1
|
Nguyen BN, Okuno Y, Ajiro M, Iida K, Denawa M, Yamamoto M, Sakamoto N, Kagechika H, Hagiwara M. Retinoid derivative Tp80 exhibits anti‐hepatitis C virus activity through restoration of GI‐GPx expression. J Med Virol 2017; 89:1224-1234. [DOI: 10.1002/jmv.24739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/14/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Bao Ngoc Nguyen
- Department of Anatomy and Developmental BiologyGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
- Biomedical Science PhD ProgramTokyo Medical and Dental UniversityBunkyo‐ku, TokyoJapan
- Laboratory of Organic and Medicinal ChemistryTokyo Medical and Dental UniversityChiyoda‐ku, TokyoJapan
| | - Yukiko Okuno
- Medical Research Support CenterGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
| | - Masahiko Ajiro
- Department of Anatomy and Developmental BiologyGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
- Department of Drug Discovery MedicineGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
| | - Kei Iida
- Medical Research Support CenterGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
| | - Masatsugu Denawa
- Medical Research Support CenterGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
| | - Makoto Yamamoto
- Department of Anatomy and Developmental BiologyGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
| | - Naoya Sakamoto
- Hokkaido University Graduate School of MedicineThe Third Department of Internal Medicine Sapporo, HokkaidoJapan
| | - Hiroyuki Kagechika
- Laboratory of Organic and Medicinal ChemistryTokyo Medical and Dental UniversityChiyoda‐ku, TokyoJapan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental BiologyGraduate School of MedicineKyoto UniversitySakyo‐ku, KyotoJapan
| |
Collapse
|
2
|
Watanabe T, Hatakeyama H, Matsuda-Yasui C, Sato Y, Sudoh M, Takagi A, Hirata Y, Ohtsuki T, Arai M, Inoue K, Harashima H, Kohara M. In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus. Sci Rep 2014; 4:4750. [PMID: 24756133 PMCID: PMC3996463 DOI: 10.1038/srep04750] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/04/2014] [Indexed: 01/07/2023] Open
Abstract
The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5′ untranslated region are capable of inducing strong RNAi activity. By dissecting the 5′-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.
Collapse
Affiliation(s)
- Tsunamasa Watanabe
- 1] Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan [2] Division of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan [3] Present address, Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho, Nagoya 467-8601, Japan [4]
| | - Hiroto Hatakeyama
- 1] Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan [2]
| | - Chiho Matsuda-Yasui
- 1] Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan [2]
| | - Yusuke Sato
- 1] Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan [2]
| | - Masayuki Sudoh
- Kamakura Research Laboratories, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa 247-8530, Japan
| | - Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuichi Hirata
- 1] Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan [2] Division of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Takahiro Ohtsuki
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Masaaki Arai
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-0033, Japan
| | - Kazuaki Inoue
- Division of Gastroenterology, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0812, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
3
|
Arai M, Tsukiyama-Kohara K, Takagi A, Tobita Y, Inoue K, Kohara M. Resistance to cyclosporin A derives from mutations in hepatitis C virus nonstructural proteins. Biochem Biophys Res Commun 2014; 448:56-62. [PMID: 24751518 DOI: 10.1016/j.bbrc.2014.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/10/2014] [Indexed: 01/27/2023]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug that targets cyclophilins, cellular cofactors that regulate the immune system. Replication of hepatitis C virus (HCV) is suppressed by CsA, but the molecular basis of this suppression is still not fully understood. To investigate this suppression, we cultured HCV replicon cells (Con1, HCV genotype 1b, FLR-N cell) in the presence of CsA and obtained nine CsA-resistant FLR-N cell lines. We determined full-length HCV sequences for all nine clones, and chose two (clones #6 and #7) of the nine clones that have high replication activity in the presence of CsA for further analysis. Both clones showed two consensus mutations, one in NS3 (T1280V) and the other in NS5A (D2292E). Characterization of various mutants indicated that the D2292E mutation conferred resistance to high concentrations of CsA (up to 2 μM). In addition, the missense mutation T1280V contributed to the recovery of colony formation activity. The effects of these mutations are also evident in two established HCV replicon cell lines-HCV-RMT ([1], genotype 1a) and JFH1 (genotype 2a). Moreover, three other missense mutations in NS5A-D2303H, S2362G, and E2414K-enhanced the resistance to CsA conferred by D2292E; these double or all quadruple mutants could resist approximately 8- to 25-fold higher concentrations of CsA than could wild-type Con1. These four mutations, either as single or combinations, also made Con1 strain resistant to two other cyclophilin inhibitors, N-methyl-4-isoleucine-cyclosporin (NIM811) or Debio-025. Interestingly, the changes in IC50 values that resulted from each of these mutations were the lowest in the Debio-025-treated cells, indicating its highest resistant activity against the adaptive mutation.
Collapse
Affiliation(s)
- Masaaki Arai
- Advanced Medical Research Laboratory, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan; Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshimi Tobita
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuaki Inoue
- Division of Gastroenterology, Showa University Fujigaoka Hospital, 1-30, Aoba-ku, Fujigaoka, Yokohama 227-8501, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
4
|
Nakajima S, Watashi K, Kamisuki S, Tsukuda S, Takemoto K, Matsuda M, Suzuki R, Aizaki H, Sugawara F, Wakita T. Specific inhibition of hepatitis C virus entry into host hepatocytes by fungi-derived sulochrin and its derivatives. Biochem Biophys Res Commun 2013; 440:515-20. [PMID: 24099774 DOI: 10.1016/j.bbrc.2013.09.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 09/18/2013] [Indexed: 12/26/2022]
Abstract
Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. Although various classes of anti-HCV agents have been under clinical development, most of these agents target RNA replication in the HCV life cycle. To achieve a more effective multidrug treatment, the development of new, less expensive anti-HCV agents that target a different step in the HCV life cycle is needed. We prepared an in-house natural product library consisting of compounds derived from fungal strains isolated from seaweeds, mosses, and other plants. A cell-based functional screening of the library identified sulochrin as a compound that decreased HCV infectivity in a multi-round HCV infection assay. Sulochrin inhibited HCV infection in a dose-dependent manner without any apparent cytotoxicity up to 50 μM. HCV pseudoparticle and trans-complemented particle assays suggested that this compound inhibited the entry step in the HCV life cycle. Sulochrin showed anti-HCV activities to multiple HCV genotypes 1a, 1b, and 2a. Co-treatment of sulochrin with interferon or a protease inhibitor telaprevir synergistically augmented their anti-HCV effects. Derivative analysis revealed anti-HCV compounds with higher potencies (IC50<5 μM). This is the first report showing an antiviral activity of methoxybenzoate derivatives. Thus, sulochrin derivatives are anti-HCV lead compounds with a new mode of action.
Collapse
Affiliation(s)
- Syo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Tokyo University of Science Graduate School of Science and Technology, Noda 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|