares Gomes-Gouvêa
- Laboratorio de Gastroenterologia e Hepatologia Tropical-LIM07, Departamento de Gastroenterologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antonio Charlys da Costa
- Laboratorio de Parasitologia Médica-LIM46, Departamento de Doenças Infecciosas e Parasitárias, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Adriana Luchs
- Enteric Diseases Laboratory, Virology Center, Adolfo Lutz Institute, São Paulo, Brazil.
- Instituto Adolfo Lutz, Centro de Virologia, Núcleo de Doenças Entéricas, Av. Dr Arnaldo, nº 355, São Paulo, SP, 01246-902, Brazil.
| |
Collapse
|
7
|
Albuquerque MA, Deus DRD, Lobo PS, Teixeira DM, Maués MAC, Cardoso JF, Silva LDD, Gabbay YB, Resque HR, Silva Soares LD, Siqueira JAM, Guerra SFS. Detection of G3 human-like rotavirus in institutionalized dogs from Brazil. Braz J Microbiol 2023; 54:1295-1301. [PMID: 37076753 PMCID: PMC10234945 DOI: 10.1007/s42770-023-00972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023] Open
Abstract
Viral gastroenteritis is a common clinical problem in dogs and group A rotavirus (RVA) is one of the agents involved in this etiology. It mainly affects dogs in the first 6 months of life, and these animals are considered an important reservoir and potential transmitters of the virus to other susceptible hosts, such as humans. Among the different types of RVA, G3 is the most detected in dogs, and this genotype is also involved in infections in other animals, including humans. Thus, the present study aims to investigate the presence of RVA in samples of dogs from a public kennel. A total of 64 fecal samples from dogs with diarrhea were analyzed, collected from April 2019 to March 2020, from the kennel of the Zoonosis Control Center, located in Belém, a city in the North of Brazil. The extracted genetic material was subjected to reverse transcription followed by real-time PCR (RT-qPCR); the positives were tested by RT-PCR with a specific primer for the RVA VP7 gene, after nucleotide sequencing and phylogenetic analysis. One sample was subjected to high-performance sequencing. A positivity of 7.8% (5/64) was observed for RVA, all characterized as G3, grouping in the G3-III lineage, with greater similarity to human samples. Different regions of the RVA genome fragments were found. These results emphasize the need for animal health surveillance to better understand the global strain dispersion of RVA and elucidate possible interspecies transmission events, monitoring the genetic diversity of this pathogen.
Collapse
Affiliation(s)
| | | | - Patrícia Santos Lobo
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil
| | - Dielle Monteiro Teixeira
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil
| | | | - Jedson Ferreira Cardoso
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil
| | - Luciana Damascena da Silva
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil
| | - Yvone Benchimol Gabbay
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil
| | - Hugo Reis Resque
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil
| | - Luana da Silva Soares
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil
| | | | - Sylvia Fátima Santos Guerra
- Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Pará, Ananindeua, Brazil.
| |
Collapse
|
8
|
Díaz Alarcón RG, Liotta DJ, Miño S. Zoonotic RVA: State of the Art and Distribution in the Animal World. Viruses 2022; 14:v14112554. [PMID: 36423163 PMCID: PMC9694813 DOI: 10.3390/v14112554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Rotavirus species A (RVA) is a pathogen mainly affecting children under five years old and young animals. The infection produces acute diarrhea in its hosts and, in intensively reared livestock animals, can cause severe economic losses. In this study, we analyzed all RVA genomic constellations described in animal hosts. This review included animal RVA strains in humans. We compiled detection methods, hosts, genotypes and complete genomes. RVA was described in 86 animal species, with 52% (45/86) described by serology, microscopy or the hybridization method; however, strain sequences were not described. All of these reports were carried out between 1980 and 1990. In 48% (41/86) of them, 9251 strain sequences were reported, with 28% being porcine, 27% bovine, 12% equine and 33% from several other animal species. Genomic constellations were performed in 80% (32/40) of hosts. Typical constellation patterns were observed in groups such as birds, domestic animals and artiodactyls. The analysis of the constellations showed RVA's capacity to infect a broad range of species, because there are RVA genotypes (even entire constellations) from animal species which were described in other studies. This suggests that this virus could generate highly virulent variants through gene reassortments and that these strains could be transmitted to humans as a zoonotic disease, making future surveillance necessary for the prevention of future outbreaks.
Collapse
Affiliation(s)
- Ricardo Gabriel Díaz Alarcón
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
| | - Domingo Javier Liotta
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Tropical Medicine (INMeT)—ANLIS “Dr. Carlos Malbrán”, Puerto Iguazú 3370, Misiones, Argentina
| | - Samuel Miño
- Laboratory of Applied Molecular Biology (LaBiMAp), Faculty of Exacts, Chemical and Natural Sciences, National University of Misiones (UNaM), Posadas 3300, Misiones, Argentina
- National Institute of Agricultural Technology (INTA), EEA Cerro Azul, National Route 14, Km 836, Cerro Azul 3313, Misiones, Argentina
- Correspondence: ; Tel.: +54-376-449-4740 (ext. 120)
| |
Collapse
|
9
|
Lestari FB, Vongpunsawad S, Poovorawan Y. Diverse human and bat-like rotavirus G3 strains circulating in suburban Bangkok. PLoS One 2022; 17:e0268465. [PMID: 35609031 PMCID: PMC9129036 DOI: 10.1371/journal.pone.0268465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Although rotavirus vaccines are available in many parts of the world and are effective in reducing the overall incidence of rotavirus infection, it remains a major cause of diarrhea in less-developed countries. Among various rotavirus group A (RVA) strains, the increasingly common genotype G3 (defined by the VP7 gene) has been identified in both humans and animals. Our previous epidemiological surveillance in Bangkok found several unusual non-vaccine-like G3 strains in patients with diarrhea. In this study, we sequenced and characterized the genomes of seven of these G3 strains, which formed combinations with genotypes P[4], P[6], P[9], and P[10] (defined by the VP4 gene). Interestingly, we identified a bat-like RVA strain with the genome constellation G3-P[10]-I3-R3-C3-M3-A9-N3-T3-E3-H6, which has not been previously reported in the literature. The amino acid residues deduced from the nucleotide sequences of our G3 strains differed at the antigenic epitopes to those of the VP7 capsid protein of the G3 strain in RotaTeq vaccine. Although it is not unusual for the segmented genomes of RVA to reassort and give rise to emerging novel strains, the atypical G3 strains identified in this study suggest possible animal-to-human RVA zoonotic spillover even in urban areas.
Collapse
Affiliation(s)
- Fajar Budi Lestari
- Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
10
|
RVA in pet, sheltered, and stray dogs and cats in Brazil. Top Companion Anim Med 2022; 49:100667. [PMID: 35417783 DOI: 10.1016/j.tcam.2022.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
Rotaviruses species A (RVA) are etiological agents of diarrhoea and are considered zoonotic viruses; yet the epidemiology of RVA among pet animals is largely unknown. RVA was detected in 38 of 308 faecal samples (12.3%) from pet, sheltered, or stray dogs and cats in two municipalities of Rio de Janeiro state, Brazil. The results indicated that these viruses are common in canine and feline populations and underscore the importance of improved monitoring of common pathogens in companion animals, with increased awareness of the potential for interspecies transmission events.
Collapse
|
11
|
Wang Y, Liu Y, Wang M, Yu L, Ma C, Li X, Guo T, Bao H, Kou K, Chen Y, Gong H, Zhou X. Establishment of a cell-based quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay for detection of multivalent rotavirus vaccine. J Med Virol 2020; 92:3157-3164. [PMID: 32492198 DOI: 10.1002/jmv.26128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/10/2022]
Abstract
Because of deficiencies of traditional potency tests in rotavirus detection, a one-step TaqMan probe-based quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay combined with cell-based method was established to determine the infectious potency of the target virus in multivalent live rotavirus vaccines in vitro. Series dilutions of rotavirus samples were inoculated into Vero cells and cultured for 24 hours. The cells were lysed and the potency was detected by RT-qPCR. The reference standards with a known titer (lgCCID50 /mL) were assayed in parallel, and the potencies of each sample were determined using parallel line method. The specificity, precision and accuracy of the assay were evaluated, respectively. The results showed that messenger RNA produced during rotavirus replication was the primary template of RT-qPCR and the primers and probes were specific to each strain. The coefficient of variation of different wells and different working days did not exceed 6% and the results of the assay were proved to be concordant with those of cell culture infective dose 50% with a relative deviation less than 5%. This assay is a more rapid, cost-effective and high-throughput way for detecting multivalent rotavirus vaccine, and will be a valuable tool in the quality control and stability monitoring of live multivalent rotavirus vaccine.
Collapse
Affiliation(s)
- Yunjin Wang
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Yueyue Liu
- Division of Enteric Virus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Mingqiang Wang
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Li Yu
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Chao Ma
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Xiongxiong Li
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Tai Guo
- Division of Enteric Virus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Hong Bao
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Kuiying Kou
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Yueru Chen
- The Second Department, Lanzhou Institute of Biological Products Co, Ltd, Lanzhou, China
| | - Hanbo Gong
- Faculty of Science, University of Alberta, Alberta, Canada
| | - Xu Zhou
- General Manager's Office, Shanghai Institute of Biological Products Co, Ltd, Shanghai, China
| |
Collapse
|
12
|
Charoenkul K, Janetanakit T, Bunpapong N, Boonyapisitsopa S, Tangwangvivat R, Suwannakarn K, Theamboonlers A, Poovorawan Y, Amonsin A. Molecular characterization identifies intra-host recombination and zoonotic potential of canine rotavirus among dogs from Thailand. Transbound Emerg Dis 2020; 68:1240-1252. [PMID: 32772501 DOI: 10.1111/tbed.13778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/01/2022]
Abstract
From September 2016 to January 2019, we collected 710 rectal swabs from both healthy and sick dogs from small animal hospitals in 5 provinces of Thailand. The samples were tested for canine rotavirus group A (CRV) by using one-step RT-PCR specific to the VP6 gene. Our results showed that 0.70% (5/710) were positive for CRV. The five CRVs were then characterized by whole-genome sequencing. Our results showed that the genotype of Thai CRVs is G3P[3], which is the predominant genotype reported in dogs. The Thai CRVs posed a novel genetic constellation 'G3-P[3]-I3-R3-C3-M3-A9-N2-T3-E3-H6', which has never been reported in CRVs from dogs but has been reported in rotaviruses from humans. Based on phylogenetic analysis, the Thai CRVs are the result of multiple reassortments in which gene segments might have originated from human and bat rotaviruses and suggests the zoonotic potential of the virus.
Collapse
Affiliation(s)
- Kamonpan Charoenkul
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Taveesak Janetanakit
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Napawan Bunpapong
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supanat Boonyapisitsopa
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ratanaporn Tangwangvivat
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Apiradee Theamboonlers
- Center of Excellence for Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence for Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Begay RL, Garrison NA, Sage F, Bauer M, Knoki-Wilson U, Begay DH, Becenti-Pigman B, Claw KG. Weaving the Strands of Life ( Iiná Bitł'ool): History of Genetic Research Involving Navajo People. Hum Biol 2020; 91:189-208. [PMID: 32549035 PMCID: PMC7895446 DOI: 10.13110/humanbiology.91.3.04] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
To date, some genetic studies offer medical benefits but lack a clear pathway to benefit for people from underrepresented backgrounds. Historically, Indigenous people, including the Diné (Navajo people), have raised concerns about the lack of benefits, misuse of DNA samples, lack of consultation, and ignoring of cultural and traditional ways of knowing. Shortly after the Navajo Nation Human Research Review Board was established in 1996, the Navajo Nation recognized growing concerns about genetic research, and in 2002 they established a moratorium on human genetic research studies. The moratorium effectively has protected their citizens from potential genetic research harms. Despite the placement of the moratorium, some genetic research studies have continued using blood and DNA samples from Navajo people. To understand the history of genetic research involving Navajo people, the authors conducted a literature review of genetic or genetics-related research publications that involved Navajo people, identifying 79 articles from the years 1926 to 2018. To their knowledge, no known literature review has comprehensively examined the history of genetic research in the Navajo community. This review divides the genetic research articles into the following general classifications: bacteria or virus genetics, blood and human leukocyte antigens, complex diseases, forensics, hereditary diseases, and population genetics and migration. The authors evaluated the methods reported in each article, described the number of Navajo individuals reported, recorded the academic and tribal approval statements, and noted whether the study considered Diné cultural values. Several studies focused on severe combined immunodeficiency disease, population history, neuropathy, albinism, and eye and skin disorders that affect Navajo people. The authors contextualize Diné ways of knowing related to genetics and health with Western scientific concepts to acknowledge the complex philosophy and belief system that guides Diné people and recognizes Indigenous science. They also encourage researchers to consider cultural perspectives and traditional knowledge that has the potential to create stronger conclusions and better-informed, ethical, and respectful science.
Collapse
Affiliation(s)
- Rene L Begay
- Centers for American Indian and Alaska Native Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nanibaa' A Garrison
- Institute for Society and Genetics, College of Letters and Science, University of California, Los Angeles, Los Angeles, California, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Division of General Internal Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- Navajo Nation Human Research Review Board, Window Rock, Arizona, USA
| | - Franklin Sage
- Diné Policy Institute, Navajo Nation, Tsaile, Arizona, USA
| | | | | | - David H Begay
- Navajo Nation Human Research Review Board, Window Rock, Arizona, USA
- Diné Hataałii Association, Navajo Nation, USA
| | | | - Katrina G Claw
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
14
|
Full genome characterization of human G3P[6] and G3P[9] rotavirus strains in Lebanon. INFECTION GENETICS AND EVOLUTION 2019; 78:104133. [PMID: 31812761 DOI: 10.1016/j.meegid.2019.104133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022]
Abstract
Rotaviruses are the most common infectious agents causing severe diarrheal diseases in young children globally. Three rare human rotavirus strains, two G3P[9] and one G3P[6], were detected in stool samples of children under 5 years of age hospitalized for gastroenteritis in Lebanon during the course of a surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture based high-throughput sequencing method. Genomic sequences were further characterized by using phylogenetic analyses with global RVA G3P[6]/P[9] strains, other vaccine and reference strains. Genetic analysis revealed that the G3P[6] strain emerged as a DS-1/Wa-like mono-reassortant strain with a potential Ethiopian origin. The two G3P[9] strains possessed a mixed DS-1/Wa/AU-1-like origin indicating that these may have evolved via multiple reassortment events involving feline, human and bovine rotaviruses. Furthermore, analysis of these strains revealed high antigenic variability compared to the vaccine strains. Additional studies are essential to fully understand the evolutionary dynamics of G3P[6]/P[9] strains spreading worldwide and their implications on vaccine effectiveness.
Collapse
|
15
|
Molecular characterization of a human G20P[28] rotavirus a strain with multiple genes related to bat rotaviruses. INFECTION GENETICS AND EVOLUTION 2017; 57:166-170. [PMID: 29187315 DOI: 10.1016/j.meegid.2017.11.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 11/25/2017] [Indexed: 12/14/2022]
Abstract
Group A rotaviruses are the major cause of severe gastroenteritis in the young of mammals and birds. This report describes characterization of an unusual G20P[28] rotavirus strain detected in a 24month old child from Suriname. Genomic sequence analyses revealed that the genotype constellation of the Suriname strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] was G20-P[28]-I13-R13-C13-M12-A23-N13-T15-E20-H15. Genes VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4 and NSP5 were recently assigned novel genotypes by the Rotavirus Classification Working Group (RCWG). Three of the 11 gene segments (VP7, VP4, VP6) were similar to cognate gene sequences of bat-like human rotavirus strain Ecu534 from Ecuador and the VP7, NSP3 and NSP5 gene segments of strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] were found to be closely related to gene sequences of bat rotavirus strain 3081/BRA detected in Brazil. Although distantly related, the VP1 gene of the study strain and bat strain BatLi09 detected in Cameroon in 2014 are monophyletic. The NSP1 gene was found to be most closely related to human strain QUI-35-F5 from Brazil. These findings suggest that strain RVA/Human-wt/SUR/2014735512/2013/G20P[28] represents a zoonotic infection from a bat host.
Collapse
|
16
|
Group A Rotaviruses in Chinese Bats: Genetic Composition, Serology, and Evidence for Bat-to-Human Transmission and Reassortment. J Virol 2017; 91:JVI.02493-16. [PMID: 28381569 DOI: 10.1128/jvi.02493-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/08/2017] [Indexed: 01/24/2023] Open
Abstract
Bats are natural reservoirs for many pathogenic viruses, and increasing evidence supports the notion that bats can also harbor group A rotaviruses (RVAs), important causative agents of diarrhea in children and young animals. Currently, 8 RVA strains possessing completely novel genotype constellations or genotypes possibly originating from other mammals have been identified from African and Chinese bats. However, all the data were mainly based on detection of RVA RNA, present only during acute infections, which does not permit assessment of the true exposure of a bat population to RVA. To systematically investigate the genetic diversity of RVAs, 547 bat anal swabs or gut samples along with 448 bat sera were collected from five South Chinese provinces. Specific reverse transcription-PCR (RT-PCR) screening found four RVA strains. Strain GLRL1 possessed a completely novel genotype constellation, whereas the other three possessed a constellation consistent with the MSLH14-like genotype, a newly characterized group of viruses widely prevalent in Chinese insectivorous bats. Among the latter, strain LZHP2 provided strong evidence of cross-species transmission of RVAs from bats to humans, whereas strains YSSK5 and BSTM70 were likely reassortants between typical MSLH14-like RVAs and human RVAs. RVA-specific antibodies were detected in 10.7% (48/448) of bat sera by an indirect immunofluorescence assay (IIFA). Bats in Guangxi and Yunnan had a higher RVA-specific antibody prevalence than those from Fujian and Zhejiang provinces. These observations provide evidence for cross-species transmission of MSLH14-like bat RVAs to humans, highlighting the impact of bats as reservoirs of RVAs on public health.IMPORTANCE Bat viruses, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), Ebola, Hendra, and Nipah viruses, are important pathogens causing outbreaks of severe emerging infectious diseases. However, little is known about bat viruses capable of causing gastroenteritis in humans, even though 8 group A viruses (RVAs) have been identified from bats so far. In this study, another 4 RVA strains were identified, with one providing strong evidence for zoonotic transmission from bats to humans. Serological investigation has also indicated that RVA infection in bats is far more prevalent than expected based on the detection of viral RNA.
Collapse
|
17
|
Bezerra DAM, Guerra SFS, Serra ACS, Fecury PCMS, Bandeira RS, Penha ET, Lobo PS, Sousa EC, Linhares AC, Soares LS, Mascarenhas JDP. Analysis of a genotype G3P[9] rotavirus a strain that shows evidence of multiple reassortment events between animal and human rotaviruses. J Med Virol 2016; 89:974-981. [PMID: 27862014 DOI: 10.1002/jmv.24733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 11/07/2022]
Abstract
The species A rotaviruses (RVA) are important gastroenteric pathogens that infect humans and animals. RVA genotype G3P[9] has been described in human-animal reassortment events, and the complexity of its hosts motivates the genetic investigation of this strain. Therefore, the aim of this study is to analyse a G3P[9] sample that was detected in a child with acute gastroenteritis. The 1A3739 sample featured the constellation G3P[9]-I18-R3-C3-Mx-A19-N3-T3-E3-H6. The sequence for VP3 gene was not obtained. The phylogeny showed a closer relationship among genes VP7, VP1, NSP3, NSP4, and NSP5 with genes of animal origin, such as chiropter, alpaca, equine, and simian. In addition, the genes VP6 and NSP1 belong to the new genotypes I18 and A19, respectively. The emergence of strains such as these can interfere with the effectiveness of the RVA vaccine, and continuous monitoring is therefore important. Additional studies are needed to determine the evolutionary source and to identify a possible reservoir of RVA in nature.
Collapse
Affiliation(s)
- Delana A M Bezerra
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Sylvia F S Guerra
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Ana C S Serra
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | | | - Renato S Bandeira
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Edvaldo T Penha
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Patrícia S Lobo
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Edivaldo C Sousa
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Alexandre C Linhares
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Luana S Soares
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Joana D P Mascarenhas
- Postgraduate Program in Virology, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| |
Collapse
|
18
|
Guerra SFS, Soares LS, Lobo PS, Penha Júnior ET, Sousa Júnior EC, Bezerra DAM, Vaz LR, Linhares AC, Mascarenhas JDP. Detection of a novel equine-like G3 rotavirus associated with acute gastroenteritis in Brazil. J Gen Virol 2016; 97:3131-3138. [PMID: 27902376 DOI: 10.1099/jgv.0.000626] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genotype G3P[8] of rotavirus A (RVA) is detected worldwide, usually associated with Wa-like constellation and exhibiting a long RNA migration pattern. More recently, a novel inter-genogroup, G3P[8] reassortant variant with a short electropherotype, has emerged in Asia, Oceania and Europe, denoting an overall potential of unusual rotavirus strains. During a RVA surveillance in Brazil, G3P[8] strains were found displaying a short electropherotype pattern, which had not been detected before in this region. This study aims to characterize the complete genome of 10 G3P[8] strains detected in the northern region of Brazil. All G3P[8] samples were subjected to partial sequencing, and the whole-genome phylogenetic analysis demonstrated that all strains possessed I2-R2-C2-M2-A2-N1-T2-E2-H2 genotype background, representing reassortants with an equine-like G3 VP7 and amino acid changes in VP4 and VP7 antigenic regions as compared to vaccine strains. Phylogenetic analysis demonstrated high nucleotide identity in almost all RNA segments of G3P[8] DS-1 samples detected in Asia, Oceania and Europe as well as G3P[4] strains in Japan. This study reports a novel, equine-like G3P[8] strain circulating in Brazil and isolated from children hospitalized for severe gastroenteritis, and highlights the complex dynamics of RVA molecular epidemiology. Our findings point to a novel RVA strain emerging in this region, and studies should be done to detect whether this may represent a challenge to current vaccine strategies.
Collapse
Affiliation(s)
| | - Luana Silva Soares
- Evandro Chagas Institute, Health Surveillance Secretariat, Belém, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Asano KM, Gregori F, Hora AS, Scheffer KC, Fahl WO, Iamamoto K, Mori E, Silva FDF, Taniwaki SA, Brandão PE. Group A rotavirus in Brazilian bats: description of novel T15 and H15 genotypes. Arch Virol 2016; 161:3225-30. [PMID: 27518402 DOI: 10.1007/s00705-016-3010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
This study aimed to survey for group A rotaviruses (RVA) in bats from Brazil and to perform phylogenetic inferences for VP4, VP7, NSP3, NSP4 and NSP5 genes. RVA was found in 9.18 % (28/305) of tested samples. The partial genotype constellation of a Molossus molossus RVA strain was G3-P[3]-Ix-Rx-Cx-Mx-Ax-Nx-T3-E3-H6, and that of a Glossophaga soricina RVA strain was G20-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-T15-Ex-H15. These findings demonstrate an important role of bats in RVA epidemiology and provide evidence of participation of bat RVA strains in interspecies transmission and reassortment events.
Collapse
Affiliation(s)
- Karen Miyuki Asano
- Instituto Pasteur of São Paulo, Av. Paulista, 393, São Paulo, SP, 01311-000, Brazil.
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, 05508-270, Brazil.
| | - Fabio Gregori
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, 05508-270, Brazil
| | - Aline Santana Hora
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, 05508-270, Brazil
| | | | | | - Keila Iamamoto
- Instituto Pasteur of São Paulo, Av. Paulista, 393, São Paulo, SP, 01311-000, Brazil
| | - Enio Mori
- Instituto Pasteur of São Paulo, Av. Paulista, 393, São Paulo, SP, 01311-000, Brazil
| | - Fernanda Dornelas Florentino Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, 05508-270, Brazil
| | - Sueli Akemi Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, 05508-270, Brazil
| | - Paulo Eduardo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine, University of São Paulo, Av. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP, 05508-270, Brazil
| |
Collapse
|
20
|
Evidence of multiple reassortment events of feline-to-human rotaviruses based on a rare human G3P[9] rotavirus isolated from a patient with acute gastroenteritis. Comp Immunol Microbiol Infect Dis 2016; 46:53-9. [DOI: 10.1016/j.cimid.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
|
21
|
Okadera K, Abe M, Ito N, Mitake H, Okada K, Nakagawa K, Une Y, Tsunemitsu H, Sugiyama M. Isolation and characterization of a novel type of rotavirus species A in sugar gliders (Petaurus breviceps). J Gen Virol 2016; 97:1158-1167. [DOI: 10.1099/jgv.0.000433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kota Okadera
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Masako Abe
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Naoto Ito
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Hiromichi Mitake
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Kazuma Okada
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Kento Nakagawa
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| | - Yumi Une
- Laboratory of Veterinary Pathology, School of Veterinary Medicine,Azabu University, 1-17-71 Fuchinobe, Kanagawa, 252-5201,Japan
| | - Hiroshi Tsunemitsu
- Dairy Hygiene Research Division, National Institute of Animal Health,4 Hitsujigaoka, Hokkaido, 062-0045,Japan
| | - Makoto Sugiyama
- The United Graduate School of Veterinary Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences,Gifu University, 1-1 Yanagido, Gifu 501-1193,Japan
| |
Collapse
|
22
|
Luchs A, Cilli A, Morillo SG, Ribeiro CD, Carmona RDCC, Timenetsky MDCST. Rotavirus genotypes and the indigenous children of Brazilian midwest in the vaccine era, 2008-2012: Footprints of animal genome. J Med Virol 2015; 87:1881-9. [PMID: 25963945 DOI: 10.1002/jmv.24241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 01/28/2023]
Abstract
World group A rotavirus (RVA) surveillance data provides useful estimates of the disease burden, however, indigenous population might require special consideration. The aim of this study was to describe the results of G- and P-types from Brazilian native children ≤ 3 years. Furthermore, selected strains have been analyzed for the VP7, VP6, VP4, and NSP4 encoding genes in order to gain insight into genetic variability of Brazilian strains. A total of 149 samples, collected during 2008-2012, were tested for RVA using ELISA and PAGE, following by RT-PCR and sequencing. RVA infection was detected in 8.7% of samples (13/149). Genotype G2P[4] was detected in 2008 and 2010, G8P[6] in 2009, and G3P[8] in 2011. The phylogenetic analysis of the VP7 and VP4 genes grouped the Brazilian G2P[4] and G3P[8] strains within the lineages currently circulating in humans worldwide. However, the phylogenetic analysis of the VP6 and NSP4 from the Brazilian G2P[4] strains, and the VP7 and NSP4 from the Brazilian G3P[8] strains suggest a distant common ancestor with different animal strains (bovine, caprine, and porcine). The epidemiological and genetic information obtained in the present study is expected to provide an updated understanding of RVA genotypes circulating in the native infant population, and to formulate policies for the use of RVA vaccines in indigenous Brazilian people. Moreover, these results highlight the great diversity of human RVA strains circulating in Brazil, and an in-depth surveillance of human and animal RVA will lead to a better understanding of the complex dynamics of RVA evolution.
Collapse
Affiliation(s)
- Adriana Luchs
- Enteric Disease Laboratory, Adolfo Lutz Institute, São Paulo, Brazil
| | - Audrey Cilli
- Enteric Disease Laboratory, Adolfo Lutz Institute, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
23
|
Papp H, Mihalov-Kovács E, Dóró R, Marton S, Farkas SL, Giammanco GM, De Grazia S, Martella V, Bányai K. Full-genome sequencing of a Hungarian canine G3P[3] Rotavirus A strain reveals high genetic relatedness with a historic Italian human strain. Virus Genes 2015; 50:310-5. [DOI: 10.1007/s11262-014-1163-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
|
24
|
Tsugawa T, Rainwater-Lovett K, Tsutsumi H. Human G3P[9] rotavirus strains possessing an identical genotype constellation to AU-1 isolated at high prevalence in Brazil, 1997-1999. J Gen Virol 2014; 96:590-600. [PMID: 25467218 DOI: 10.1099/vir.0.071373-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rotavirus (RV) A is a very common cause of acute diarrhoea in infants and young children worldwide. Most human strains are classified into two major Wa-like and DS-1-like genotype constellations, whilst a minor third strain, AU-1, was described in 1989 among human RV isolates from Japan. AU-1 demonstrates a high degree of homology to a feline RV, FRV-1, which suggests interspecies transmission of feline RV. However, there has been no subsequent report of RVs possessing the AU-1 genotype throughout all 11 genes of the genome. Between March 1997 and December 1999, 157 RV-positive stool samples were collected from Brazilian children, and 16 of the RVs (10.2 %) were P[9] genotype. We analysed eight strains by almost full-genome sequencing. These eight strains were divided into two groups: five AU-1-like and three Wa-like strains. Four of the five AU-1-like strains had the AU-1-like genotype constellation throughout the 11 genes. The remaining AU-1-like strain was considered to be a reassortant strain comprosed of nine, two and one genes from the AU-1-like, Wa-like and G9 strains, respectively. The three Wa-like strains were considered to be reassortants comprising seven to eight genes and three to four genes from Wa-like and non-Wa-like strains, respectively. This report of human G3P[9] RV strains possessing the AU-1 genotype constellation throughout all genes demonstrates the stability and infectivity of the AU-1-like strain with its original genotype over distance and time.
Collapse
Affiliation(s)
- Takeshi Tsugawa
- Rotavirus Vaccine Development Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan
| | - Kaitlin Rainwater-Lovett
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.,Rotavirus Vaccine Development Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hiroyuki Tsutsumi
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan
| |
Collapse
|
25
|
Mladenova Z, Nawaz S, Ganesh B, Iturriza-Gomara M. Increased detection of G3P[9] and G6P[9] rotavirus strains in hospitalized children with acute diarrhea in Bulgaria. INFECTION GENETICS AND EVOLUTION 2014; 29:118-26. [PMID: 25461849 DOI: 10.1016/j.meegid.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
Rotavirus severe disease in children is now vaccine-preventable and the roll-out of vaccination programs globally is expected to make a significant impact in the reduction of morbidity and mortality in children <5 years of age. Rotavirus is also a pathogen of other mammals and birds, and its segmented RNA genome can lead to the emergence of new or unusual strains in human population via interspecies transmission and reassortment events. Despite the efficacy and impact of rotavirus vaccine in preventing severe diarrhea, the correlates of protection remain largely unknown. Therefore, rotavirus strain surveillance before, during and after the introduction of immunization programs remains a crucial for monitoring rotavirus vaccine efficacy and impact. In this context, molecular characterization of 1323 Bulgarian rotavirus strains collected between June 2010 and May 2013 was performed. A total of 17 strains of interest were analyzed by partial sequence analysis. Twelve strains were characterized as G3P[9] and G6P[9] of potential animal origin. Phylogenetic analysis and comparisons with the same specificity strains detected sporadically between 2006 and 2010 revealed the constant circulation of these unusual human strains in Bulgaria, although in low prevalence, and their increased potential for person-to-person spread.
Collapse
Affiliation(s)
- Zornitsa Mladenova
- National Center for Infectious and Parasitic Diseases, Sofia, Bulgaria; Public Health of England, London, United Kingdom.
| | | | | | - Miren Iturriza-Gomara
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
26
|
Gauchan P, Sasaki E, Nakagomi T, Do LP, Doan YH, Mochizuki M, Nakagomi O. Whole genotype constellation of prototype feline rotavirus strains FRV-1 and FRV64 and their phylogenetic relationships with feline-like human rotavirus strains. J Gen Virol 2014; 96:338-350. [PMID: 25351516 DOI: 10.1099/vir.0.070771-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feline rotaviruses, members of the species Rotavirus A, are an infrequent source of zoonotic infections, and were previously shown by RNA-RNA hybridization assays to possess two distinct genomic RNA constellations, represented by strains FRV-1 and FRV64. Due to the lack of whole genome sequence information for FRV-1, human rotavirus strain AU-1 has been used as a surrogate for the genotype constellation of feline rotaviruses. The aim of this study was to determine the whole genome sequence of FRV-1 and FRV64 to help understand the genetic relationships among existing feline rotaviruses from the evolutionary perspective. The genotype constellations of FRV-1 and FRV64 were G3-P[9]-I3-R3-C3-M3-A3-N3-T3-E3-H3 and G3-P[3]-I3-R3-C2-M3-A9-N2-T3-E3-H6, respectively. FRV-1 has a genotype constellation identical to that of the AU-1 strain. Although for individual genes they shared lineages, with the exception of genes encoding VP2, VP6 and VP7, the sequence identity between FRV-1 and AU-1 was considered to be sufficiently high for the AU-1 to be regarded as an example of the direct transmission of a feline rotavirus to a child. On the other hand, the FRV64 strain was not only similar in all the 11 genome segments to another feline rotavirus strain, Cat97, but also to canine rotavirus strains (K9 and CU-1) and feline/canine-like human rotavirus strains (Ro1845 and HCR3A). In conclusion, this study revealed intermingled sharing of genotypes and lineages among feline rotaviruses, suggesting the occurrence of frequent reassortment events over the course of evolution to emerge in four genotype constellations represented by FRV-1, FRV64/Cat97, Cat2 and BA222 strains.
Collapse
Affiliation(s)
- Punita Gauchan
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Eriko Sasaki
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Toyoko Nakagomi
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Loan Phuong Do
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Yen Hai Doan
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| | - Masami Mochizuki
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Osamu Nakagomi
- Department of Hygiene and Molecular Epidemiology, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
27
|
Jeong S, Than VT, Lim I, Kim W. Whole-genome analysis of a rare human Korean G3P rotavirus strain suggests a complex evolutionary origin potentially involving reassortment events between feline and bovine rotaviruses. PLoS One 2014; 9:e97127. [PMID: 24818762 PMCID: PMC4018271 DOI: 10.1371/journal.pone.0097127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
A rare human rotavirus, G3P[9] strain RVA/Human-tc/KOR/CAU12-2-51/2013/G3P[9], was isolated from the stool of a 9-year-old female hospitalized with acute watery diarrhea in August 2012 in South Korea using a cell culture system, and its genome was analyzed. The complete genomic constellation of the CAU12-2-51 strain revealed a novel genotype constellation for human rotavirus, G3-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. Phylogenetic analysis revealed that the CAU12-2-51 strain originated from feline- and bovine-like reassortment strains. The genes encoding VP4, VP7, NSP1, NSP3, NSP4, and NSP5 were related to human/feline-like and feline rotavirus strains, whereas the remaining five genes encoding VP1, VP2, VP3, VP6, and NSP2 were related to the human/bovine-like and bovine rotavirus strains. This novel strain was identified for the first time, providing evidence of feline/bovine-to-human transmission of rotavirus. The data presented herein provide information regarding rotavirus diversity and evolution.
Collapse
Affiliation(s)
- Sunyoung Jeong
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Van Thai Than
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Inseok Lim
- Department of Pediatrics, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
28
|
Jain S, Vashistt J, Changotra H. Rotaviruses: is their surveillance needed? Vaccine 2014; 32:3367-78. [PMID: 24793942 DOI: 10.1016/j.vaccine.2014.04.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/14/2014] [Indexed: 11/15/2022]
Abstract
Rotaviruses, a major cause of gastroenteritis in children worldwide accounts for around 0.5 million deaths annually. Owing to their segmented genome and frequently evolving capability, these display a wide variation in their genotypes. In addition to commonly circulating genotypes (G1, G2, G3, G4, G9, P[4] and P[8]), a number of infrequent genotypes are being continuously reported to infect humans. These viral strains exhibit variation from one geographical setting to another in their distribution. Though the introduction of vaccines (RotaTeq and Rotarix) proved to be very effective in declining rotavirus associated morbidity and mortality, the number of infections remained same. Unusual genotypes significantly contribute to the rotavirus associated diarrhoeal burden, may reduce the efficacy of the vaccines in use and hence vaccinated individuals may not be benefited. Vaccine introduction may bring about a notable impact on the distribution and prevalence of these viruses due to selection pressure. Moreover, there is a sudden emergence of G2 and G3 in Brazil and United States, respectively, during the years 2006-2008 post-vaccination introduction; G9 and G12 became predominant during the years 1986 through 1998 before the vaccine introduction and now are commonly prevalent strains; and disparity in the predominance of strains after introduction of vaccines and their natural fluctuations poses a vital question on the impact of vaccines on rotavirus strain circulation. This interplay between vaccines and rotavirus strains is yet to be explored, but it certainly enforces the need to continuously monitor these changes in strains prevalence in a particular region. Furthermore, these fluctuations should be considered while administration or development of a vaccine, if rotavirus associated mortality is ever to be controlled.
Collapse
Affiliation(s)
- Swapnil Jain
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 1732 34, Himachal Pradesh, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 1732 34, Himachal Pradesh, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 1732 34, Himachal Pradesh, India.
| |
Collapse
|
29
|
Abstract
This is a report of the complete genomic sequence of a rare rotavirus group A G3-P[9]-I2-R2-C2-M2-A3-N2-T1-E2-H3 strain designated RVA/Human-wt/USA/12US1134/2012/G3P[9].
Collapse
|
30
|
Theamboonlers A, Maiklang O, Thongmee T, Chieochansin T, Vuthitanachot V, Poovorawan Y. Complete genome analysis of a rare human G3P[9] rotavirus posing as an AU-1 like strain. SPRINGERPLUS 2013; 2:569. [PMID: 24255863 PMCID: PMC3824699 DOI: 10.1186/2193-1801-2-569] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/22/2013] [Indexed: 12/02/2022]
Abstract
Background We performed phylogenetic and sequence analysis by Basic Local Alignment Search Tool (BLAST) of a complete Human Rotavirus (HRV) genome isolated from a hospitalized child with acute gastroenteritis in Thailand. Findings The results indicated an uncommon strain characterized by multiple re-assortments in the VP3, VP4, VP6, NSP1, NSP4 and NSP5 genes. The uncommon strain is genotype G3-P[9]-I3-R3-C3-M3-A3-N3-T3-E3-H6, which displays aspects of the AU-1, FRV-1 and corresponds to the feline/canine prototype G3P[9] strain. Conclusions The results suggested that nearly all the eleven gene segments of G3P[9] RVA strain CU365 might have originated from feline/canine RVAs (Rotavirus A).
Collapse
Affiliation(s)
- Apiradee Theamboonlers
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University and Hospital, Bangkok, 10330 Thailand
| | | | | | | | | | | |
Collapse
|
31
|
da Silva Soares L, de Fátima Dos Santos Guerra S, do Socorro Lima de Oliveira A, da Silva Dos Santos F, de Fátima Costa de Menezes EM, Mascarenhas JDP, Linhares AC. Diversity of rotavirus strains circulating in Northern Brazil after introduction of a rotavirus vaccine: high prevalence of G3P[6] genotype. J Med Virol 2013; 86:1065-72. [PMID: 24136444 DOI: 10.1002/jmv.23797] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2013] [Indexed: 12/29/2022]
Abstract
Rotavirus A (RVA) is the most common cause of severe acute gastroenteritis in infants and young children worldwide, causing 453,000 deaths annually. In Brazil, the most frequent genotype identified was G1 during almost three decades in the pre-vaccination period; however, after anti-rotavirus vaccine introduction, there was a predominance of G2 genotype. The aim of this study was to determine the G and P genotypes of rotaviruses isolated from children under 5 years of age with acute gastroenteritis in the Northern region of Brazil, and discuss the emergence of G3P[6] genotype. A total of 783 stool specimens were obtained between January 2011 and March 2012. RVA antigen was detected in 33% (272/783) of samples using a commercial enzyme-linked immunosorbent assay and type-specificity was determined by reverse-transcription polymerase chain reaction. The most common binary combination was G2P[4], representing 41% of cases, followed by G3P[6] (15%), G1P[8] (8%), G3P[8] (4%), G9P[8] (3%), and G12P[6] (2%). G3P[6] strains were analyzed further and phylogenetic analysis of VP7 gene showed that G3 strains clustered into lineage I and showed a high degree of amino acid identity with vaccine strain RV3 (95.1-95.6%). For VP4 sequences, G3P[6] clustered into lineage Ia. It was demonstrated by the first time the emergence of unusual genotype G3P[6] in the Amazon region of Brazil. This genotype shares neither VP7 nor VP4 specificity with the used vaccine and may represent a challenge to vaccination strategies. A continuous monitoring of circulating strains is therefore needed during the post-vaccine era in Brazil.
Collapse
Affiliation(s)
- Luana da Silva Soares
- Virology Section, Evandro Chagas Institute, Health Surveillance Secretariat, Brazilian Ministry of Health, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Comparative evaluation of commercially available manual and automated nucleic acid extraction methods for rotavirus RNA detection in stools. J Virol Methods 2013; 194:242-9. [PMID: 24036075 PMCID: PMC4603280 DOI: 10.1016/j.jviromet.2013.08.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 11/22/2022]
Abstract
Rotaviruses are a major cause of viral gastroenteritis in children. For accurate and sensitive detection of rotavirus RNA from stool samples by reverse transcription-polymerase chain reaction (RT-PCR), the extraction process must be robust. However, some extraction methods may not remove the strong RT-PCR inhibitors known to be present in stool samples. The objective of this study was to evaluate and compare the performance of six extraction methods used commonly for extraction of rotavirus RNA from stool, which have never been formally evaluated: the MagNA Pure Compact, KingFisher Flex and NucliSENS easyMAG instruments, the NucliSENS miniMAG semi-automated system, and two manual purification kits, the QIAamp Viral RNA kit and a modified RNaid kit. Using each method, total nucleic acid or RNA was extracted from eight rotavirus-positive stool samples with enzyme immunoassay optical density (EIA OD) values ranging from 0.176 to 3.098. Extracts prepared using the MagNA Pure Compact instrument yielded the most consistent results by qRT-PCR and conventional RT-PCR. When extracts prepared from a dilution series were extracted by the 6 methods and tested, rotavirus RNA was detected in all samples by qRT-PCR but by conventional RT-PCR testing, only the MagNA Pure Compact and KingFisher Flex extracts were positive in all cases. RT-PCR inhibitors were detected in extracts produced with the QIAamp Viral RNA Mini kit. The findings of this study should prove useful for selection of extraction methods to be incorporated into future rotavirus detection and genotyping protocols.
Collapse
|
33
|
Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: a distant relative of feline/canine rotaviruses. J Virol 2013; 87:12357-66. [PMID: 24027312 DOI: 10.1128/jvi.02013-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bats are considered important animal reservoirs for many viruses pathogenic to humans. An approach based on viral metagenomics was used to study gut specimens from 78 insectivorous bats in Yunnan Province, China. Seventy-four reads were found to be related to group A rotavirus (RVA). Further reverse transcription-PCR screening and viral isolation on cell cultures confirmed the presence of a novel RVA strain, named RVA/Bat-tc/MSLH14/2012/G3P[3], in 1 (6%) of 16 lesser horseshoe bats. Full genomic sequencing analyses showed that MSLH14 possessed the genotype constellation G3-P[3]-I8-R3-C3-M3-A9-N3-T3-E3-H6, which is akin to human and animal rotaviruses believed to be of feline/canine origin. Phylogenetic analysis indicated that VP7 was most closely related to bovine RVA strains from India, whereas VP4 was most closely related to an unusual human RVA strain, CMH222, with animal characteristics isolated in Thailand. The remaining gene segments were only distantly related to a range of animal RVA strains, most of which are believed to be related to feline/canine RVAs. Experimental infection showed that bat RVA strain MSLH14 was highly pathogenic to suckling mice, causing 100% mortality when they were inoculated orally with a titer as low as 5 × 10² 50% tissue culture infective doses. As this virus is not closely related to any known RVA strain, it is tempting to speculate that it is a true bat RVA strain rather than a virus transmitted between species. However, further screening of bat populations, preferably juvenile animals, will be crucial in determining whether or not this virus is widely distributed in the bat population.
Collapse
|
34
|
Papp H, Borzák R, Farkas S, Kisfali P, Lengyel G, Molnár P, Melegh B, Matthijnssens J, Jakab F, Martella V, Bányai K. Zoonotic transmission of reassortant porcine G4P[6] rotaviruses in Hungarian pediatric patients identified sporadically over a 15 year period. INFECTION GENETICS AND EVOLUTION 2013; 19:71-80. [PMID: 23792183 DOI: 10.1016/j.meegid.2013.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 12/24/2022]
Abstract
Genotype G4P[6] Rotavirus A (RVA) strains collected from children admitted to hospital with gastroenteritis over a 15 year period in the pre rotavirus vaccine era in Hungary were characterized in this study. Whole genome sequencing and phylogenetic analysis was performed on eight G4P[6] RVA strains. All these RVA strains shared a fairly conservative genomic configuration (G4-P[6]-I1/I5-R1-C1-M1-A1/A8-N1-T1/T7-E1-H1) and showed striking similarities to porcine and porcine-derived human RVA strains collected worldwide, although genetic relatedness to some common human RVA strains was also seen. The resolution of phylogenetic relationship between porcine and human RVA genes was occasionally low, making the evaluation of host species origin of individual genes sometimes difficult. Yet the whole genome constellations and overall phylogenetic analyses indicated that these eight Hungarian G4P[6] RVA strains may have originated by independent zoonotic transmission, probably from pigs. Future surveillance studies of human and animal RVA should go parallel to enable the distinction between direct interspecies transmission events and those that are coupled with reassortment of cognate genes.
Collapse
Affiliation(s)
- Hajnalka Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang YH, Pang BB, Zhou X, Ghosh S, Tang WF, Peng JS, Hu Q, Zhou DJ, Kobayashi N. Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation. INFECTION GENETICS AND EVOLUTION 2013; 16:103-12. [PMID: 23403096 DOI: 10.1016/j.meegid.2013.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
The group A rotavirus (RVA) G3P[9] is a rare VP7-VP4 genotype combination, detected occasionally in humans and cats. Other than the prototype G3P[9] strain, RVA/Human- tc/JPN/AU-l/1982/G3P3[9], the whole genomes of only two human G3P[9] RVA strains and two feline G3P[9] RVA strains have been analyzed so far, revealing complex evolutionary patterns, distinct from that of AU-1. We report here the whole genomic analyses of two human G3P[9] RVA strains, RVA/Human-tc/CHN/L621/2006/G3P[9] and RVA/Human-wt/CHN/E2451/2011/G3P[9], detected in patients with diarrhea in China. Strains L621 and E2451 possessed a H6 NSP5 genotype on an AU-1-like genotype constellation, not reported previously. However, not all the genes of L621 and E2451 were closely related to those of AU-1, or to each other, revealing different evolutionary patterns among the AU-1-like RVAs. The VP7, VP4, VP6 and NSP4 genes of E2451 and L621 were found to cluster together with human G3P[9] RVA strains believed to be of possible feline/canine origin, and feline or raccoon dog RVA strains. The VP1, VP3, NSP2 and NSP5 genes of E2451 and L621 formed distinct clusters in genotypes typically found in feline/canine RVA strains or RVA strains from other host species which are believed to be of feline/canine RVA origin. The VP2 genes of E2451 and L621, and NSP3 gene of L621 clustered among RVA strains from different host species which are believed to have a complete or partial feline/canine RVA origin. The NSP1 genes of E2451 and L621, and NSP3 gene of E2451 clustered with AU-1 and several other strains possessing a complete or partial feline RVA strain BA222-05-like genotype constellation. Taken together, these observations suggest that nearly all the eleven gene segments of G3P[9] RVA strains L621 and E2451 might have originated from feline/canine RVAs, and that reassortments may have occurred among these feline/canine RVA strains, before being transmitted to humans.
Collapse
Affiliation(s)
- Yuan-Hong Wang
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Miño S, Matthijnssens J, Badaracco A, Garaicoechea L, Zeller M, Heylen E, Van Ranst M, Barrandeguy M, Parreño V. Equine G3P[3] rotavirus strain E3198 related to simian RRV and feline/canine-like rotaviruses based on complete genome analyses. Vet Microbiol 2012; 161:239-46. [PMID: 22959604 DOI: 10.1016/j.vetmic.2012.07.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/10/2012] [Accepted: 07/19/2012] [Indexed: 11/15/2022]
Abstract
Equine group A rotavirus (RVA) strains are the most important cause of gastroenteritis in equine neonates and foals worldwide, and G3P[12] and G14P[12] are epidemiologically the most important genotypes. The genotype constellation of an unusual Argentinean G3P[3] RVA strain (RVA/Horse-wt/E3198/2008/G3P[3]) detected in fecal samples of a diarrheic foal in 2008 was shown to be G3-P[3]-I3-R3-C3-M3-A9-N3-T3-E3-H6. Each of these genotypes has been found typically in feline and canine RVA strains, and the genotype constellation is reminiscent to those of Cat97-like RVA strains. However, the phylogenetic analyses revealed only a distant relationship between E3198 and known feline, canine and feline/canine-like human RVA strains. Surprisingly, a rather close relationship was found between E3198 and simian RVA strains RVA/Simian-tc/USA/RRV/1975/G3P[3] for at least 5 gene segments. RRV is believed to be a reassortant between a bovine-like RVA strain and a RVA strains distantly related to feline/canine RVA strains. These analyses indicate that E3198 is unlikely to be of equine origin, and most likely represents a RVA interspecies transmitted virus, possibly in combination with one or more reassortments, from a feline, canine or related host species to a horse. Further studies are in progress to evaluate if this strain was a single interspecies transmission event, or if this strain started to circulate in the equine population.
Collapse
Affiliation(s)
- S Miño
- Instituto de Virología, CICVyA, INTA Castelar, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Luchs A, Cilli A, Morillo SG, Carmona RDCC, Timenetsky MDCST. Rare G3P[3] rotavirus strain detected in Brazil: Possible human–canine interspecies transmission. J Clin Virol 2012; 54:89-92. [DOI: 10.1016/j.jcv.2012.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 01/07/2012] [Accepted: 01/30/2012] [Indexed: 11/24/2022]
|
38
|
Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 2011; 6:1049-65. [DOI: 10.2217/fmb.11.90] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on genetic diversity of rotaviruses have been primarily based on the genes encoding the antigenically significant VP7 and VP4 proteins. Since the rotavirus genome has 11 segments of RNA that are vulnerable to reassortment events, analyses of the VP7 and VP4 genes may not be sufficient to obtain conclusive data on the overall genetic diversity, or true origin of strains. In the last few years following the advent of the whole-genome-based genotype classification system, the whole genomes of at least 167 human group A rotavirus strains have been analyzed, providing a plethora of new and important information on the complex origin of strains, inter- and intra-genogroup reassortment events, animal–human reassortment events, zoonosis, and genetic linkages involving different group A rotavirus gene segments. In addition, the whole genomes of a limited number of human group B, C and novel group rotavirus strains have been analyzed. This article briefly reviews the available data on whole-genomic analysis of human rotavirus strains. The significance and future prospects of whole-genome-based studies are also discussed.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556, Japan
| | | |
Collapse
|