1
|
Sastre-Garau X, Estrada-Virrueta L, Radvanyi F. HPV DNA Integration at Actionable Cancer-Related Genes Loci in HPV-Associated Carcinomas. Cancers (Basel) 2024; 16:1584. [PMID: 38672666 PMCID: PMC11048798 DOI: 10.3390/cancers16081584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
In HPV-associated carcinomas, some examples of cancer-related genes altered by viral insertion and corresponding to potential therapeutic targets have been described, but no quantitative assessment of these events, including poorly recurrent targets, has been reported to date. To document these occurrences, we built and analyzed a database comprised of 1455 cases, including HPV genotypes and tumor localizations. Host DNA sequences targeted by viral integration were classified as "non-recurrent" (one single reported case; 838 loci), "weakly recurrent" (two reported cases; 82 loci), and highly recurrent (≥3 cases; 43 loci). Whereas the overall rate of cancer-related target genes was 3.3% in the Gencode database, this rate increased to 6.5% in "non-recurrent", 11.4% in "weakly recurrent", and 40.1% in "highly recurrent" genes targeted by integration (p = 4.9 × 10-4). This rate was also significantly higher in tumors associated with high-risk HPV16/18/45 than other genotypes. Among the genes targeted by HPV insertion, 30.2% corresponded to direct or indirect druggable targets, a rate rising to 50% in "highly recurrent" targets. Using data from the literature and the DepMap 23Q4 release database, we found that genes targeted by viral insertion could be new candidates potentially involved in HPV-associated oncogenesis. A more systematic characterization of HPV/host fusion DNA sequences in HPV-associated cancers should provide a better knowledge of HPV-driven carcinogenesis and favor the development of personalize patient treatments.
Collapse
Affiliation(s)
- Xavier Sastre-Garau
- Department of Pathology, Centre Hospitalier Intercommunal de Créteil, 40, Avenue de Verdun, 94010 Créteil, France
| | - Lilia Estrada-Virrueta
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; (L.E.-V.); (F.R.)
| | - François Radvanyi
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; (L.E.-V.); (F.R.)
| |
Collapse
|
2
|
Alghamdi MA, AL-Eitan LN, Tarkhan AH. Integrative analysis of gene expression and DNA methylation to identify biomarkers of non-genital warts induced by low-risk human papillomaviruses infection. Heliyon 2023; 9:e16101. [PMID: 37215908 PMCID: PMC10196596 DOI: 10.1016/j.heliyon.2023.e16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Background Human papillomaviruses have been shown to dysregulate the gene expression and DNA methylation profiles of their host cells over the course of infection. However, there is a lack of information on the impact of low-risk HPV infection and wart formation on host cell's expression and methylation patterns. Therefore, the objective of this study is to analyse the genome and methylome of common warts using an integrative approach. Methods In the present study, gene expression (GSE136347) and methylation (GSE213888) datasets of common warts were obtained from the GEO database. Identification of the differentially expressed and differentially methylated genes was carried out using the RnBeads R package and the edgeR Bioconductor package. Next, functional annotation of the identified genes was obtained using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Network construction and analyses of the gene-gene, protein-protein, and signaling interactions of the differentially expressed and differentially methylated genes was performed using the GeneMANIA web interface, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the Signaling Network Open Resource 2.0 (SIGNOR 2.0), respectively. Lastly, significant hub genes were identified using the Cytoscape application CytoHubba. Results A total of 276 genes were identified as differentially expressed and differentially methylated in common warts, with 52% being upregulated and hypermethylated. Functional enrichment analysis identified extracellular components as the most enriched annotations, while network analyses identified ELN, ITGB1, TIMP1, MMP2, LGALS3, COL1A1 and ANPEP as significant hub genes. Conclusions To the best knowledge of the authors, this is the first integrative study to be carried out on non-genital warts induced by low-risk HPV types. Future studies are required to re-validate the findings in larger populations using alternative approaches.
Collapse
Affiliation(s)
- Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
3
|
The Major Constituent of Green Tea, Epigallocatechin-3-Gallate (EGCG), Inhibits the Growth of HPV18-Infected Keratinocytes by Stimulating Proteasomal Turnover of the E6 and E7 Oncoproteins. Pathogens 2021; 10:pathogens10040459. [PMID: 33920477 PMCID: PMC8069595 DOI: 10.3390/pathogens10040459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Epigallocatechin-3-gallate (EGCG), the primary bioactive polyphenol in green tea, has been shown to inhibit the growth of human papilloma virus (HPV)-transformed keratinocytes. Here, we set out to examine the consequences of EGCG treatment on the growth of HPV18-immortalised foreskin keratinocytes (HFK-HPV18) and an authentic HPV18-positive vulvar intraepithelial neoplasia (VIN) clone, focusing on its ability to influence cell proliferation and differentiation and to impact on viral oncogene expression and virus replication. EGCG treatment was associated with degradation of the E6 and E7 oncoproteins and an upregulation of their associated tumour suppressor genes; consequently, keratinocyte proliferation was inhibited in both monolayer and organotypic raft culture. While EGCG exerted a profound effect on cell proliferation, it had little impact on keratinocyte differentiation. Expression of the late viral protein E4 was suppressed in the presence of EGCG, suggesting that EGCG was able to block productive viral replication in differentiating keratinocytes. Although EGCG did not alter the levels of E6 and E7 mRNA, it enhanced the turnover of the E6 and E7 proteins. The addition of MG132, a proteasome inhibitor, to EGCG-treated keratinocytes led to the accumulation of the E6/E7 proteins, showing that EGCG acts as an anti-viral, targeting the E6 and E7 proteins for proteasome-mediated degradation.
Collapse
|
4
|
Marongiu L. Proportion of transcriptionally active DNA virus integrants: a meta-analysis. Future Virol 2017. [DOI: 10.2217/fvl-2017-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oncoviruses are collectively responsible for over 1,000,000 new cases of cancer per year; some can integrate into the host's chromosomes. The present work was aimed at assessing the proportion of transcriptionally active viral integrants through a systematic review of the scientific publications present on the MedLine database. From the articles screened, 628 viral integrants overall were retrieved, of which 530.84 were transcriptionally active (84.53%); among the clinical samples, 264 of 323 integrants were active (81.73%). The causes for the silencing were not addressed in the articles analyzed. These findings might highlight a possible risk factor for the insurgence of cancer since some oncovirus integrants could be reactivated by stimuli of disparate nature. Further studies should address such possibility.
Collapse
Affiliation(s)
- Luigi Marongiu
- Roslin Institute, the University of Edinburgh, Easter Bush campus, EH25 9RG Edinburgh, Scotland
| |
Collapse
|
5
|
Jones SEF, Hibbitts S, Hurt CN, Bryant D, Fiander AN, Powell N, Tristram AJ. Human Papillomavirus DNA Methylation Predicts Response to Treatment Using Cidofovir and Imiquimod in Vulval Intraepithelial Neoplasia 3. Clin Cancer Res 2017; 23:5460-5468. [PMID: 28600473 DOI: 10.1158/1078-0432.ccr-17-0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Response rates to treatment of vulval intraepithelial neoplasia (VIN) with imiquimod and cidofovir are approximately 57% and 61%, respectively. Treatment is associated with significant side effects and, if ineffective, risk of malignant progression. Treatment response is not predicted by clinical factors. Identification of a biomarker that could predict response is an attractive prospect. This work investigated HPV DNA methylation as a potential predictive biomarker in this setting.Experimental Design: DNA from 167 cases of VIN 3 from the RT3 VIN clinical trial was assessed. HPV-positive cases were identified using Greiner PapilloCheck and HPV 16 type-specific PCR. HPV DNA methylation status was assessed in three viral regions: E2, L1/L2, and the promoter, using pyrosequencing.Results: Methylation of the HPV E2 region was associated with response to treatment. For cidofovir (n = 30), median E2 methylation was significantly higher in patients who responded (P ≤ 0.0001); E2 methylation >4% predicted response with 88.2% sensitivity and 84.6% specificity. For imiquimod (n = 33), median E2 methylation was lower in patients who responded to treatment (P = 0.03; not significant after Bonferroni correction); E2 methylation <4% predicted response with 70.6% sensitivity and 62.5% specificity.Conclusions: These data indicate that cidofovir and imiquimod may be effective in two biologically defined groups. HPV E2 DNA methylation demonstrated potential as a predictive biomarker for the treatment of VIN with cidofovir and may warrant investigation in a biomarker-guided clinical trial. Clin Cancer Res; 23(18); 5460-8. ©2017 AACR.
Collapse
Affiliation(s)
- Sadie E F Jones
- School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | - Christopher N Hurt
- Wales Cancer Trials Unit (WCTU), School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dean Bryant
- University of Southampton, Southampton, United Kingdom
| | | | - Ned Powell
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
6
|
Jackson R, Rosa BA, Lameiras S, Cuninghame S, Bernard J, Floriano WB, Lambert PF, Nicolas A, Zehbe I. Functional variants of human papillomavirus type 16 demonstrate host genome integration and transcriptional alterations corresponding to their unique cancer epidemiology. BMC Genomics 2016; 17:851. [PMID: 27806689 PMCID: PMC5094076 DOI: 10.1186/s12864-016-3203-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human papillomaviruses (HPVs) are a worldwide burden as they are a widespread group of tumour viruses in humans. Having a tropism for mucosal tissues, high-risk HPVs are detected in nearly all cervical cancers. HPV16 is the most common high-risk type but not all women infected with high-risk HPV develop a malignant tumour. Likely relevant, HPV genomes are polymorphic and some HPV16 single nucleotide polymorphisms (SNPs) are under evolutionary constraint instigating variable oncogenicity and immunogenicity in the infected host. RESULTS To investigate the tumourigenicity of two common HPV16 variants, we used our recently developed, three-dimensional organotypic model reminiscent of the natural HPV infectious cycle and conducted various "omics" and bioinformatics approaches. Based on epidemiological studies we chose to examine the HPV16 Asian-American (AA) and HPV16 European Prototype (EP) variants. They differ by three non-synonymous SNPs in the transforming and virus-encoded E6 oncogene where AAE6 is classified as a high- and EPE6 as a low-risk variant. Remarkably, the high-risk AAE6 variant genome integrated into the host DNA, while the low-risk EPE6 variant genome remained episomal as evidenced by highly sensitive Capt-HPV sequencing. RNA-seq experiments showed that the truncated form of AAE6, integrated in chromosome 5q32, produced a local gene over-expression and a large variety of viral-human fusion transcripts, including long distance spliced transcripts. In addition, differential enrichment of host cell pathways was observed between both HPV16 E6 variant-containing epithelia. Finally, in the high-risk variant, we detected a molecular signature of host chromosomal instability, a common property of cancer cells. CONCLUSIONS We show how naturally occurring SNPs in the HPV16 E6 oncogene cause significant changes in the outcome of HPV infections and subsequent viral and host transcriptome alterations prone to drive carcinogenesis. Host genome instability is closely linked to viral integration into the host genome of HPV-infected cells, which is a key phenomenon for malignant cellular transformation and the reason for uncontrolled E6 oncogene expression. In particular, the finding of variant-specific integration potential represents a new paradigm in HPV variant biology.
Collapse
Affiliation(s)
- Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Biotechnology Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sonia Lameiras
- NGS platform, Institut Curie, PSL Research University, 26 rue d'Ulm, 75248, Paris, Cedex, France
| | - Sean Cuninghame
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | - Josee Bernard
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada.,Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Wely B Floriano
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, Canada
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alain Nicolas
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique UMR3244, Sorbonne Universités, Paris, France
| | - Ingeborg Zehbe
- Probe Development and Biomarker Exploration, Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada. .,Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada. .,Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
7
|
Bodelon C, Untereiner ME, Machiela MJ, Vinokurova S, Wentzensen N. Genomic characterization of viral integration sites in HPV-related cancers. Int J Cancer 2016; 139:2001-11. [PMID: 27343048 DOI: 10.1002/ijc.30243] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 01/14/2023]
Abstract
Persistent infection with carcinogenic human papillomaviruses (HPV) causes the majority of anogenital cancers and a subset of head and neck cancers. The HPV genome is frequently found integrated into the host genome of invasive cancers. The mechanisms of how it may promote disease progression are not well understood. Thoroughly characterizing integration events can provide insights into HPV carcinogenesis. Individual studies have reported limited number of integration sites in cell lines and human samples. We performed a systematic review of published integration sites in HPV-related cancers and conducted a pooled analysis to formally test for integration hotspots and genomic features enriched in integration events using data from the Encyclopedia of DNA Elements (ENCODE). Over 1,500 integration sites were reported in the literature, of which 90.8% (N = 1,407) were in human tissues. We found 10 cytobands enriched for integration events, three previously reported ones (3q28, 8q24.21 and 13q22.1) and seven additional ones (2q22.3, 3p14.2, 8q24.22, 14q24.1, 17p11.1, 17q23.1 and 17q23.2). Cervical infections with HPV18 were more likely to have breakpoints in 8q24.21 (p = 7.68 × 10(-4) ) than those with HPV16. Overall, integration sites were more likely to be in gene regions than expected by chance (p = 6.93 × 10(-9) ). They were also significantly closer to CpG regions, fragile sites, transcriptionally active regions and enhancers. Few integration events occurred within 50 Kb of known cervical cancer driver genes. This suggests that HPV integrates in accessible regions of the genome, preferentially genes and enhancers, which may affect the expression of target genes.
Collapse
Affiliation(s)
- Clara Bodelon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Michael E Untereiner
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Svetlana Vinokurova
- Laboratory of Molecular Biology of Viruses, NN Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| |
Collapse
|
8
|
Jebali A, Kalantar SM, Hekmatimoghaddam S, Saffarzadeh N, Sheikha MH, Ghasemi N. Surface modification of tri-calcium phosphate nanoparticles by DOPE and/or anti-E6 antibody to enhance uptake of antisense of E6 mRNA. Colloids Surf B Biointerfaces 2015; 126:297-302. [PMID: 25601794 DOI: 10.1016/j.colsurfb.2014.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
The main aim of this study was to evaluate the uptake of E6 mRNA antisense into cervical cancer cells, induced by human papilloma virus (HPV). In this study, the carrier of the antisense was tri-calcium phosphate nanoparticles (TCP NPs) conjugated with dioleoyl phosphatidyl ethanolamine (DOPE) and/or anti-E6 antibody. At first, TCP NPs were synthesized, coated with carboxy-polyethylene glycol, and then conjugated with anti-E6 antibody and/or DOPE by carbodiimide cross-linker. Then, a single stranded DNA, which was complementary (antisense) of E6 mRNA, was attached to each one. Finally, the uptake of conjugated and unconjugated TCP NPs into HelaS3 cells was separately evaluated by Fourier transform infrared spectroscopy, optical microscopy, and fluorescent microscopy. Also, the cytotoxicity of these carriers was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Overall, 4 types of TCP NPs were used in this study, including 1) TCP NPs conjugated with DOPE (TCP NPs/DOPE), 2) TCP NPs conjugated with DOPE and antibody (TCP NPs/DOPE/Anti-E6 Ab), 3) TCP NPs conjugated with antibody (TCP NPs/Anti-E6 Ab), and 4) TCP NPs which not conjugated with DOPE and antibody (unconjugated TCP NPs). Uptake tests showed that although all types of TCP NPs could transfer antisense of E6 mRNA into HelaS3 cells, TCP NPs/DOPE and TCP NPs/DOPE/Anti-E6 Ab had more uptake than TCP NPs/Anti-E6 Ab and unconjugated TCP NPs. Moreover, MTT assay showed that TCP NPs/DOPE was more toxic than TCP NPs/DOPE/Anti-E6 Ab, TCP NPs/Anti-E6 Ab, and unconjugated TCP NPs. It can be concluded that TCP NPs/DOPE/Anti-E6 Ab is a good choice for oligonucleotide delivery, because of higher uptake and less toxicity, compared with other formulations.
Collapse
Affiliation(s)
- Ali Jebali
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyed Mehdi Kalantar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Research and Clinical Centre for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Negin Saffarzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Nasrin Ghasemi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
Bryant D, Onions T, Raybould R, Jones S, Tristram A, Hibbitts S, Fiander A, Powell N. Increased methylation of Human Papillomavirus type 16 DNA correlates with viral integration in Vulval Intraepithelial Neoplasia. J Clin Virol 2014; 61:393-9. [PMID: 25218242 DOI: 10.1016/j.jcv.2014.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/25/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Methylation of HPV16 DNA is a promising biomarker for triage of HPV positive cervical screening samples but the biological basis for the association between HPV-associated neoplasia and increased methylation is unclear. OBJECTIVES To determine whether HPV16 DNA methylation was associated with viral integration, and investigate the relationships between viral DNA methylation, integration and gene expression. STUDY DESIGN HPV16 DNA methylation, integration and gene expression were assessed using pyrosequencing, ligation-mediated PCR and QPCR, in biopsies from 25 patients attending a specialist vulval neoplasia clinic and in short-term clonal cell lines derived from vulval and vaginal neoplasia. RESULTS Increased methylation of the HPV16 L1/L2 and E2 regions was associated with integration of viral DNA into the host genome. This relationship was observed both in vivo and in vitro. Increased methylation of E2 binding sites did not appear to be associated with greater expression of viral early genes. Expression of HPV E6 and E7 did not correlate with either integration state or increased L1/L2 methylation. CONCLUSIONS The data suggest that increased HPV DNA methylation may be partly attributable to viral integration, and provide a biological rationale for quantification of L1/L2 methylation in triage of HPV positive cervical screening samples.
Collapse
Affiliation(s)
- Dean Bryant
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Tiffany Onions
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Rachel Raybould
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Sadie Jones
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Amanda Tristram
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Samantha Hibbitts
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Alison Fiander
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Ned Powell
- HPV Research Group, Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|