1
|
Zhang Z, He F, Yi L, Deng Z, Wang R, Shen L, Fu S. Wastewater surveillance together with metaviromic data revealed the unusual resurgence of infectious diseases after the first wave of the COVID-19 outbreak. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134635. [PMID: 38772110 DOI: 10.1016/j.jhazmat.2024.134635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
How to address public health priorities after COVID-19 is becoming a critical task. To this end, we conducted wastewater surveillance for six leading pathogens, namely, SARS-CoV-2, norovirus, rotavirus, influenza A virus (IAV), enteroviruses and respiratory syncytial virus (RSV), in Nanchang city from January to April 2023. Metaviromic sequencing was conducted at the 1st, 4th, 7th, 9th, 12th and 14th weeks to reveal the dynamics of viral pathogens that were not covered by qPCR. Amplicon sequencing of the conserved region of norovirus GI and GII and the rotavirus and region encoding nonstructural protein of RSV was also conducted weekly. The results showed that after a rapid decrease in SARS-CoV-2 sewage concentrations occurred in January 2023, surges of norovirus, rotavirus, IAV and RSV started at the 6th, 7th, 8th and 11th weeks, respectively. The dynamics of the sewage concentrations of norovirus, rotavirus, IAV and RSV were consistent with the off-season resurgence of the above infectious diseases. Notably, peak sewage concentrations of norovirus GI, GII, rotavirus, IAV and RSV were found at the 6th, 3rd, 7th, 7th and 8th weeks, respectively. Astroviruses also resurge after the 7th week, as revealed by metaviromic data, suggesting that wastewater surveillance together with metaviromic data provides an essential early warning tool for revealing patterns of infectious disease resurgence.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China
| | - Fenglan He
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, Jiangxi, China
| | - Liu Yi
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, Jiangxi, China
| | - Zhiqiang Deng
- The Collaboration Unit for State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang 330038, Jiangxi, China
| | - Rui Wang
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian Ocean University, Dalian 116023, China
| | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China.
| | - Songzhe Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Li Q, Chen X, Ai J, Li L, Li C, Zhu Y, Wang R, Duan Y, Zhang M, Xie Z. Clinical and molecular epidemiologic features of enterovirus D68 infection in children with acute lower respiratory tract infection in China. Arch Virol 2023; 168:206. [PMID: 37453955 DOI: 10.1007/s00705-023-05823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 05/25/2023] [Indexed: 07/18/2023]
Abstract
Acute flaccid paralysis (AFP) associated with enterovirus D68 (EV-D68) infection has attracted much attention since an outbreak in the USA in 2014. Notably, EV-D68 was detected in a child with AFP for the first time in China in 2018. In a multicentre study from May 2017 to December 2019, we monitored EV-D68 infections in hospitalized children with acute lower respiratory tract infection (ALRTI) in China. Out of 3,071 samples collected from patients with ALRTI, ten were positive for EV-D68. All patients presented with mild diseases with no neurological symptoms or signs. Phylogenetic analysis based on the VP1 gene showed that all EV-D68 sequences obtained in this study belonged to subclade B3 and were close to sequences of EV-D68 strains obtained from patients with AFP in the USA. Four EV-D68 strains were isolated, and their complete genome sequences were determined. These sequences did not show any evidence of recombination events. To assess their neurotropism, the isolates were used to infect the "neuronal-like" cell line SH-SY5Y, and resulted in a cytopathic effect. We further analysed the structure and sites that may be associated with neurovirulence, including the stem-loop structure in the untranslated region (3'UTR) and identified amino acid substitutions (M291T, V341A, T860N, D927N, S1108G, and R2005K) in the coding region and specific nucleotides (127T, 262C, and 339T) in the 5' UTR. In conclusion, EV-D68 infection was detected in a small number of children with ALRTI in China from 2017 to 2019. Disease symptoms in these children were relatively mild with no neurological complications, and all EV-D68 sequences belonged to subclade B3.
Collapse
Affiliation(s)
- Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lei Li
- Yinchuan Maternal and Child Health Care Hospital, Yinchuan, 750001, China
| | - Changchong Li
- The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Meng Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
3
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
4
|
Tang SH, Yuan Y, Xie ZH, Chen MJ, Fan XD, Guo YH, Hong MH, Tao SH, Yu N. Enterovirus D68 in hospitalized children with respiratory symptoms in Guangdong from 2014 to 2018: Molecular epidemiology and clinical characteristics. J Clin Virol 2021; 141:104880. [PMID: 34153861 DOI: 10.1016/j.jcv.2021.104880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Enterovirus D68 (EV-D68) is an emerging pathogen in humans. EV-D68 causes a wide range of respiratory symptoms in children and has the propensity to cause severe complications. EV-D68 outbreaks are rarely investigated in mainland China. Therefore, in this study, we aimed to investigate the prevalence of EV-D68 in children and to describe the clinical manifestations as well as the phylogeny of EV-D68 in Guangdong Province from 2014 to 2018. METHODS Nasopharyngeal swabs were collected from hospitalized children with respiratory symptoms and screened for respiratory pathogens by fluorescence quantitative PCR and culture. The EV-positive samples were subsequently typed by sequencing the 5'-untranslated region and EV-D68-specific VP1 capsid gene. A phylogenetic tree was constructed by the maximum-likelihood method based on the VP1 gene using ClustalW. RESULTS A total of 1,498 (59.8%) out of 2,503 children were screened positive for ≥1 virus species. Among the 158 (6.31%) EV-positive samples, 17 (0.68%) were identified as EV-D68. Most EV-D68 cases (n = 14) were diagnosed with pneumonia and bronchial pneumonia. No deaths were found in EV-D68 cases. Wheezing occurred in EV-D68 cases more frequently (70.59% vs. 43.26%, P = 0.040) than that of other EVs. All the EV-D68 were of clade B3, which were highly similar to the strains circulating in China. CONCLUSION EV-D68 was the predominant enterovirus type in hospitalized children with respiratory symptoms in Guangdong Province. All the EV-D68 strains belong to clade B3. The development of diagnostic tools is warranted in order to monitor EV-D68 infections in China.
Collapse
Affiliation(s)
- Shi-Huan Tang
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Ying Yuan
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Zheng-Hua Xie
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Man-Jun Chen
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Xiao-Di Fan
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yong-Hui Guo
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Meng-Hui Hong
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Shao-Hua Tao
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Nan Yu
- Innovation Platform for Public Health of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
5
|
Mozhgani SH, Keshavarz M, Mousavi N, Namdari H, Salimi V, Mokhtari-Azad T, Zarei-Ghobadi M, Nadji SA, Ghavami N, Rezaei F. Frequent detection of enterovirus D68 and rhinovirus type C in children with acute respiratory infections. Eur J Clin Microbiol Infect Dis 2020; 40:637-642. [PMID: 33011904 DOI: 10.1007/s10096-020-04051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the prevalence of human rhinoviruses (HRVs) and the emergence of enterovirus D68 (EV-D68) in children. A total of 322 nasopharyngeal swab samples were provided from children with an initial diagnosis of upper and lower respiratory tract infections. A total of 34 and 70 cases were positive for EV-D68 and HRV, respectively. The phylogenetic analysis revealed that the clades A and B are the prevalent genotypes for EV-D68 and the HRV-positive samples belong to three types including HRV-A, HRV-B, and HRV-C. The results showed that EV-D68 and HRV-C are circulating in Iran especially in the winter.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Neda Mousavi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | | | - Seyed Alireza Nadji
- Virology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1471613151, Iran.
| |
Collapse
|
6
|
Reina J, Cabrerizo M, del Barrio E. Análisis epidemiológico de las infecciones respiratorias agudas causadas por el enterovirus D68 clado A, subclado A1 en la población adulta. Enferm Infecc Microbiol Clin 2019; 37:487-488. [DOI: 10.1016/j.eimc.2018.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 10/27/2022]
|
7
|
Shen L, Gong C, Xiang Z, Zhang T, Li M, Li A, Luo M, Huang F. Upsurge of Enterovirus D68 and Circulation of the New Subclade D3 and Subclade B3 in Beijing, China, 2016. Sci Rep 2019; 9:6073. [PMID: 30988475 PMCID: PMC6465342 DOI: 10.1038/s41598-019-42651-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
We conducted a surveillance among acute respiratory tract infection (ARTI) cases to define the epidemiology, clinical characteristics and genetic variations of enterovirus D68 (EV-D68) in Beijing, China from 2015 to 2017. Nasopharyngeal swabs and sputum were collected from 30 sentinel hospitals in Beijing and subjected to EV and EV-D68 detection by real-time PCR. The VP1 gene region and complete genome sequences of EV-D68 positive cases were analyzed. Of 21816 ARTI cases, 619 (2.84%) were EV positive and 42 cases were EV-D68 positive. The detection rates of EV-D68 were 0 (0/6644) in 2015, 0.53% (40/7522) in 2016 and 0.03% (2/7650) in 2017, respectively. Two peaks of EV-D68 infections occurred in late summer and early-winter. Ten cases (23.81%) with upper respiratory tract infection and 32 cases (76.19%) presented with pneumonia, including 3 cases with severe pneumonia. The phylogenetic analysis suggested 15 subclade D3 strains and 27 subclade B3 strains of EV-D68 were circulated in China from 2016 to 2017. A total of 52 amino acid polymorphisms were identified between subclades D1 and D3. These data suggest an upsurge of EV-D68 occurred in Beijing in 2016, the new subclade D3 emerged in 2016 and co-circulated with subclade B3 between 2016 and 2017.
Collapse
Affiliation(s)
- Lingyu Shen
- School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Cheng Gong
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Foundation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100730, P.R. China
| | - Tiegang Zhang
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Maozhong Li
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Aihua Li
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China
| | - Ming Luo
- School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
| | - Fang Huang
- School of Public Health, Capital Medical University, Beijing, 100069, P.R. China.
- Institute for immunization and prevention, Beijing Municipal Center for Disease Prevention and Control, Beijing, 100013, P.R. China.
| |
Collapse
|
8
|
Sun S, Gao F, Hu Y, Bian L, Wu X, Su Y, Du R, Fu Y, Zhu F, Mao Q, Liang Z. A cross-sectional seroepidemiology study of EV-D68 in China. Emerg Microbes Infect 2018; 7:99. [PMID: 29872035 PMCID: PMC5988671 DOI: 10.1038/s41426-018-0103-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/08/2018] [Accepted: 04/29/2018] [Indexed: 02/02/2023]
Abstract
Enterovirus 68 (EV-D68) is associated with respiratory diseases, such as acute upper respiratory tract infections (URTIs), lower respiratory tract infections (LRTIs), pneumonia, neurological diseases, and acute flaccid myelitis (AFM). In recent years, there have been global outbreaks of EV-D68 epidemics. However, there is no effective vaccine against EV-D68, and the understanding of the seroprevalence characteristics of EV-D68 is limited. To evaluate the epidemiological features of this emerging infection in mainland China, serum samples from 20 pairs of pregnant women and their neonates, 405 infants and children (ages 1 month-15 years), and 50 adults were collected to measure EV-D68 neutralizing antibodies (NtAbs). The results showed that the geometric mean titers (GMTs) of pregnant women and their neonates were 168 (95%CI: 93.6-301.7) and 162.3 (95%CI: 89.9-293.1), respectively. The seroprevalence rate of EV-D68 antibodies was negatively correlated with age in 1-month-old to 12-month-old infants (84% for 1-month-old infants vs 10% for 1-year-old infants), whereas it was positively correlated with age for 1-year-old to 15-year-old children (10% for 1-year-old children vs 92% for 15-year-old children). This study evaluated maternal antibodies against EV-D68 in neonates. Our results showed that if mothers had high levels of anti-EV-D68 NtAbs, the NtAbs titers in their neonates were also high. The GMTs and seroprevalence rates of each age group indicated that EV-D68 infection was very common in China. Periodical EV-D68 seroprevalence surveys and vaccination campaigns should be the top priority for preventing EV-D68 infection.
Collapse
Affiliation(s)
- Shiyang Sun
- National Institute for Food and Drug Control, Beijing, China
| | - Fan Gao
- National Institute for Food and Drug Control, Beijing, China
| | - Yalin Hu
- Hualan Biological Engineering Inc, Xinxiang, China
| | - Lianlian Bian
- National Institute for Food and Drug Control, Beijing, China
| | - Xing Wu
- National Institute for Food and Drug Control, Beijing, China
| | - Yao Su
- National Institute for Food and Drug Control, Beijing, China
| | - Ruixiao Du
- National Institute for Food and Drug Control, Beijing, China
| | - Ying Fu
- National Institute for Food and Drug Control, Beijing, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qunying Mao
- National Institute for Food and Drug Control, Beijing, China.
| | - Zhenglun Liang
- National Institute for Food and Drug Control, Beijing, China.
| |
Collapse
|
9
|
Sun SY, Gao F, Hu YL, Bian LL, Mao QY, Wu X, Li JX, Zhu FC, Wang JW, Liang ZL. Seroepidemiology of enterovirus D68 infection in infants and children in Jiangsu, China. J Infect 2018; 76:563-569. [PMID: 29428227 DOI: 10.1016/j.jinf.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Shi-Yang Sun
- National Institutes for Food and Drug Control, Beijing, PR China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, PR China
| | - Ya-Lin Hu
- Hualan Biological Engineering Inc, Xinxiang, PR China
| | - Lian-Lian Bian
- National Institutes for Food and Drug Control, Beijing, PR China
| | - Qun-Ying Mao
- National Institutes for Food and Drug Control, Beijing, PR China
| | - Xing Wu
- National Institutes for Food and Drug Control, Beijing, PR China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, PR China
| | - Jian-Wei Wang
- Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, PR China.
| | - Zheng-Lun Liang
- National Institutes for Food and Drug Control, Beijing, PR China.
| |
Collapse
|
10
|
Dyda A, Stelzer-Braid S, Adam D, Chughtai AA, MacIntyre CR. The association between acute flaccid myelitis (AFM) and Enterovirus D68 (EV-D68) - what is the evidence for causation? Euro Surveill 2018; 23:17-00310. [PMID: 29386095 PMCID: PMC5792700 DOI: 10.2807/1560-7917.es.2018.23.3.17-00310] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BackgroundEnterovirus D68 (EV-D68) has historically been a sporadic disease, causing occasional small outbreaks of generally mild infection. In recent years, there has been evidence of an increase in EV-D68 infections globally. Large outbreaks of EV-D68, with thousands of cases, occurred in the United States, Canada and Europe in 2014. The outbreaks were associated temporally and geographically with an increase in clusters of acute flaccid myelitis (AFM).
Aims: We aimed to evaluate a causal association between EV-D68 and AFM.
Methods: Using data from the published and grey literature, we applied the Bradford Hill criteria, a set of nine principles applied to examine causality, to evaluate the relationship between EV-D68 and AFM. Based on available evidence, we defined the Bradford Hill Criteria as being not met, or met minimally, partially or fully.
Results: Available evidence applied to EV-D68 and AFM showed that six of the Bradford Hill criteria were fully met and two were partially met. The criterion of biological gradient was minimally met. The incidence of EV-D68 infections is increasing world-wide. Phylogenetic epidemiology showed diversification from the original Fermon and Rhyne strains since the year 2000, with evolution of a genetically distinct outbreak strain, clade B1. Clade B1, but not older strains, is associated with AFM and is neuropathic in animal models.
Conclusion: While more research is needed on dose-response relationship, application of the Bradford Hill criteria supported a causal relationship between EV-D68 and AFM.
Collapse
Affiliation(s)
- Amalie Dyda
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Sacha Stelzer-Braid
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,Division of Serology and Virology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, Australia
| | - Dillon Adam
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - Abrar A Chughtai
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia
| | - C Raina MacIntyre
- School of Public Health and Community Medicine, University of New South Wales (UNSW), Sydney, New South Wales (NSW), Australia,College of Public Service and Community Solutions and College of Health Solutions, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
11
|
Yan F, Xiao Y, Li M, Zhang H, Zhang R, Zhou H, Shen H, Wang J, Li W, Ren L. Metagenomic Analysis Identified Human Rhinovirus B91 Infection in an Adult Suffering from Severe Pneumonia. Am J Respir Crit Care Med 2017; 195:1535-1536. [PMID: 28569582 DOI: 10.1164/rccm.201609-1908le] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Fugui Yan
- 1 Second Affiliated Hospital of Zhejiang University Hangzhou, P. R. China
| | - Yan Xiao
- 2 Institute of Pathogen Biology of Chinese Academy of Medical Sciences Beijing, P. R. China
| | | | - Hao Zhang
- 1 Second Affiliated Hospital of Zhejiang University Hangzhou, P. R. China
| | - Rong Zhang
- 1 Second Affiliated Hospital of Zhejiang University Hangzhou, P. R. China
| | - Hongwei Zhou
- 1 Second Affiliated Hospital of Zhejiang University Hangzhou, P. R. China
| | - Huahao Shen
- 1 Second Affiliated Hospital of Zhejiang University Hangzhou, P. R. China.,4 The First Affiliated Hospital of Guangzhou Medical University Guangzhou, P. R. China
| | - Jianwei Wang
- 2 Institute of Pathogen Biology of Chinese Academy of Medical Sciences Beijing, P. R. China
| | - Wen Li
- 1 Second Affiliated Hospital of Zhejiang University Hangzhou, P. R. China
| | - Lili Ren
- 2 Institute of Pathogen Biology of Chinese Academy of Medical Sciences Beijing, P. R. China
| |
Collapse
|
12
|
Guerra JA, Waters A, Kelly A, Morley U, O'Reilly P, O'Kelly E, Dean J, Cunney R, O'Lorcain P, Cotter S, Connell J, O'Gorman J, Hall WW, Carr M, De Gascun CF. Seroepidemiological and phylogenetic characterization of neurotropic enteroviruses in Ireland, 2005-2014. J Med Virol 2017; 89:1550-1558. [PMID: 28071799 DOI: 10.1002/jmv.24765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/24/2022]
Abstract
Enteroviruses (EVs) are associated with a broad spectrum of clinical presentation, including aseptic meningitis (AM), encephalitis, hand, foot and mouth disease, acute flaccid paralysis, and acute flaccid myelitis. Epidemics occur sporadically and are associated with increased cases of AM in children. The present study describes the seroepidemiological analysis of circulating EVs in Ireland from 2005 to 2014 and phylogenetic characterization of echovirus 30 (E-30), enterovirus A71 (EV-A71), and enterovirus D68 (EV-D68). EV VP1 genotyping was applied to viral isolates and clinical samples, including cerebrospinal fluid (CSF), and those isolates that remained untypeable by neutralising anti-sera. An increase in AM cases from 2010 to 2014 was associated with an E-30 genogroup variant VII and sequences clustered phylogenetically with those detected in AM outbreaks in France and Italy. EV-D68 viral RNA was not detected in CSF samples and no neurological involvement was reported. Three EV-A71 positive CSF samples were identified in patients presenting with AM. A phylogenetic analysis of respiratory-associated EV-D68 and EV-A71 cases in circulation was performed to determine baseline epidemiological data. EV-D68 segregated with clades B and B(1) and EV-A71 clustered as subgenogroup C2. The EV VP1 genotyping method was more sensitive than neutralising anti-sera methods by virus culture and importantly demonstrated concordance between EV genotypes in faecal and CSF samples which should facilitate EV screening by less invasive sampling approaches in AM presentations.
Collapse
Affiliation(s)
- Jorge Abboud Guerra
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Allison Waters
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Alison Kelly
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Ursula Morley
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Paul O'Reilly
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Edwin O'Kelly
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Jonathan Dean
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Robert Cunney
- Health Protection Surveillance Centre, Dublin, Ireland.,Children's University Hospital, Dublin, Ireland
| | | | | | - Jeff Connell
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Joanne O'Gorman
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - William W Hall
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Michael Carr
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| | - Cillian F De Gascun
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Xiang Z, Li L, Ren L, Guo L, Xie Z, Liu C, Li T, Luo M, Paranhos-Baccalà G, Xu W, Wang J. Seroepidemiology of enterovirus D68 infection in China. Emerg Microbes Infect 2017; 6:e32. [PMID: 28487560 PMCID: PMC5520479 DOI: 10.1038/emi.2017.14] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
Human enterovirus 68 (EV-D68) is a rarely reported virus that has been linked to
respiratory disease. In recent years, reports about EV-D68 infection have markedly
increased worldwide. However, the epidemiological features of this emerging infection
are not well understood. To evaluate the emerging EV-D68 epidemic, we isolated the
circulating viral strain and investigated the seroprevalence of neutralizing
antibodies (NAbs) in Beijing between 2004 and 2011. We found that the titers of
EV-D68 NAbs were generally low in all age groups in sampled populations in 2004 but
significantly higher in 2009. From 2007 to 2011, the NAbs against EV-D68
significantly increased over time. These findings indicate that EV-D68 has spread
widely in the Chinese population in recent years, although only a limited number of
cases were reported.
Collapse
Affiliation(s)
- Zichun Xiang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| | - Linlin Li
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, China
| | - Lili Ren
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, China
| | - Li Guo
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, China
| | - Zhengde Xie
- Beijing Children's Hospital Affiliated to Capital University of Medical Sciences, Beijing 100045, China
| | - Chunyan Liu
- Beijing Children's Hospital Affiliated to Capital University of Medical Sciences, Beijing 100045, China
| | - Taisheng Li
- Peking Union Medical College Hospital, Beijing 100005, China
| | - Ming Luo
- Beijing Center for Diseases Control and Prevention, Beijing 100013, China
| | | | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Ministry of Health Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, IPB, CAMS-Fondation Mérieux, Institute of Pathogen Biology (IPB), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100730, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
14
|
Genetic divergence of enterovirus D68 in China and the United States. Sci Rep 2016; 6:27800. [PMID: 27278628 PMCID: PMC4899779 DOI: 10.1038/srep27800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/25/2016] [Indexed: 02/08/2023] Open
Abstract
The largest outbreak of human enterovirus 68 (EV-D68) infections associated with severe respiratory illness and neurological complications emerged from the United States in 2014. China reported the circulation of EV-D68 since 2006, but these cases were sporadic and did not display neurological symptoms. Yet viral determinants responsible for the difference in prevalence between China and the U.S. were not clear. We analyzed the genome of 64 reported Chinese EV-D68 strains and found that genogroup replacement has occurred in China since 2006. The six coding mutations (M291T, V341A, T860N, D927N, S1108G and R2005K) associated with neurovirulence reported in American strains were not found in Chinese strains. Moreover, 2014 Chinese strains had a unique R220A mutation in the puff region of VP2 while R220E mutation occurred in other strains. Like other enteroviruses, the loop sequences of the domain X and Y in the 3'-UTR of the Chinese strains are complementary. However, the X loop sequences of the 2014 American strains were not complementary but identical to Y loop sequences. These results indicate that different EV-D68 strains circulated in China and America and the mutations might be responsible for different prevalence. Our findings also provide new evidence for the sequence diversity of EV-D68.
Collapse
|