1
|
Chellapuri A, Smitheman M, Chappell JG, Clark G, Howson-Wells HC, Berry L, Ball JK, Irving WL, Tarr AW, McClure CP. Human parainfluenza 2 & 4: Clinical and genetic epidemiology in the UK, 2013-2017, reveals distinct disease features and co-circulating genomic subtypes. Influenza Other Respir Viruses 2022; 16:1122-1132. [PMID: 35672928 PMCID: PMC9530586 DOI: 10.1111/irv.13012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Human Parainfluenza viruses (HPIV) comprise of four members of the genetically distinct genera of Respirovirus (HPIV1&3) and Orthorubulavirus (HPIV2&4), causing significant upper and lower respiratory tract infections worldwide, particularly in children. However, despite frequent molecular diagnosis, they are frequently considered collectively or with HPIV4 overlooked entirely. We therefore investigated clinical and viral epidemiological distinctions of the relatively less prevalent Orthorubulaviruses HPIV2&4 at a regional UK hospital across four autumn/winter epidemic seasons. METHODS A retrospective audit of clinical features of all HPIV2 or HPIV4 RT-PCR-positive patients, diagnosed between 1st September 2013 and 12th April 2017 was undertaken, alongside sequencing of viral genome fragments in a representative subset of samples. RESULTS Infection was observed across all age groups, but predominantly in children under nine and adults over 40, with almost twice as many HPIV4 as HPIV2 cases. Fever, abnormal haematology, elevated C-reactive protein and hospital admission were more frequently seen in HPIV2 than HPIV4 infection. Each of the four seasonal peaks of either HPIV2, HPIV4 or both, closely matched that of RSV, occurring in November and December and preceding that of Influenza A. A subset of viruses were partially sequenced, indicating co-circulation of multiple subtypes of both HPIV2&4, but with little variation between each epidemic season or from limited global reference sequences. CONCLUSIONS Despite being closest known genetic relatives, our data indicates a potential difference in associated disease between HPIV2 and HPIV4, with more hospitalisation seen in HPIV2 mono-infected individuals, but a greater overall number of HPIV4 cases.
Collapse
Affiliation(s)
- Akhil Chellapuri
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Joseph G Chappell
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| | - Gemma Clark
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Louise Berry
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| | - William L Irving
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK.,Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Zhou S, Mao N, Zhang Y, Cui A, Zhu Z, Hu R, Xu J, Xu W. Genetic analysis of human parainfluenza virus type 4 associated with severe acute respiratory infection in children in Luohe City, Henan Province, China, during 2017-2018. Arch Virol 2021; 166:2585-2590. [PMID: 34231027 PMCID: PMC8321989 DOI: 10.1007/s00705-021-05154-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022]
Abstract
During 2017–2018, nasopharyngeal aspirates (NPAs) from 627 hospitalized patients with severe acute respiratory infection at Luohe Center Hospital were tested by RT-PCR for human parainfluenza virus 4 (HPIV-4). Fourteen (2.2%) of the 627 samples were positive for HPIV-4. The complete HN gene was amplified from nine positive samples and sequenced. Sequence comparisons showed that the HPIV-4 strains circulating in the city of Luohe are closely related to HPIV-4A strains. Our study indicated that there were multiple lineages of HPIV-4 circulating in Henan Province in China during the study period. This will improve our understanding of the epidemiological and clinical characteristics of HPIV-4.
Collapse
Affiliation(s)
- Shanshan Zhou
- Inner Mongolia Laboratory of Molecular Biology, Inner Mongolia Medical University, Jinshan Avenue, Jinshan Development Zone, Hohhot, 010059, Inner Mongolia Autonomous Region, China
| | - Naiying Mao
- WHO WPRO Regional Reference Measles/Rubella Laboratory, NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Centers for Disease Control and Prevention), 155# Changbai Road, Changping District, Beijing, 102200, China
| | - Yan Zhang
- WHO WPRO Regional Reference Measles/Rubella Laboratory, NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Centers for Disease Control and Prevention), 155# Changbai Road, Changping District, Beijing, 102200, China
| | - Aili Cui
- WHO WPRO Regional Reference Measles/Rubella Laboratory, NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Centers for Disease Control and Prevention), 155# Changbai Road, Changping District, Beijing, 102200, China
| | - Zhen Zhu
- WHO WPRO Regional Reference Measles/Rubella Laboratory, NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Centers for Disease Control and Prevention), 155# Changbai Road, Changping District, Beijing, 102200, China
| | - Ruiping Hu
- Inner Mongolia Laboratory of Molecular Biology, Inner Mongolia Medical University, Jinshan Avenue, Jinshan Development Zone, Hohhot, 010059, Inner Mongolia Autonomous Region, China.
| | - Jin Xu
- Henan Province Center for Disease Control and Prevention, 105# Nongye South Road, Zhengzhou, 450000, Henan, China.
| | - Wenbo Xu
- WHO WPRO Regional Reference Measles/Rubella Laboratory, NHC Key Laboratory of Medical Virology and Viral Diseases (National Institute for Viral Disease Control and Prevention, Chinese Centers for Disease Control and Prevention), 155# Changbai Road, Changping District, Beijing, 102200, China.
| |
Collapse
|
3
|
Jornist I, Muhsen K, Ram D, Lustig Y, Levy V, Orzitser S, Azar R, Weil M, Indenbaum V, Sofer D, Mendelson E, Mandelboim M, Hindiyeh M. Characterization of human parainfluenza virus-3 circulating in Israel, 2012-2015. J Clin Virol 2018; 107:19-24. [PMID: 30114677 DOI: 10.1016/j.jcv.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Human parainfluenza virus 3 (hPIV-3) causes respiratory tract infection. OBJECTIVES The objective of this study was to describe the epidemiology of hPIV-3 infection among hospitalized patients and characterize the circulating strains. STUDY DESIGN A cross-sectional study was conducted using respiratory samples of 15,946 hospitalized patients with respiratory symptoms in 2012-2015 in Israel. All samples were subjected to q-PCR and q-RT-PCR to determine the presence of hPIV-3 and other respiratory viruses. Samples positive for hPIV-3 were subjected to molecular typing and phylogenetic analysis. RESULTS Overall, 547 samples 3.4% (95% CI 3.2-3.7) were positive for hPIV-3. Of these 87 (15.9%) were mixed infections; 41.4% with adenovirus, 40.2% with RSV (40.2%) and 19.5% influenza A viruses. The prevalence of hPIV-3 was highest (5.1%) in children aged 0-4 years. Hospitalization in oncology department was associated with increased likelihood of hPIV-3 infection: adjusted odds ratio [aOR] 2.29 (95% confidence intervals [CI] 1.78-2.96), as well as hospitalization in organ transplantation department: aOR 3.65 (95% CI 2.80-4.76). The predominant lineages were C3c (62.3%) and C1b (24.6%), followed by sub-lineages C5 (8.7%) and C3b (2.9%). A new sub-lineage emerged in our analysis, named C1d, which was 17 (1.5%) nucleotide different from C1a, 25 (2.2%) nucleotide different from C1b and 24 (2.1%) nucleotide different from C1c. DISCUSSION Young children and immunocompromised patients are likely the risk groups for severe respiratory infections with hPIV-3. Strains belonging to lineages C3c and C1b, which are present worldwide, should be targeted in vaccine development. The emergence of new lineage might have public health implications and on vaccine development.
Collapse
Affiliation(s)
- Irina Jornist
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Microbiology and Immunology, Tel-Aviv University, Tel-Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniela Ram
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Virginia Levy
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Sara Orzitser
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Roberto Azar
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Merav Weil
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Viki Indenbaum
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Musa Hindiyeh
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel; Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|