1
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
2
|
Nali LHS, Oliveira ACS, Alves DO, Caleiro GS, Nunes CF, Gerhardt D, Succi RCM, Romano CM, Machado DM. Expression of human endogenous retrovirus K and W in babies. Arch Virol 2016; 162:857-861. [PMID: 27885560 DOI: 10.1007/s00705-016-3167-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/03/2016] [Indexed: 01/09/2023]
Abstract
Here we determined the relative expression of HERV-K and W proviruses in HIV infected and non-infected mothers as well as their respective babies up to 1 year-old. HIV-infected mothers, their babies and uninfected control groups presented expression of both HERV-K and HERV-W with relatively high frequency. While the level of HERV-K expression was similar among groups, the level of HERV-W expression in HIV-infected mothers was four-fold higher than the uninfected mothers from the control group (p < 0.01). HERV-W was down regulated in HIV-exposed babies in comparison to non-exposed babies. To our knowledge, this is the first report of HERV transcriptional activity in babies from 0-1 year-old.
Collapse
Affiliation(s)
- L H S Nali
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - A C S Oliveira
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - D O Alves
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - G S Caleiro
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - C F Nunes
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil
| | - D Gerhardt
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil.,Departamento de Pediatria, Universidade Federal de São Paulo, Rua Sena Madureira 1500, São Paulo, 04021-001, Brazil
| | - R C M Succi
- Departamento de Pediatria, Universidade Federal de São Paulo, Rua Sena Madureira 1500, São Paulo, 04021-001, Brazil
| | - Camila M Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil.
| | - D M Machado
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, LIM-52 (LIMHC) Universidade de São Paulo, Rua Dr. Enéas de Carvalho Aguiar, 470, São Paulo, 05403-000, Brazil.,Departamento de Pediatria, Universidade Federal de São Paulo, Rua Sena Madureira 1500, São Paulo, 04021-001, Brazil
| |
Collapse
|
3
|
de Pablo A, Bogoi R, Bejarano I, Toro C, Valencia E, Moreno V, Martín-Carbonero L, Gómez-Hernando C, Rodés B. Short Communication: p21/CDKN1A Expression Shows Broad Interindividual Diversity in a Subset of HIV-1 Elite Controllers. AIDS Res Hum Retroviruses 2016; 32:232-6. [PMID: 26537458 DOI: 10.1089/aid.2015.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The p21/CDKN1A protein has been described in vitro as well as in a small subset of patients as a restriction factor for HIV infection. We evaluated p21/CDKN1A mRNA expression on CD4(+) T cells from HIV-infected individuals with two outcomes (18 elite controllers and 28 viremic progressors). Our results show broad interindividual variation in this factor, which is unrelated to the patient's phenotype. Considering the gene's genetic surroundings in chromosome 6, such as HLA genotype and single nucleotide polymorphisms (SNPs), there was a positive association with carrying HLA-B2705 alleles and the rs733590 SNP. Thus, this natural variation of p21/CDKN1A alone does not appear to be a prognostic indicator of effective viral control in vivo and other factors must be considered.
Collapse
Affiliation(s)
- Alicia de Pablo
- Foundation for Biomedical Research, University Hospital La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Roberta Bogoi
- Foundation for Biomedical Research, University Hospital La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Irene Bejarano
- Foundation for Biomedical Research, Hospital Carlos III, Madrid, Spain
| | - Carlos Toro
- Microbiology Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | - Eulalia Valencia
- Infectious Diseases Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | - Victoria Moreno
- Infectious Diseases Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | - Luz Martín-Carbonero
- Infectious Diseases Department, University Hospital La Paz - Carlos III, Madrid, Spain
| | | | - Berta Rodés
- Foundation for Biomedical Research, University Hospital La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| |
Collapse
|
4
|
Chaudhary P, Khan SZ, Rawat P, Augustine T, Raynes DA, Guerriero V, Mitra D. HSP70 binding protein 1 (HspBP1) suppresses HIV-1 replication by inhibiting NF-κB mediated activation of viral gene expression. Nucleic Acids Res 2015; 44:1613-29. [PMID: 26538602 PMCID: PMC4770212 DOI: 10.1093/nar/gkv1151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
HIV-1 efficiently hijacks host cellular machinery and exploits a plethora of host–viral interactions for its successful survival. Identifying host factors that affect susceptibility or resistance to HIV-1 may offer a promising therapeutic strategy against HIV-1. Previously, we have reported that heat shock proteins, HSP40 and HSP70 reciprocally regulate HIV-1 gene-expression and replication. In the present study, we have identified HSP70 binding protein 1 (HspBP1) as a host-intrinsic inhibitor of HIV-1. HspBP1 level was found to be significantly down modulated during HIV-1 infection and virus production inversely co-related with HspBP1 expression. Our results further demonstrate that HspBP1 inhibits HIV-1 long terminal repeat (LTR) promoter activity. Gel shift and chromatin immunoprecipitation assays revealed that HspBP1 was recruited on HIV-1 LTR at NF-κB enhancer region (κB sites). The binding of HspBP1 to κB sites obliterates the binding of NF-κB hetero-dimer (p50/p65) to the same region, leading to repression in NF-κB mediated activation of LTR-driven gene-expression. HspBP1 also plays an inhibitory role in the reactivation of latently infected cells, corroborating its repressive effect on NF-κB pathway. Thus, our results clearly show that HspBP1 acts as an endogenous negative regulator of HIV-1 gene-expression and replication by suppressing NF-κB-mediated activation of viral transcription.
Collapse
Affiliation(s)
| | | | - Pratima Rawat
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tracy Augustine
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Deborah A Raynes
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Vince Guerriero
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Debashis Mitra
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
5
|
Stable Phenotypic Changes of the Host T Cells Are Essential to the Long-Term Stability of Latent HIV-1 Infection. J Virol 2015; 89:6656-72. [PMID: 25878110 DOI: 10.1128/jvi.00571-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/10/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED The extreme stability of the latent HIV-1 reservoir in the CD4(+) memory T cell population prevents viral eradication with current antiretroviral therapy. It has been demonstrated that homeostatic T cell proliferation and clonal expansion of latently infected T cells due to viral integration into specific genes contribute to this extraordinary reservoir stability. Nevertheless, given the constant exposure of the memory T cell population to specific antigen or bystander activation, this reservoir stability seems remarkable, unless it is assumed that latent HIV-1 resides exclusively in memory T cells that recognize rare antigens. Another explanation for the stability of the reservoir could be that the latent HIV-1 reservoir is associated with an unresponsive T cell phenotype. We demonstrate here that host cells of latent HIV-1 infection events were functionally altered in ways that are consistent with the idea of an anergic, unresponsive T cell phenotype. Manipulations that induced or mimicked an anergic T cell state promoted latent HIV-1 infection. Kinome analysis data reflected this altered host cell phenotype at a system-wide level and revealed how the stable kinase activity changes networked to stabilize latent HIV-1 infection. Protein-protein interaction networks generated from kinome data could further be used to guide targeted genetic or pharmacological manipulations that alter the stability of latent HIV-1 infection. In summary, our data demonstrate that stable changes to the signal transduction and transcription factor network of latently HIV-1 infected host cells are essential to the ability of HIV-1 to establish and maintain latent HIV-1 infection status. IMPORTANCE The extreme stability of the latent HIV-1 reservoir allows the infection to persist for the lifetime of a patient, despite completely suppressive antiretroviral therapy. This extreme reservoir stability is somewhat surprising, since the latently HIV-1 infected CD4(+) memory T cells that form the structural basis of the viral reservoir should be exposed to cognate antigen over time. Antigen exposure would trigger a recall response and should deplete the reservoir, likely over a relatively short period. Our data demonstrate that stable and system-wide phenotypic changes to host cells are a prerequisite for the establishment and maintenance of latent HIV-1 infection events. The changes observed are consistent with an unresponsive, anergy-like T cell phenotype of latently HIV-1 infected host cells. An anergy-like, unresponsive state of the host cells of latent HIV-1 infection events would explain the stability of the HIV-1 reservoir in the face of continuous antigen exposure.
Collapse
|