1
|
Jartti M, Flodström-Tullberg M, Hankaniemi MM. Enteroviruses: epidemic potential, challenges and opportunities with vaccines. J Biomed Sci 2024; 31:73. [PMID: 39010093 PMCID: PMC11247760 DOI: 10.1186/s12929-024-01058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024] Open
Abstract
Enteroviruses (EVs) are the most prevalent viruses in humans. EVs can cause a range of acute symptoms, from mild common colds to severe systemic infections such as meningitis, myocarditis, and flaccid paralysis. They can also lead to chronic diseases such as cardiomyopathy. Although more than 280 human EV serotypes exist, only four serotypes have licenced vaccines. No antiviral drugs are available to treat EV infections, and global surveillance of EVs has not been effectively coordinated. Therefore, poliovirus still circulates, and there have been alarming epidemics of non-polio enteroviruses. Thus, there is a pressing need for coordinated preparedness efforts against EVs.This review provides a perspective on recent enterovirus outbreaks and global poliovirus eradication efforts with continuous vaccine development initiatives. It also provides insights into the challenges and opportunities in EV vaccine development. Given that traditional whole-virus vaccine technologies are not suitable for many clinically relevant EVs and considering the ongoing risk of enterovirus outbreaks and the potential for new emerging pathogenic strains, the need for new effective and adaptable enterovirus vaccines is emphasized.This review also explores the difficulties in translating promising vaccine candidates for clinical use and summarizes information from published literature and clinical trial databases focusing on existing enterovirus vaccines, ongoing clinical trials, the obstacles faced in vaccine development as well as the emergence of new vaccine technologies. Overall, this review contributes to the understanding of enterovirus vaccines, their role in public health, and their significance as a tool for future preparedness.
Collapse
Affiliation(s)
- Minne Jartti
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Malin Flodström-Tullberg
- Department of Medicine Huddinge and Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Minna M Hankaniemi
- Virology and Vaccine Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| |
Collapse
|
2
|
Wang Z, Wen H. A review of the recombination events, mechanisms and consequences of Coxsackievirus A6. INFECTIOUS MEDICINE 2024; 3:100115. [PMID: 38974347 PMCID: PMC11225671 DOI: 10.1016/j.imj.2024.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is one of the most common class C infectious diseases, posing a serious threat to public health worldwide. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) have been regarded as the major pathogenic agents of HFMD; however, since an outbreak caused by coxsackievirus A6 (CV-A6) in France in 2008, CV-A6 has gradually become the predominant pathogen in many regions. CV-A6 infects not only children but also adults, and causes atypical clinical symptoms such as a more generalized rash, eczema herpeticum, high fever, and onychomadesis, which are different from the symptoms associated with EV-A71 and CV-A16. Importantly, the rate of genetic recombination of CV-A6 is high, which can lead to changes in virulence and the rapid evolution of other characteristics, thus posing a serious threat to public health. To date, no specific vaccines or therapeutics have been approved for CV-A6 prevention or treatment, hence it is essential to fully understand the relationship between recombination and evolution of this virus. Here, we systematically review the genetic recombination events of CV-A6 that have occurred worldwide and explore how these events have promoted virus evolution, thus providing important information regarding future HFMD surveillance and prevention.
Collapse
Affiliation(s)
- Zequn Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| |
Collapse
|
3
|
Zhang M, Zhang Y, Hong M, Xiao J, Han Z, Song Y, Zhu S, Yan D, Yang Q, Xu W, Liu Z. Molecular typing and characterization of a novel genotype of EV-B93 isolated from Tibet, China. PLoS One 2020; 15:e0237652. [PMID: 32841272 PMCID: PMC7447049 DOI: 10.1371/journal.pone.0237652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/30/2020] [Indexed: 11/18/2022] Open
Abstract
EV-B93 is a novel serotype within the Enterovirus B species and is uncommon worldwide. Currently, only one full-length genomic sequence (the prototype strain) has been deposited in the GenBank database. In this study, three EV-B93 were identified, including one from an acute flaccid paralysis (AFP) patient (named 99052/XZ/CHN/1999, hereafter XZ99052) and two from healthy children (named 99096/XZ/CHN/1999 and 99167/XZ/CHN/1999, hereafter XZ99096 and XZ99167, respectively) from Tibet in 1999 during the polio eradication program. The identity between the nucleotide and amino acid sequences of the Tibet EV-B93 strain and the EV-B93 prototype strain is 83.2%–83.4% and 96.8%–96.9%, respectively. The Tibet EV-B93 strain was found to have greater nucleotide sequence identity in the P3 region to another enterovirus EV-B107 as per a phylogenetic tree analysis, which revealed that recombination occurred. Seroepidemiology data showed that EV-B93 has not produced an epidemic in Tibet and there may be susceptible individuals. The three Tibet EV-B93 strains are temperature-resistant with prognosticative virulence, suggesting the possibility of a potential large-scale outbreak of EV-B93. The analyzed EV-B93 strains enrich our knowledge about this serotype and provide valuable information on global EV-B93 molecular epidemiology. What is more, they permit the appraisal of the serotype's potential public health impact and aid in understanding the role of recombination events in the evolution of enteroviruses.
Collapse
Affiliation(s)
- Man Zhang
- Department of Medical Microbiology, Weifang Medical University, Weifang, People’s Republic of China
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail: (YZ); (ZL)
| | - Mei Hong
- Tibet Center for Disease Control and Prevention, Lhasa City, Tibet Autonomous Region, People’s Republic of China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang, People’s Republic of China
- * E-mail: (YZ); (ZL)
| |
Collapse
|
4
|
Liu H, Cong S, Xu D, Lin K, Huang X, Sun H, Yang Z, Ma S. Characterization of a novel echovirus 21 strain isolated from a healthy child in China in 2013. Arch Virol 2020; 165:757-760. [PMID: 31912293 DOI: 10.1007/s00705-019-04506-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/20/2019] [Indexed: 11/29/2022]
Abstract
Echovirus 21 (E21) belongs to the species Enterovirus B, whose members are frequently associated with acute flaccid paralysis. E21 strain 553/YN/CHN/2013 was isolated from a healthy child in Yunnan, China, in 2013. This is the first report of the complete genome sequence of E21 in China. This strain shared 81.7% nucleotide sequence identity and 96.8% amino acid sequence identity with the E21 prototype strain Farina. Although strain 553/YN/CHN/2013 belongs to the E21 serotype, the only similarity to the E21 strain was in the VP1 region, as other genomic regions, including VP2-VP4, were more similar to other EV-B members. Recombination analysis showed evidence of recombination events between E21 and other EV-B viruses. E21 strain 553/YN/CHN/2013 failed to infect suckling mice via intracerebral injection. Surveillance of E21 is very important to help forecast the potential of emerging E21 outbreaks and related diseases.
Collapse
Affiliation(s)
- Hongbo Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Shanri Cong
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Danhan Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Keqin Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Xiaoqin Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Hao Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China
| | - Zhaoqing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College (CAMS and PUMC), 935 Jiao Ling Road, Kunming, 650118, Yunnan, People's Republic of China. .,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, People's Republic of China.
| |
Collapse
|
5
|
Sadeuh-Mba SA, Kavunga-Membo H, Joffret ML, Yogolelo R, Endegue-Zanga MC, Bessaud M, Njouom R, Muyembe-Tamfu JJ, Delpeyroux F. Genetic landscape and macro-evolution of co-circulating Coxsackieviruses A and Vaccine-derived Polioviruses in the Democratic Republic of Congo, 2008-2013. PLoS Negl Trop Dis 2019; 13:e0007335. [PMID: 31002713 PMCID: PMC6505894 DOI: 10.1371/journal.pntd.0007335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses (EVs) are among the most common viruses infecting humans worldwide
but only a few Non-Polio Enterovirus (NPEV) isolates have been characterized in
the Democratic Republic of Congo (DR Congo). Moreover, circulating
vaccine-derived polioviruses (PVs) [cVDPVs] isolated during multiple outbreaks
in DR Congo from 2004 to 2018 have been characterized so far only by the
sequences of their VP1 capsid coding gene. This study was carried to i)
investigate the circulation and genetic diversity of NPEV and polio vaccine
isolates recovered from healthy children and Acute Flaccid Paralysis (AFP)
patients, ii) evaluate the occurrence of genetic recombination among EVs
belonging to the Enterovirus C species (including PVs) and iii)
identify the virological factors favoring multiple emergences of cVDPVs in DR
Congo. The biological material considered in this study included i) a collection
of 91 Sabin-like PVs, 54 cVDPVs and 150 NPEVs isolated from AFP patients between
2008 and 2012 in DR Congo and iii) a collection of 330 stool specimens collected
from healthy children in 2013 in the Kasai Oriental and Maniema provinces of DR
Congo. Studied virus isolates were sequenced in four distinct sub-genomic
regions 5’-UTR, VP1, 2CATPase and 3Dpol. Resulting
sequences were compared through comparative phylogenetic analyses. Virus
isolation showed that 19.1% (63/330) healthy children were infected by EVs
including 17.9% (59/330) of NPEVs and 1.2% (4/330) of type 3 Sabin-like PVs.
Only one EV-C type, EV-C99 was identified among the NPEV collection from AFP
patients whereas 27.5% of the 69 NPEV isolates typed in healthy children
belonged to the EV-C species: CV-A13 (13/69), A20 (5/69) and A17 (1/69).
Interestingly, 50 of the 54 cVDPVs featured recombinant genomes containing
exogenous sequences in at least one of the targeted non-structural regions of
their genomes: 5’UTR, 2CATPase and 3Dpol. Some of these
non-vaccine sequences of the recombinant cVDPVs were strikingly related to
homologous sequences from co-circulating CV-A17 and A20 in the
2CATPase region as well as to those from co-circulating CV-A13,
A17 and A20 in the 3Dpol region. This study provided the first
evidence uncovering CV-A20 strains as major recombination partners of PVs. High
quality AFP surveillance, sensitive environmental surveillance and efficient
vaccination activities remain essential to ensure timely detection and efficient
response to recombinant cVDPVs outbreaks in DR Congo. Such needs are valid for
any epidemiological setting where high frequency and genetic diversity of
Coxsackieviruses A13, A17 and A20 provide a conducive viral ecosystem for the
emergence of virulent recombinant cVDPVs. The strategy of the Global Polio Eradication Initiative is based on the
surveillance of patients suffering from Acute Flaccid Paralysis (AFP) and mass
vaccination with live-attenuated vaccine strains of polioviruses (PVs) in
endemic areas. However, vaccine strains of PVs can circulate and replicate for a
long time when the vaccine coverage of the population is low. Such prolonged
circulation and replication of vaccine strains of PVs can result to the
emergence of circulating vaccine-derived polioviruses [cVDPVs] that are as
virulent as wild PVs. In this study, we performed the molecular characterization
of a large collection of 377 virus isolates recovered from paralyzed patients
between 2008 and 2012 in DR Congo and healthy children in 2013 in the Kasai
Oriental and Maniema provinces of DR Congo. We found that the genetic diversity
of enteroviruses of the species Enterovirus C is more important
than previously reported. Interestingly, 50 of the 54 cVDPVs featured
recombinant genomes containing exogenous sequences of the 2C ATPase and/or 3D
polymerase coding genes acquired from co-circulating Coxsackieviruses A13, A17
and A20. Coxsackieviruses A20 strains were identified for the first time as
major partners of genetic recombination with co-circulating live-attenuated
polio vaccine strains. Our findings highlight the need to reinforce and maintain high quality
surveillance of PVs and efficient immunization activities in order to ensure
early detection and control of emerging cVDPVs in all settings where high
frequency and diversity of Coxsackieviruses A13, A17 and A20 have been
documented.
Collapse
Affiliation(s)
- Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
- * E-mail: ,
| | - Hugo Kavunga-Membo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | - Marie-Line Joffret
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Riziki Yogolelo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | | | - Maël Bessaud
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Richard Njouom
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
| | | | - Francis Delpeyroux
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| |
Collapse
|
6
|
Yang T, Yu X, Yan M, Luo B, Li R, Qu T, Luo Z, Ge M, Zhao D. Molecular characterization of Porcine sapelovirus in Hunan, China. J Gen Virol 2017; 98:2738-2747. [DOI: 10.1099/jgv.0.000951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Taotao Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xinglong Yu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Meijun Yan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Binyu Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Runcheng Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tailong Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Zhang Luo
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Dun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| |
Collapse
|
7
|
Bessaud M, Sadeuh-Mba SA, Joffret ML, Razafindratsimandresy R, Polston P, Volle R, Rakoto-Andrianarivelo M, Blondel B, Njouom R, Delpeyroux F. Whole Genome Sequencing of Enterovirus species C Isolates by High-Throughput Sequencing: Development of Generic Primers. Front Microbiol 2016; 7:1294. [PMID: 27617004 PMCID: PMC4999429 DOI: 10.3389/fmicb.2016.01294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/05/2016] [Indexed: 01/07/2023] Open
Abstract
Enteroviruses are among the most common viruses infecting humans and can cause diverse clinical syndromes ranging from minor febrile illness to severe and potentially fatal diseases. Enterovirus species C (EV-C) consists of more than 20 types, among which the three serotypes of polioviruses, the etiological agents of poliomyelitis, are included. Biodiversity and evolution of EV-C genomes are shaped by frequent recombination events. Therefore, identification and characterization of circulating EV-C strains require the sequencing of different genomic regions. A simple method was developed to quickly sequence the entire genome of EV-C isolates. Four overlapping fragments were produced separately by RT-PCR performed with generic primers. The four amplicons were then pooled and purified prior to being sequenced by a high-throughput technique. The method was assessed on a panel of EV-Cs belonging to a wide-range of types. It can be used to determine full-length genome sequences through de novo assembly of thousands of reads. It was also able to discriminate reads from closely related viruses in mixtures. By decreasing the workload compared to classical Sanger-based techniques, this method will serve as a precious tool for sequencing large panels of EV-Cs isolated in cell cultures during environmental surveillance or from patients, including vaccine-derived polioviruses.
Collapse
Affiliation(s)
- Maël Bessaud
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| | | | - Marie-Line Joffret
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| | | | - Patsy Polston
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | - Romain Volle
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | | | - Bruno Blondel
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France
| | - Richard Njouom
- Centre Pasteur du Cameroun, Service de Virologie Yaoundé, Cameroon
| | - Francis Delpeyroux
- Unité de Biologie des Virus Entériques, Institut PasteurParis, France; Institut National de la Santé et de la Recherche Médicale, U994Paris, France; WHO Collaborating Center for Research on Enteroviruses and Viral Vaccines, Institut PasteurParis, France
| |
Collapse
|
8
|
Complete genome analysis of coxsackievirus A24 isolated in Yunnan, China, in 2013. Arch Virol 2016; 161:1705-9. [PMID: 26935916 DOI: 10.1007/s00705-016-2792-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Human coxsackievirus A24 (CVA24) belongs to the species Enterovirus C, and variants of this virus frequently cause acute hemorrhagic conjunctivitis (AHC). The complete genome of the K282/YN/CHN/2013 strain, isolated from a healthy child in Yunnan, China, in 2013, is reported here for the first time. The strain showed 80.0 % and 79.9 % nucleotide sequence identity to CVA24 prototype strain Joseph and CVA24 variant prototype EH24, respectively. The K282/YN/CHN/2013 strain belongs to the CVA24 serotype. Twelve amino acid differences, most of which are in structural regions, were found between the CVA24 and CVA24v strains. In the whole-length genome sequence, only the structural region of K282/YN/CHN/2013 was similar to that of the CVA24 strains; the other genome regions were more similar to those of other members of the species Enterovirus C. Recombination analysis showed evidence of recombination with other viruses of the same species.
Collapse
|
9
|
Lin CH, Wang YB, Chen SH, Hsiung CA, Lin CY. Precise genotyping and recombination detection of Enterovirus. BMC Genomics 2015; 16 Suppl 12:S8. [PMID: 26678286 PMCID: PMC4682392 DOI: 10.1186/1471-2164-16-s12-s8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Enteroviruses (EV) with different genotypes cause diverse infectious diseases in humans and mammals. A correct EV typing result is crucial for effective medical treatment and disease control; however, the emergence of novel viral strains has impaired the performance of available diagnostic tools. Here, we present a web-based tool, named EVIDENCE (EnteroVirus In DEep conception, http://symbiont.iis.sinica.edu.tw/evidence), for EV genotyping and recombination detection. We introduce the idea of using mixed-ranking scores to evaluate the fitness of prototypes based on relatedness and on the genome regions of interest. Using phylogenetic methods, the most possible genotype is determined based on the closest neighbor among the selected references. To detect possible recombination events, EVIDENCE calculates the sequence distance and phylogenetic relationship among sequences of all sliding windows scanning over the whole genome. Detected recombination events are plotted in an interactive figure for viewing of fine details. In addition, all EV sequences available in GenBank were collected and revised using the latest classification and nomenclature of EV in EVIDENCE. These sequences are built into the database and are retrieved in an indexed catalog, or can be searched for by keywords or by sequence similarity. EVIDENCE is the first web-based tool containing pipelines for genotyping and recombination detection, with updated, built-in, and complete reference sequences to improve sensitivity and specificity. The use of EVIDENCE can accelerate genotype identification, aiding clinical diagnosis and enhancing our understanding of EV evolution.
Collapse
|