1
|
Li T, Yang Z, Luo P, Yang Y, Lin Z, Mei B. Genetic variability of human papillomavirus type 18 based on E6, E7 and L1 genes in central China. Virol J 2024; 21:152. [PMID: 38970084 PMCID: PMC11227198 DOI: 10.1186/s12985-024-02424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND High-risk human papillomavirus (HR-HPV) infection is an important factor for the development of cervical cancer. HPV18 is the second most common HR-HPV after HPV16. METHODS In this study, MEGA11 software was used to analyze the variation and phylogenetic tree of HPV18 E6-E7 and L1 genes. The selective pressure to E6, E7 and L1 genes was estimated using pamlX. In addition, the B cell epitopes of L1 amino acid sequences and T cell epitopes of E6-E7 amino acid sequences in HPV18 were predicted by ABCpred server and IEDB website, respectively. RESULTS A total of 9 single nucleotide variants were found in E6-E7 sequences, of which 2 were nonsynonymous variants and 7 were synonymous variants. Twenty single nucleotide variants were identified in L1 sequence, including 11 nonsynonymous variants and 9 synonymous variants. Phylogenetic analysis showed that E6-E7 and L1 sequences were all distributed in A lineage. In HPV18 E6, E7 and L1 sequences, no positively selected site was found. The nonconservative substitution R545C in L1 affected hypothetical B cell epitope. Two nonconservative substitutions, S82A in E6, and R53Q in E7, impacted multiple hypothetical T cell epitopes. CONCLUSION The sequence variation data of HPV18 may lay a foundation for the virus diagnosis, further study of cervical cancer and vaccine design in central China.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Zhiping Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Ping Luo
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Yang Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Zicong Lin
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
2
|
Le VN, Le VNB, Hoang XS, Le VD. Distribution of human papillomavirus among Vietnamese women with cervical cancer and unusual genetic variability of HPV16. Virology 2024; 594:110058. [PMID: 38520797 DOI: 10.1016/j.virol.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
HPV16, with typical mutations that differ in geographical distribution and carcinogenic potency, has implications for cervical cancer screening, clinical diagnosis, and treatment. DNASTAR and MEGA were used to identify HPV16 variants and construct a phylogenetic tree. The most prevalent HPV genotypes were HPV16 (63.9%), HPV18 (26.7%), and other HPV (6.9%). HPV16 alterations were found in all E6, E7, and L1 genes, including 15 missense and 18 synonymous mutations. Missense mutations include R10G, Q14H, D25E, H78Y, L83V (E6); M29V, R35K, L78R, L95P (E7); H73Y, T176 N, N178T, T317P, T386S, L472F/I (L1). HPV16 sublineages include A1 (17.2%), A2 (0.9%), A3 (56.0%), A4 (19.0%), D1 (4.3%), and D3 (2.6%). Although several mutations in the oncoproteins E6, E7, and L1 have been detected, mutations known to be associated with cervical cancer risk, such as D25E and L83V, occur at a relatively low frequency. This suggests that HPV16 mutations are associated with cervical cancer through a complicated mechanism.
Collapse
Affiliation(s)
- Van Nam Le
- Departments of Infectious Disease, Military Hospital 103, 261 Phung Hung, Ha Dong, Hanoi, Viet Nam
| | - Van Nguyen Bang Le
- Luong the Vinh High School, 35 Dinh Nup, Trung Hoa, Cau Giay, Hanoi, Viet Nam
| | - Xuan Son Hoang
- Departments of Obstetrics and Gynecology, Cho Moi District General Hospital, Na Mo Village, Dong Tam Town, Cho Moi District, Bac Kan Province, Viet Nam
| | - Van Duyet Le
- Micobiology and Moclecular Biology Department, National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da, Hanoi, Viet Nam.
| |
Collapse
|
3
|
Yuan H, Yan Z, Gan J, Di X, Qiu Y, Xu H. Phylogenetic analysis and antigenic epitope prediction for E6 and E7 of Alpha-papillomavirus 9 in Taizhou, China. BMC Genomics 2024; 25:507. [PMID: 38778248 PMCID: PMC11110188 DOI: 10.1186/s12864-024-10411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Alpha-papillomavirus 9 (α-9) is a member of the human papillomavirus (HPV) α genus, causing 75% invasive cervical cancers worldwide. The purpose of this study was to provide data for effective treatment of HPV-induced cervical lesions in Taizhou by analysing the genetic variation and antigenic epitopes of α-9 HPV E6 and E7. METHODS Cervical exfoliated cells were collected for HPV genotyping. Positive samples of the α-9 HPV single type were selected for E6 and E7 gene sequencing. The obtained nucleotide sequences were translated into amino acid sequences (protein primary structure) using MEGA X, and positive selection sites of the amino acid sequences were evaluated using PAML. The secondary and tertiary structures of the E6 and E7 proteins were predicted using PSIPred, SWISS-MODEL, and PyMol. Potential T/B-cell epitopes were predicted by Industrial Engineering Database (IEDB). RESULTS From 2012 to 2023, α-9 HPV accounted for 75.0% (7815/10423) of high-risk HPV-positive samples in Taizhou, both alone and in combination with other types. Among these, single-type-positive samples of α-9 HPV were selected, and the entire E6 and E7 genes were sequenced, including 298 HPV16, 149 HPV31, 185 HPV33, 123 HPV35, 325 HPV52, and 199 HPV58 samples. Compared with reference sequences, 34, 12, 10, 2, 17, and 17 nonsynonymous nucleotide mutations were detected in HPV16, 31, 33, 35, 52, and 58, respectively. Among all nonsynonymous nucleotide mutations, 19 positive selection sites were selected, which may have evolutionary significance in rendering α-9 HPV adaptive to its environment. Immunoinformatics predicted 57 potential linear and 59 conformational B-cell epitopes, many of which are also predicted as CTL epitopes. CONCLUSION The present study provides almost comprehensive data on the genetic variations, phylogenetics, positive selection sites, and antigenic epitopes of α-9 HPV E6 and E7 in Taizhou, China, which will be helpful for local HPV therapeutic vaccine development.
Collapse
Affiliation(s)
- Haobo Yuan
- School of Medicine, Shaoxing University, Shaoxing, Zhejiang, 312000, P. R. China
| | - Ziyi Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
| | - Jun Gan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, 317000, P. R. China
| | - Xinghong Di
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
| | - Yi Qiu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China
| | - Huihui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, 317000, P. R. China.
- Scientific Research Department, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, 317000, P. R. China.
| |
Collapse
|
4
|
Li T, Yang Z, Zhang C, Wang S, Mei B. Genetic variation of E6 and E7 genes of human papillomavirus type 16 from central China. Virol J 2023; 20:217. [PMID: 37759219 PMCID: PMC10537582 DOI: 10.1186/s12985-023-02188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Persistent high-risk human papillomavirus (HR-HPV) infection is an important factor in the development of cervical cancer, and human papillomavirus type 16 (HPV-16) is the most common HR-HPV type worldwide. The oncogenic potential of HPV-16 is closely related to viral sequence variation. METHODS In order to clarify the variant characteristics of HPV-16 E6 and E7 genes in central China, E6 and E7 sequences of 205 HPV-16 positive samples were amplified by polymerase chain reaction. PCR products of E6 and E7 genes were further sequenced and subjected to variation analysis, phylogenetic analysis, selective pressure analysis and B-cell epitope prediction. RESULTS Twenty-six single nucleotide variants were observed in E6 sequence, including 21 non-synonymous and 5 synonymous variants. Twelve single nucleotide variants were identified in E7 sequence, including 6 non-synonymous and 6 synonymous variants. Four new variants were found. Furthermore, nucleotide variation A647G (N29S) in E7 was significantly related to the higher risk of HSIL and cervical cancer. Phylogenetic analysis showed that the E6 and E7 sequences were all distributed in A lineage. No positively selected site was found in HPV-16 E6 and E7 sequences. Non-conservative substitutions in E6, H31Y, D32N, D32E, I34M, L35V, E36Q, L45P, N65S and K75T, affected multiple B-cell epitopes. However, the variation of E7 gene had little impact on the corresponding B-cell epitopes (score < 0.85). CONCLUSION HPV-16 E6 and E7 sequences variation data may contribute to HR-HPV prevention and vaccine development in Jingzhou, central China.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Zhiping Yang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Chunlin Zhang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Sutong Wang
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China
| | - Bing Mei
- Department of Laboratory Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
5
|
EDA-E7 Activated DCs Induces Cytotoxic T Lymphocyte Immune Responses against HPV Expressing Cervical Cancer in Human Setting. Vaccines (Basel) 2023; 11:vaccines11020320. [PMID: 36851198 PMCID: PMC9965802 DOI: 10.3390/vaccines11020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer is a major cause of cancer death in women worldwide. Targeting human papillomavirus (HPV) viral oncoproteins E6 and E7 is a new strategy for cervical cancer immunotherapy and has been associated with resolution of HPV-induced lesions. How to efficiently induce T cell target killing of HPV infected cervical cancer is of great potential benefit for cervical cancer treatment. Fusion protein containing the extra domain A (EDA) from fibronectin, a natural ligand for Toll-like receptor 4 (TLR4), and HPVE7 (EDA-E7) has been shown to efficiently induce dendritic cells maturation and trigger specific antitumor CD8+ T cells response in mice. In this study, we constructed EDA-E7 fusion protein of human origin and tested its function in dendritic cell maturation as well as antitumor T cell response. We found that EDA-E7 could be efficiently captured by human PBMC derived dendritic cells (DCs) in vitro and induce DCs maturation. Importantly, this effect could work in synergy with the TLR ligand anti-CD40 agonist, polyinosinic-polycytidylic acid [poly (I:C)], R848, and CpG2216. EDA-E7 matured DCs could activate T cells and trigger an anti-tumor response in vitro. Single cell RNA sequencing and T cell targeted killing assay confirmed the activation of T cells by EDA-E7 matured DCs. Therefore, therapeutic vaccination with EDA-E7 fusion protein maybe effective for human cervical carcinoma treatment.
Collapse
|
6
|
Alsanea M, Alsaleh A, Obeid D, Alhadeq F, Alahideb B, Alhamlan F. Genetic Variability in the E6, E7, and L1 Genes of Human Papillomavirus Types 16 and 18 among Women in Saudi Arabia. Viruses 2022; 15:109. [PMID: 36680149 PMCID: PMC9862970 DOI: 10.3390/v15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023] Open
Abstract
Cervical cancer is the eighth most frequent cancer in Saudi Arabia, and most cases are associated with human papillomavirus (HPV) types 16 and 18. HPV-induced carcinogenesis may be associated with the intra-type variant, genetic mutation, or the continuous expression of viral oncogenes E6 and E7. Infection efficiency and virus antigenicity may be affected by changes in the L1 gene. Thus, this retrospective cohort study analyzed E6, E7, and L1 gene mutations in cervical specimens collected from Saudi women positive for HPV16 or HPV18 infection. HPV16 and HPV18 lineages in these specimens were predominantly from Europe. The L83V mutation in the E6 gene of HPV16 showed sufficient oncogenic potential for progression to cervical cancer. By contrast, the L28F mutation in the E7 gene of HPV16 was associated with a low risk of cervical cancer. Other specific HPV16 and HPV18 mutations were associated with an increased risk of cancer, cancer progression, viral load, and age. Four novel mutations, K53T, K53N, R365P, and K443N, were identified in the L1 gene of HPV16. These findings for HPV16 and HPV18 lineages and mutations in the E6, E7, and L1 genes among women in Saudi Arabia may inform the design and development of effective molecular diagnostic tests and vaccination strategies for the Saudi population.
Collapse
Affiliation(s)
- Madain Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Asma Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11564, Saudi Arabia
| | - Dalia Obeid
- Public Health Laboratories, Public Health Authority, Riyadh 11564, Saudi Arabia
| | - Faten Alhadeq
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Basma Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fatimah Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
7
|
Genetic characteristics of human papillomavirus type 16, 18, 52 and 58 in southern China. Genomics 2021; 113:3895-3906. [PMID: 34555497 DOI: 10.1016/j.ygeno.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/15/2021] [Accepted: 09/09/2021] [Indexed: 11/21/2022]
Abstract
Persistent infections of high-risk human papillomaviruses (HPVs) are the leading cause of cervical cancers. We collected cervical exfoliated cell samples from females in Changsha city, Hunan Province and obtained 338 viral genomes of four major HPV types, including HPV 16 (n = 82), 18 (n = 35), 52 (n = 121) and 58 (n = 100). The lineage/sublineage distribution of the four HPVs confirmed previous epidemiological reports, with the predominant prevailing sublineage as A4 (50%), A1 (37%) and A3 (13%) for HPV16, A1 (83%) for HPV18, B2 (86%) for HPV52 and A1 (65%), A3 (19%) and A2 (12%) for HPV58. We also identified two potentially novel HPV18 sublineages, i.e. A6 and A7. Virus mutation analysis further revealed the presence of HPV16 and HPV58 sublineages associated with potentially high oncogenicity. These findings expanded our knowledge of the HPV genetic diversity in China, providing valuable evidence to facilitate HPV DNA screening, vaccine effectiveness evaluation and control strategy development.
Collapse
|
8
|
Liu W, Li J, Du H, Ou Z. Mutation Profiles, Glycosylation Site Distribution and Codon Usage Bias of Human Papillomavirus Type 16. Viruses 2021; 13:v13071281. [PMID: 34209097 PMCID: PMC8310365 DOI: 10.3390/v13071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) is the most prevalent HPV type causing cervical cancers. Herein, using 1597 full genomes, we systemically investigated the mutation profiles, surface protein glycosylation sites and the codon usage bias (CUB) of HPV16 from different lineages and sublineages. Multiple lineage- or sublineage-conserved mutation sites were identified. Glycosylation analysis showed that HPV16 lineage D contained the highest number of different glycosylation sites from lineage A in both L1 and L2 capsid proteins, which might lead to their antigenic distances between the two lineages. CUB analysis showed that the HPV16 open reading frames (ORFs) preferred codons ending with A/T. The CUB of HPV16 ORFs was mainly affected by natural selection except for E1, E5 and L2. HPV16 only shared some of the preferred codons with humans, which might help reduce competition in translational resources. These findings increase our understanding of the heterogeneity between HPV16 lineages and sublineages, and the adaptation mechanism of HPV in human cells. In summary, this study might facilitate HPV classification and improve vaccine development and application.
Collapse
Affiliation(s)
- Wei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Junhua Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510000, China; (W.L.); (J.L.); (H.D.)
| | - Zhihua Ou
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
- Correspondence: ; Tel.: +86-134-3428-7879
| |
Collapse
|
9
|
E6/E7 Variants of Human Papillomavirus 16 Associated with Cervical Carcinoma in Women in Southern Mexico. Pathogens 2021; 10:pathogens10060773. [PMID: 34203053 PMCID: PMC8233793 DOI: 10.3390/pathogens10060773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022] Open
Abstract
Persistent infection with the human papillomavirus 16 (HPV 16) is the cause of half of all cervical carcinomas (CC) cases. Moreover, mutations in the oncoproteins E6 and E7 are associated with CC development. In this study, E6/E7 variants circulating in southern Mexico and their association with CC and its precursor lesions were evaluated. In total, 190 DNA samples were obtained from scrapes and cervical biopsies of women with HPV 16 out of which 61 are from patients with CC, 6 from patients with high-grade squamous intraepithelial lesions (HSIL), 68 from patients with low-grade squamous intraepithelial lesions (LSIL), and 55 from patients without intraepithelial lesions. For all E7 variants found, the E7-C732/C789/G795 variant (with three silent mutations) was associated with the highest risk of CC (odd ratio (OR) = 3.79, 95% confidence interval (CI) = 1.46–9.85). The analysis of E6/E7 bicistron conferred to AA-a*E7-C732/C789/G795 variants revealed the greatest increased risk of CC (OR = 110, 95% CI = 6.04–2001.3), followed by AA-c*E7-C732/C789/G795 and A176/G350*E7-p. These results highlight the importance of analyzing the combinations of E6/E7 variants in HPV 16 infection and suggest that AA-a*E7-C732/C789/G795, AA-c*E7-C732/C789/G795, and A176/G350*E7-p can be useful markers for predicting CC development.
Collapse
|
10
|
Cao CH, Liu R, Lin XR, Luo JQ, Cao LJ, Zhang QJ, Lin SR, Geng L, Sun ZY, Ye SK, Yu ZY, Shi Y, Xia X. LRP1B mutation is associated with tumor HPV status and promotes poor disease outcomes with a higher mutation count in HPV-related cervical carcinoma and head & neck squamous cell carcinoma. Int J Biol Sci 2021; 17:1744-1756. [PMID: 33994859 PMCID: PMC8120457 DOI: 10.7150/ijbs.56970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) infection and gene mutations were reputed as key factors in cervical carcinoma (CC) and head and neck squamous cell carcinoma (HNSCC). However, the associations of HPV status and gene mutations remain to be determined. This study aims to identify molecular patterns of LRP1B mutation and HPV status via rewiring tumor samples of HNSCC (n=1478) and CC (n=178) from the TCGA dataset. Here, we found that LRP1B mutation was associated with HPV status in CC (P=0.040) and HNSCC (P=0.044), especially in HPV 16 integrated CC (P=0.036). Cancer survival analysis demonstrated that samples with LRP1B mutation showed poor disease outcomes in CC (P=0.013) and HNSCC (P=0.0124). In addition, the expression status of LPR1B was more favorable for prediction than TP53 or RB1 in CC and HNSCC. Mutation clustering analysis showed that samples with LRP1B mutation showed higher mutation count in CC (P=1.76e-67) and HNSCC (P<10e-10). Further analysis identified 289 co-occurrence genes in these two cancer types, which were enriched in PI3K signaling, cell division process, and chromosome segregation process, et al. The 289-co-occurrence gene signature identified a cluster of patients with a higher portion of copy number variation (CNV) lost in the genome, different tumor HPV status (P<10e-10), higher mutation count (P<10e-10), higher fraction genome altered value (P=2.078e-4), higher aneuploidy score (P=3.362e-4), and earlier started the smoking year (P=2.572e-4), which were associated with shorter overall survival (P=0.0103) in CC and HNSCC samples. Overall, LRP1B mutation was associated with tumor HPV status and was an unfavorable prognostic biomarker for CC and HNSCC.
Collapse
Affiliation(s)
- Can-Hui Cao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Rang Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Xin-Ran Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Jia-Qi Luo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Li-Juan Cao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Qiu-Ju Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Shou-Ren Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Lan Geng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Zhong-Yi Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Si-Kang Ye
- Department of Critical Care Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhi-Ying Yu
- Department of Gynecology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yu Shi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Xi Xia
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| |
Collapse
|
11
|
Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, Mendoza-Catalán MA, Martínez-Carrillo DN, Zacapala-Gómez AE, Olea-Flores M, Dircio-Maldonado R, Torres-Rojas FI, Soto-Flores DG, Illades-Aguiar B, Ortiz-Ortiz J. Metabolic Reprogramming in Cancer: Role of HPV 16 Variants. Pathogens 2021; 10:pathogens10030347. [PMID: 33809480 PMCID: PMC7999907 DOI: 10.3390/pathogens10030347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming is considered one of the hallmarks in cancer and is characterized by increased glycolysis and lactate production, even in the presence of oxygen, which leads the cancer cells to a process called “aerobic glycolysis” or “Warburg effect”. The E6 and E7 oncoproteins of human papillomavirus 16 (HPV 16) favor the Warburg effect through their interaction with a molecule that regulates cellular metabolism, such as p53, retinoblastoma protein (pRb), c-Myc, and hypoxia inducible factor 1α (HIF-1α). Besides, the impact of the E6 and E7 variants of HPV 16 on metabolic reprogramming through proteins such as HIF-1α may be related to their oncogenicity by favoring cellular metabolism modifications to satisfy the energy demands necessary for viral persistence and cancer development. This review will discuss the role of HPV 16 E6 and E7 variants in metabolic reprogramming and their contribution to developing and preserving the malignant phenotype of cancers associated with HPV 16 infection.
Collapse
Affiliation(s)
- Adán Arizmendi-Izazaga
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (N.N.-T.); (M.O.-F.)
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
| | - Dinorah N. Martínez-Carrillo
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Ana E. Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (N.N.-T.); (M.O.-F.)
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias, Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
- Laboratorio de Diagnóstico e Investigación en Salud, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Francisco I. Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Diana G. Soto-Flores
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
- Laboratorio de Diagnóstico e Investigación en Salud, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (M.A.M.-C.); (A.E.Z.-G.); (F.I.T.-R.); (D.G.S.-F.); (B.I.-A.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (H.J.-W.); (D.N.M.-C.)
- Correspondence: ; Tel.: +52-747-471-0901
| |
Collapse
|
12
|
Choi YJ, Hur SY, Kim TJ, Hong SR, Lee JK, Cho CH, Park KS, Woo JW, Sung YC, Suh YS, Park JS. A Phase II, Prospective, Randomized, Multicenter, Open-Label Study of GX-188E, an HPV DNA Vaccine, in Patients with Cervical Intraepithelial Neoplasia 3. Clin Cancer Res 2019; 26:1616-1623. [PMID: 31727676 DOI: 10.1158/1078-0432.ccr-19-1513] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/08/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To determine the efficacy of the therapeutic DNA vaccine GX-188E for inducing regression of cervical intraepithelial neoplasia (CIN) 3. PATIENTS AND METHODS We conducted a prospective, randomized, multicenter, open-label, phase II clinical trial of GX-188E in CIN3 patients positive for human papillomavirus (HPV) type 16/18. The primary endpoint was to determine the histopathologic regression to ≤CIN1 at visit seven (V7; 20 weeks after the first GX-188E injection), and an extension study was pursued until visit 8 (V8; 36 weeks after the first GX-188E injection). HPV-sequencing analysis and an ex vivo IFNγ ELISpot assay were performed using the collected cervical biopsy and blood samples from patients. RESULTS In total, 72 patients were enrolled and underwent randomization. Of them, 64 patients were included in per-protocol analysis (V7) and 52 in extension analysis (V8). Our data showed 52% (33/64) of patients at V7 and 67% (35/52) of patients at V8 presented histopathologic regression after receiving the GX-188E injection. We found that 73% (V7) and 77% (V8) of the patients with histologic regression showed HPV clearance. HPV clearance and histopathologic regression were significantly associated at V7 and at V8. Compared with the measurements at V1 (baseline), the patients at V8 with HPV clearance showed significantly higher fold changes in their IFNγ ELISpot responses compared with those without HPV clearance. The HPV sequence analysis revealed that the HPV type 16 E6/E7 variants D25E, V83L, and N29S were inversely associated with histopathologic regression at V8. CONCLUSIONS GX-188E is an effective therapeutic vaccine against a cohort containing only CIN3 patients.
Collapse
Affiliation(s)
- Youn Jin Choi
- Department of Obstetrics and Gynecology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (South)
- Cancer Research Institute, Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea (South)
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (South)
- Cancer Research Institute, Department of Medical Lifescience, The Catholic University of Korea, Seoul, Republic of Korea (South)
| | - Tae-Jin Kim
- Cheil General Hospital, Seoul, Republic of Korea (South)
| | - Sung Ran Hong
- Cheil General Hospital, Seoul, Republic of Korea (South)
| | - Jae Kwan Lee
- Korea University Guro Hospital, Seoul, Republic of Korea (South)
| | - Chi-Heum Cho
- Keimyung University Dongsan Medical Center, Daegu, Republic of Korea (South)
| | - Ki Seok Park
- Genexine, Inc., Seongnam-si, Republic of Korea (South)
| | - Jung Won Woo
- Genexine, Inc., Seongnam-si, Republic of Korea (South)
| | - Young Chul Sung
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Gyeonggbuk, Republic of Korea (South)
| | - You Suk Suh
- Genexine, Inc., Seongnam-si, Republic of Korea (South).
| | - Jong Sup Park
- Department of Obstetrics and Gynecology, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea (South).
- Genexine, Inc., Seongnam-si, Republic of Korea (South)
| |
Collapse
|
13
|
Zhe X, Xin H, Pan Z, Jin F, Zheng W, Li H, Li D, Cao D, Li Y, Zhang C, Fu S, Shao R, Pan Z. Genetic variations in E6, E7 and the long control region of human papillomavirus type 16 among patients with cervical lesions in Xinjiang, China. Cancer Cell Int 2019; 19:65. [PMID: 30930693 PMCID: PMC6425590 DOI: 10.1186/s12935-019-0774-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/06/2019] [Indexed: 12/29/2022] Open
Abstract
Background Xinjiang is one of the areas with the highest incidence of cervical cancer in China. Genetic variation in Human papillomavirus type 16 (HPV16) may increase the ability of the virus to mediate carcinogenesis and immune escape, which are risk factors for the progression of cervical cancer. We investigated polymorphism in HPV16 and the distribution of its sub-lineages in the region by analyzing the E6, E7 and long control region (LCR) gene sequences from women with HPV16-positive cervical samples in Xinjiang. Methods A total of 138 cases of cervical lesions and squamous cell carcinoma with infection of HPV16 virus were collected. The E6 and E7 genes and LCR of HPV16 virus were sequenced and compared with the HPV16 European prototype reference and other HPV16 mutants for single nucleotide polymorphisms. Neighbor-joining phylogenetic trees were constructed using E6, E7 and LCR sequences. Results Fourteen missense mutations were found in the E6 gene; the loci with the highest mutation frequency were T350G (36/75, 48%) and T178G (19/75, 25.3%). In the E7 gene, the locus with the highest mutation frequency was A647G (18/75, 24%). A total of 33 polymorphic sites were found in the LCR, of which T7447C (39/95, 40.1%) was the most frequent. Conclusion HPV16 in Xinjiang is mainly of the European variant, followed by the Asian variant type; no Africa 1, 2 or Asia–America variant types were found.
Collapse
Affiliation(s)
- Xiangyi Zhe
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Huizhen Xin
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Zhenzhen Pan
- Xinjiang Production and Construction Corps of the Fourth Division Hospital, Yining, 835000 Xinjiang China
| | - Fuyuan Jin
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Weinan Zheng
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Hongtao Li
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Dongmei Li
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Dongdong Cao
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Ying Li
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Chunhe Zhang
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Shaowei Fu
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| | - Renfu Shao
- 3School of Science and Engineering, Genecology Research Centre, The Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556 Australia
| | - Zemin Pan
- 1Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Department of Biochemistry and Molecular Biology, School of Medicine, Shihezi University, Shihezi, 832002 Xinjiang China
| |
Collapse
|
14
|
Krings A, Dückelmann AM, Moser L, Gollrad J, Wiegerinck M, Schweizer J, Kaufmann AM. Performance of OncoE6 cervical test with collection methods enabling self-sampling. BMC WOMENS HEALTH 2018; 18:68. [PMID: 29783960 PMCID: PMC5963066 DOI: 10.1186/s12905-018-0559-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/01/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The paradigm shift from cytological screening to Human Papillomavirus (HPV)-based screening for cervical cancer allows the introduction of new technologies in sample collection and diagnostics. The OncoE6™ Cervical Test (OncoE6 Test) is a rapid, easy-to-use lateral flow method detecting HPV16/18 E6 oncoproteins that has proven to detect high-grade cervical lesions with high specificity. If compatible with self-collection samples, this technology might allow for decentralized screening of hard-to-reach populations. METHODS For technical validation, cervicovaginal lavages were collected from 20 patients with confirmed HPV16+ or HPV18+ invasive cervical cancer. Cervical smears were collected by polyester-tipped swabs and cytobrushes. All samples were applied to the OncoE6 Test and cytobrush samples additionally genotyped. RESULTS Lavage, swab, and cytobrush revealed concordant outcome in 18/20 samples. HPV types corresponded with the HPV genotyping by GP5+/6+ PCR analyses. Due to a rare mutation found in the E6 antibody binding site one sample was not detected, another sample had very low cellularity. CONCLUSIONS Overall, vaginal lavages are technically adequate for the OncoE6 Test. Combining self-sampling with oncoprotein rapid testing to detect women with highest risk for severe dysplasia or cancer may allow for secondary cancer prevention in settings where other screening modalities were unsuccessful to date.
Collapse
Affiliation(s)
- Amrei Krings
- Clinic for Gynecology CCM/CBF, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna M Dückelmann
- Clinic for Gynecology CCM/CBF, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lutz Moser
- Department of Radiooncology, CBF, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Gollrad
- Department of Radiooncology, CBF, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | - Andreas M Kaufmann
- Clinic for Gynecology CCM/CBF, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. .,Gynäkologische Tumorimmunologie, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30 Room # 4503, 12200, Berlin, Germany.
| |
Collapse
|
15
|
Jing Y, Wang T, Chen Z, Ding X, Xu J, Mu X, Cao M, Chen H. Phylogeny and polymorphism in the long control regions E6, E7, and L1 of HPV Type 56 in women from southwest China. Mol Med Rep 2018; 17:7131-7141. [PMID: 29568922 PMCID: PMC5928666 DOI: 10.3892/mmr.2018.8743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Globally, human papillomavirus (HPV)‑56 accounts for a small proportion of all high‑risk HPV types; however, HPV‑56 is detected at a higher rate in Asia, particularly in southwest China. The present study analyzed polymorphisms, intratypic variants, and genetic variability in the long control regions (LCR), E6, E7, and L1 of HPV‑56 (n=75). The LCRs, E6, E7 and L1 were sequenced using a polymerase chain reaction and the sequences were submitted to GenBank. Maximum‑likelihood trees were constructed using Kimura's two‑parameter model, followed by secondary structure analysis and protein damaging prediction. Additionally, in order to assess the effect of variations in the LCR on putative binding sites for cellular proteins, MATCH server was used. Finally, the selection pressures of the E6‑E7 and L1 genes were estimated. A total of 18 point substitutions, a 42‑bp deletion and a 19‑bp deletion of LCR were identified. Some of those mutations are embedded in the putative binding sites for transcription factors. 18 single nucleotide changes occurred in the E6‑E7 sequence, 11/18 were non‑synonymous substitutions and 7/18 were synonymous mutations. A total 24 single nucleotide changes were identified in the L1 sequence, 6/24 being non‑synonymous mutations and 18/24 synonymous mutations. Selective pressure analysis predicted that the majority of mutations of HPV‑56 E6, E7 and L1 were of positive selection. The phylogenetic tree demonstrated that the isolates distributed in two lineages. Data on the prevalence and genetic variation of HPV‑56 types in southwest China may aid future studies on viral molecular mechanisms and contribute to future investigations of diagnostic probes and therapeutic vaccines.
Collapse
Affiliation(s)
- Yaling Jing
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| | - Zuyi Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| | - Xianping Ding
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| | - Jianju Xu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| | - Xuemei Mu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| | - Man Cao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| | - Honghan Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, Chengdu, Sichuan 610064, P.R. China
- Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chengdu, Chongqing 408400, P.R. China
| |
Collapse
|
16
|
Naeem RC, Goldstein DY, Einstein MH, Ramos Rivera G, Schlesinger K, Khader SN, Suhrland M, Fox AS. SurePath Specimens Versus ThinPrep Specimen Types on the COBAS 4800 Platform: High-Risk HPV Status and Cytology Correlation in an Ethnically Diverse Bronx Population. Lab Med 2018; 48:207-213. [PMID: 28379422 DOI: 10.1093/labmed/lmx019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To compare the cytologic preparations of 130 cervical specimens (from women of various ethnicities at high risk for human papillomavirus [HPV] infection) using the SurePath (SP) collection system with specimens gathered using the ThinPrep (TP) system, as processed on the Cobas 4800 analyzer, to determine which collection method more accurately identifies HPV infection. Methods In our prospective study, specimens were collected from 130 women of various ethnicities residing in or near Bronx County, NY. The SP-collected specimen was first processed for cytologic findings; if clinical HPV testing was requested on that specimen, it was tested using Hybrid Capture II (HC2) methodology. We tested the remnant SP-collected cell concentrate using the Cobas analyzer. Then, the TP-collected and SP-collected specimens were tested in the same run on that analyzer, and the results were compared. We also compared the results with the concurrent cytologic findings. Results The results were concordant for overall HR-HPV status in 93.8% of cases. Also, a statistically significant lower cycle threshold value was observed with Cobas testing of specimen concentrates tested via the BD SurePath Pap Test (P = .001), suggesting higher sensitivity compared with specimens tested via the ThinPrep Pap Test. Conclusion Cobas 4800 HPV testing of SP-collected specimen concentrates yields comparable results to TP-collected specimen concentrates. Based on the limited data that we derived, SP collection may be a more favorable methodology than TP collection for HPV testing of individuals at high risk in our ethnically diverse, urban patient population.
Collapse
Affiliation(s)
- R C Naeem
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - D Y Goldstein
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - Mark H Einstein
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - G Ramos Rivera
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - K Schlesinger
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - S N Khader
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - M Suhrland
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| | - A S Fox
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
17
|
Sabeena S, Bhat P, Kamath V, Mathew M, Aswathyraj S, Devadiga S, Prabhu S, Hindol M, Chameetachal A, Krishnan A, Arunkumar G. Detection of Genital HPV Infection Using Urine Samples: a Population Based Study in India. Asian Pac J Cancer Prev 2017; 17:1083-8. [PMID: 27039728 DOI: 10.7314/apjcp.2016.17.3.1083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cervical cancer is the second commonest cancer among Indian women and its association with human papilloma virus (HPV) is well established. This preventable cancer accounts for the maximum number of cancer related deaths among rural Indian women. Unlike in developed countries there are no organized cervical cancer screening programmes in India due to lack of resources and manpower. OBJECTIVE To detect genital HPV infection using urine samples among asymptomatic rural women in the age group of 18-65 years. MATERIALS AND METHODS The study area chosen was Perdoor village in Udupi Taluk, Karnataka State and all the women in the age group of 18-65 years formed the study cohort. A cross sectional study was conducted by house visits and 1,305 women were enrolled in the study. After taking written informed consent a data sheet was filled and early stream random urine samples were collected, transported to a laboratory at 4OC and aliquoted. Samples were tested using nested HPV PCR with PGMY09/11 and GP5+/6+ primers. Positive cases were genotyped by sequence analysis. RESULTS Study participants included 1,134 sexually active and 171 unmarried women with a mean age at marriage of 22.1 (SD=3.9) years. Study area showed high female literacy rate of 86.6%. Five urine samples tested positive for HPV DNA (0.4%). CONCLUSIONS We found very low genital HPV infection rate among women from monogamous community. This is the first major population based study carried out among asymptomatic rural women to detect genital HPV infectio from Karnataka using urine samples.
Collapse
|
18
|
Zhao Y, Li L, Ma D, Luo J, Ma Z, Wang X, Pan Y, Chen J, Xi J, Yang J, Qiu L, Bai C, Jiang L, Shan X, Sun Q. Molecular Characterization and Viral Origin of the 2015 Dengue Outbreak in Xishuangbanna, Yunnan, China. Sci Rep 2016; 6:34444. [PMID: 27681163 PMCID: PMC5041078 DOI: 10.1038/srep34444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
A total of 1067 serum samples were collected from febrile patients in Xishuangbanna, Yunnan, 2015. Of these, 852 cases were confirmed to be dengue NS1-positive. 76 structural protein genes were sequenced through RT-PCR based on the viral RNAs extracted from serum samples. Phylogenetic analysis revealed that all strains were classified as cosmopolitan genotype of DENV-2. After comparing with the DENV-2SS, 173 base substitutions were found in 76 sequences, resulting in 43 nonsynonymous mutations, of which 22 mutations existed among all samples. According to secondary structure prediction, 8 new possible nucelotide/protein binding sites were found and another 4 sites were lost among the 775 amino acids of DENV structural proteins as compared with DENV-2SS. Meanwhile, 6 distinct amino acid changes were found in the helix and strand regions, and the distribution of the exposed and buried regions was slightly altered. The results indicated that the epidemic dengue strains of Xishuangbanna in 2015 are most similar to the Indian strain in 2001 and the Sri Lankan strain in 2004. Moreover, it also show a very strong similarity to the epidemic strains of Fujian province in 1999 and 2010, which show that there is an internal recycling epidemic trend of DENV in China.
Collapse
Affiliation(s)
- Yujiao Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Lihua Li
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Dehong Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
- Kunming Medical University, Kunming 650500, PR China
| | - Zhiqiang Ma
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Xiaodan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Junying Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Juemin Xi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Jiajia Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Lijuan Qiu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Chunhai Bai
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Liming Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| | - Xiyun Shan
- Xishuangbanna Dai Autonomous Prefecture People's Hospital, Jinghong 666100, PR China
| | - Qiangming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Kunming 650118, PR China
- Yunnan Key Laboratory of Vaccine Research &Development on Severe Infectious Diseases, Kunming 650118, PR China
| |
Collapse
|
19
|
Chenzhang Y, Wen Q, Ding X, Cao M, Chen Z, Mu X, Wang T. Identification of the impact on T- and B- cell epitopes of human papillomavirus type-16 E6 and E7 variant in Southwest China. Immunol Lett 2016; 181:26-30. [PMID: 27693214 DOI: 10.1016/j.imlet.2016.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022]
Abstract
Cervical cancers almost are infected by human papillmavirus (HPV), encoding E6 and E7 oncoproteins which are regard as ideal targets on the mechanism of this disease and development of vaccines. HLA (human leukocyte antigen) participates in the local immune response to prevent tumor invasion and progression. But due to highly polymorphism of HLA, prediction shows its importance in this study. More effective immunoinformatics was used for predicting epitopes from HPV-16 E6 and E7, including T- and B-cell epitopes. Eight substitutions are detected. Specifically speaking, for HLA-I, HLA-A*33:03 (26), HLA-B*13:01 (14), HLA-C*03:02 (5) for E6 and HLA-A*02:01 (6), HLA-B*40:01 (5), HLA-C*03:04 (4) for E7 are most frequency. Epitope 41-48EVYDFAFR for HLA-A*33:03 (0.1) for E6 has best binding affinity, as well as HLA*02:01 and HLA-B*40:01 (0.2) for E7. The mutations of D25E and L83V of E6 and N29S of E7 produce new epitopes, and the percentile values change with them. For HLA-II, seventeen epitopes in the reference at percentile value from 0.22 to 4.76, while in variant from 0.22 to 4.96. For the B-cell epitopes, three most potent epitopes for E6 were listed, and N29S lead the growth of score from 0.81 to 0.83. In summary, E640-55REVYDFAFRDLCIVYR and E711-22YMLDLQPETTDL are the important regions, containing the majority of predicted epitopes. E6 72-83 for HLA-A*02:01 and E6 74-84 for HLA-B*15:02 maybe are the new direct for therapeutic vaccine aimed at L83V variants. HLA-DRB1*15:02 is better binder with T cell in our HLA class II. It is a systematic, detail recognition for T- and B-cell epitopes of HPV-16 E6 and E7 from Southwest China, which may be helpful to design vaccines specifically for women in Southwest China and testing methods specifically for this region. The results of our study may contribute to future researches on vaccines improvement, or screening methods for a particular population.
Collapse
Affiliation(s)
- Yuwei Chenzhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Qiang Wen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Xianping Ding
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China.
| | - Man Cao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Zuyi Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Xuemei Mu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| | - Tao Wang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-Resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan and Chongqing, China
| |
Collapse
|
20
|
Cao M, Chenzhang Y, Ding X, Zhang Y, Jing Y, Chen Z. Genetic variability and lineage phylogeny of human papillomavirus type-16 and -53 based on the E6, E7, and L1 genes in Southwest China. Gene 2016; 592:49-59. [PMID: 27450917 DOI: 10.1016/j.gene.2016.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are circular double-stranded DNA viruses that are highly prevalent in the general population, and account for the cervical cancer burden in women worldwide. In this study, we analyzed HPV-16, the most prevalent type worldwide, and HPV-53, a possible high-risk type from infected women in Southwest China. To characterize mutations, intratypic variants, and genetic variability in the E6, E7, and L1 genes of HPV-16 (n=97) and HPV-53 (n=15), these genes were sequenced and submitted to GenBank. Phylogenetic trees were constructed using Bayesian trees, followed by secondary structure analysis and B-cell epitope prediction. Moreover, the selection pressures of the E6, E7, and L1 genes were estimated. In total, 27 novel variants of HPV-16 and 11 novel variants of HPV-53 were identified. In the HPV-16 E6-E7-L1 sequences, 73 nucleotide changes were observed with 40/73 being non-synonymous mutations (two in the alpha helix and five in the beta sheet) and 33/73 being synonymous. In the HPV-53 E6-E7-L1 sequences, 64 nucleotide changes were observed with 26/64 being non-synonymous mutations (three in the alpha helix and one in the beta sheet) and 38/64 being synonymous. Selective pressure analysis showed that most of these mutations did not reflect positive selection. The maximal divergence between any two variants within each gene of these two HPV types ranging from 0.94%(HPV-16 L1 gene)to 2.80%(HPV-53 E6 gene). Identifying new variants of HPV-16 and -53 from women in Southwest China may be helpful to design vaccines specifically for women in Southwest China and testing methods specifically for this region. The results of our study may contribute to future researches in diagnostic probes, vaccines improvement, or screening methods for a particular population.
Collapse
Affiliation(s)
- Man Cao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education; Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan, and Chongqing, China
| | - Yuwei Chenzhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education; Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan, and Chongqing, China
| | - Xianping Ding
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education; Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan, and Chongqing, China.
| | - Yiwen Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education; Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan, and Chongqing, China
| | - Yaling Jing
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education; Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan, and Chongqing, China
| | - Zuyi Chen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education; Institute of Medical Genetics, College of Life Science, Sichuan University, China; Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Sichuan, and Chongqing, China
| |
Collapse
|
21
|
Characterization of Intra-Type Variants of Oncogenic Human Papillomaviruses by Next-Generation Deep Sequencing of the E6/E7 Region. Viruses 2016; 8:79. [PMID: 26985902 PMCID: PMC4810269 DOI: 10.3390/v8030079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 12/14/2022] Open
Abstract
Different human papillomavirus (HPV) types are characterized by differences in tissue tropism and ability to promote cell proliferation and transformation. In addition, clinical and experimental studies have shown that some genetic variants/lineages of high-risk HPV (HR-HPV) types are characterized by increased oncogenic activity and probability to induce cancer. In this study, we designed and validated a new method based on multiplex PCR-deep sequencing of the E6/E7 region of HR-HPV types to characterize HPV intra-type variants in clinical specimens. Validation experiments demonstrated that this method allowed reliable identification of the different lineages of oncogenic HPV types. Advantages of this method over other published methods were represented by its ability to detect variants of all HR-HPV types in a single reaction, to detect variants of HR-HPV types in clinical specimens with multiple infections, and, being based on sequencing of the full E6/E7 region, to detect amino acid changes in these oncogenes potentially associated with increased transforming activity.
Collapse
|
22
|
Chen AA, Gheit T, Franceschi S, Tommasino M, Clifford GM. Human Papillomavirus 18 Genetic Variation and Cervical Cancer Risk Worldwide. J Virol 2015; 89:10680-7. [PMID: 26269181 PMCID: PMC4580183 DOI: 10.1128/jvi.01747-15] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/05/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED Human papillomavirus 18 (HPV18) is the second most carcinogenic HPV type, after HPV16, and it accounts for approximately 12% of squamous cell carcinoma (SCC) as well as 37% of adenocarcinoma (ADC) of the cervix worldwide. We aimed to evaluate the worldwide diversity and carcinogenicity of HPV18 genetic variants by sequencing the entire long control region (LCR) and the E6 open reading frame of 711 HPV18-positive cervical samples from 39 countries, taking advantage of the International Agency for Research on Cancer biobank. A total of 209 unique HPV18 sequence variants were identified that formed three phylogenetic lineages (A, B, and C). A and B lineages each divided into four sublineages, including a newly identified candidate B4 sublineage. The distribution of lineages varied by geographical region, with B and C lineages found principally in Africa. HPV18 (sub)lineages were compared between 453 cancer cases and 236 controls, as well as between 81 ADC and 160 matched SCC cases. In region-stratified analyses, there were no significant differences in the distribution of HPV18 variant lineages between cervical cancer cases and controls or between ADC and SCC. In conclusion, our findings do not support the role of HPV18 (sub)lineages for discriminating cancer risk or explaining why HPV18 is more strongly linked with ADC than SCC. IMPORTANCE This is the largest and most geographically/ethnically diverse study of the genetic variation of HPV18 to date, providing a comprehensive reference for phylogenetic classification of HPV18 sublineages for epidemiological and biological studies.
Collapse
Affiliation(s)
- Alyce A Chen
- International Agency for Research on Cancer, Lyon, France
| | - Tarik Gheit
- International Agency for Research on Cancer, Lyon, France
| | | | | | | |
Collapse
|
23
|
Jaber JJ, Murrill L, Clark JI, Johnson JT, Feustel PJ, Mehta V. Robust Differences in p16-Dependent Oropharyngeal Squamous Cell Carcinoma Distant Metastasis. Otolaryngol Head Neck Surg 2015; 153:209-17. [DOI: 10.1177/0194599815581836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/24/2015] [Indexed: 01/31/2023]
Abstract
Objective Historically, head and neck squamous cell carcinoma (HNSCC) has been earmarked a lymphatic malignancy. Recently, this has been called into question. Our study aims to (1) illustrate the robust differences in distant metastases between p16+ and p16– oropharyngeal squamous cell carcinoma (OPSCC) and (2) provide support that p16+ OPSCC has a predilection toward vasculature invasion and hematogenous spread. Study Design Multi-institutional, case series with chart review. Setting Four academic institutions. Subjects and Methods Within a group of 1113 patients with primary OPSCC who received treatment between 1979 and 2013, those who developed distant metastasis (DM) were divided into 2 cohorts based on p16 status. Intergroup and intragroup univariate analysis was performed as well as descriptive analysis of end-organ sites. Results Of the 1058 patients included, 89 developed DM. Thirty were p16– and 59 were p16+. Of the p16– patients with DM, only 10% had disseminated disease (distant metastases at ≥2 sites) compared with 74% of p16+ patients. Distant disease in p16+ patients included brain, abdomen, and a distinct pattern of pulmonary metastases. Conclusion Our large, multi-institutional study supports published reports that p16+ OPSCC metastasizes with a unique phenotype that is hematogenous and widely disseminated with atypical end-organ sites. Our data suggest that p16+ OPSCC has a predilection toward active vasculature invasion as evidenced by the results and illustrative radiologic and pathohistologic examples. These findings may have implications for future targeted therapy when treating p16+ OPSCC.
Collapse
Affiliation(s)
- James J. Jaber
- Department of Otolaryngology–Head & Neck Surgery, Loyola University Medical Center, Maywood, Illinois, USA
- Head & Neck Medicinal Chemistry Laboratory, Edward Hines VA, Hines, Illinois, USA
| | - Lauren Murrill
- Department of Otolaryngology–Head & Neck Surgery, Loyola University Medical Center, Maywood, Illinois, USA
| | - Joseph I. Clark
- Department of Medicine, Division of Hematology & Oncology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Jonas T. Johnson
- Department of Otolaryngology–Head & Neck Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Paul J. Feustel
- Center for Neuropharmacology & Neuroscience, Albany Medical College, Albany, New York, USA
| | - Vikas Mehta
- Department of Otolaryngology–Head & Neck Surgery Louisiana State University Health Science Center, Shreveport, Louisiana, USA
| |
Collapse
|
24
|
Kabekkodu SP, Bhat S, Pandey D, Varghese VK, Shukla V, Ghosh S, Kushtagi P, Bhat P, Gopinath PM, Satyamoorthy K. Prevalence of human papillomavirus types and phylogenetic analysis of HPV-16 L1 variants from Southern India. Asian Pac J Cancer Prev 2015; 16:2073-2080. [PMID: 25773853 DOI: 10.7314/apjcp.2015.16.5.2073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The human papillomavirus (HPV) and its variants show wide geographical distribution and have been reported to cause cervical lesions. With cervical neoplasia as the leading cancer in Indian women, the aim of the present study was to evaluate the multiple infection HPV type distribution and variant genotypes in cervical samples from the coastal Karnataka region, India. MATERIALS AND METHODS A total of 212 samples were screened by nested polymerase chain reaction using PGMY9/11 and GP5+/6+ primers. HPV positive samples were sequenced to identify the types and a phylogenetic tree was constructed using the neighbor-joining method. RESULTS Sequence analysis identified a total of 14 HPV types distributed in 20%, 73.3% and 82.5% of non-malignant, pre-malignant [low grade squamous intraepithelial lesion (LSIL) and high grade squamous intraepithelial lesion (HSIL)] and cervical cancer samples. The distribution of high risk HPV in cancer samples was HPV 16, 76.4%, HPV18, 11.7%, HPV81, 2.9%, HPV31, 1.4%, HPV35, 1.4% and HPV 45, 1.4%. Multiple infections were observed in 11.8% of tumor samples with HPV 16 contributing to 62.5% of cases. In non-malignant samples, 20% of HPV positive samples were detected with HPV16, 82.3%, HPV33, 5.8% and HPV58, 5.8% and very low incidence of multiple infections. Comparative phylogenetic analysis of HPV variants identified 9 HPV sequences as new papillomavirus species, predominantly classified as European lineage type. CONCLUSIONS The findings for HPV infections associated with progression of cervical cancer in coastal Karnataka region and HPV variant analysis provide baseline data for prevention and HPV vaccination programs.
Collapse
Affiliation(s)
- Shama Prasada Kabekkodu
- Division of Biotechnology, School of Life Sciences, Manipal University, Karnataka, India E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|