1
|
Chien YW, Shih HI, Wang YP, Chi CY. Re-examination of the risk of dementia after dengue virus infection: A population-based cohort study. PLoS Negl Trop Dis 2023; 17:e0011788. [PMID: 38055695 DOI: 10.1371/journal.pntd.0011788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Dengue infection can affect the central nervous system and cause various neurological complications. Previous studies also suggest dengue was associated with a significantly increased long-term risk of dementia. A population-based cohort study was conducted using national health databases in Taiwan and included 37,928 laboratory-confirmed dengue patients aged ≥ 45 years between 2002 and 2015, along with 151,712 matched nondengue individuals. Subdistribution hazard regression models showed a slightly increased risk of Alzheimer's disease, and unspecified dementia, non-vascular dementia, and overall dementia in dengue patients than the nondengue group, adjusted for age, sex, area of residence, urbanization level, income, comorbidities, and all-cause clinical visits within one year before the index date. After considering multiple comparisons using Bonferroni correction, only overall dementia and non-vascular dementia remained statistically significant (adjusted SHR 1.13, 95% CI 1.05-1.21, p = 0.0009; E-value 1.51, 95% CI 1.28-NA). Sensitivity analyses in which dementia cases occurring in the first three or five years after the index dates were excluded revealed no association between dengue and dementia. In conclusion, this study found dengue patients had a slightly increased risk of non-vascular dementia and total dementia than those without dengue. However, the small corresponding E-values and sensitivity analyses suggest the association between dengue and dementia may not be causal.
Collapse
Affiliation(s)
- Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-I Shih
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ping Wang
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
| | - Chia-Yu Chi
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
2
|
Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med 2022; 28:911-923. [PMID: 35585196 DOI: 10.1038/s41591-022-01810-6] [Citation(s) in RCA: 253] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/01/2022] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 is not unique in its ability to cause post-acute sequelae; certain acute infections have long been associated with an unexplained chronic disability in a minority of patients. These post-acute infection syndromes (PAISs) represent a substantial healthcare burden, but there is a lack of understanding of the underlying mechanisms, representing a significant blind spot in the field of medicine. The relatively similar symptom profiles of individual PAISs, irrespective of the infectious agent, as well as the overlap of clinical features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggest the potential involvement of a common etiopathogenesis. In this Review, we summarize what is known about unexplained PAISs, provide context for post-acute sequelae of SARS-CoV-2 infection (PASC), and delineate the need for basic biomedical research into the underlying mechanisms behind this group of enigmatic chronic illnesses.
Collapse
Affiliation(s)
- Jan Choutka
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czech Republic.
| | - Viraj Jansari
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA. .,Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav Immun Health 2020; 7:100105. [PMID: 34589866 PMCID: PMC8474605 DOI: 10.1016/j.bbih.2020.100105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus that can cause severe neurological disease in those infected. Those surviving infection often present with long-lasting neurological changes that can severely impede their lives. The most common reported symptoms are depression, memory loss, and motor dysfunction. These sequelae can persist for the rest of the patients’ lives. The pathogenesis behind these changes is still being determined. Here, we summarize current findings in human cases and rodent models, and discuss how these findings indicate that WNV induces a state in the brain similar neurodegenerative diseases. Rodent models have shown that infection leads to persistent virus and inflammation. Initial infection in the hippocampus leads to neuronal dysfunction, synapse elimination, and astrocytosis, all of which contribute to memory loss, mimicking findings in neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). WNV infection acts on pathways, such as ubiquitin-signaled protein degradation, and induces the production of molecules, including IL-1β, IFN-γ, and α-synuclein, that are associated with neurodegenerative diseases. These findings indicate that WNV induces neurological damage through similar mechanisms as neurodegenerative diseases, and that pursuing research into the similarities will help advance our understanding of the pathogenesis of WNV-induced neurological sequelae. In patients with and without diagnosed WNND, there are long-lasting neurological sequelae that can mimic neurodegenerative diseases. Some rodent models of WNV reproduce some of these changes with mechanisms similar to neurodegenerative diseases. There is significant overlap between WNV and ND pathogenesis and this has been understudied. Further research needs to be done to determine accuracy of animal models compared to human patients.
Collapse
|
4
|
Vittor AY, Long M, Chakrabarty P, Aycock L, Kollu V, DeKosky ST. West Nile Virus-Induced Neurologic Sequelae-Relationship to Neurodegenerative Cascades and Dementias. CURRENT TROPICAL MEDICINE REPORTS 2020; 7:25-36. [PMID: 32775145 DOI: 10.1007/s40475-020-00200-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose of Review West Nile virus (WNV) emerged from Central Africa in the 1990s and is now endemic throughout much of the world. Twenty years after its introduction in the USA, it is becoming apparent that neurological impairments can persist for years following infection. Here, we review the epidemiological data in support of such long-term deficits and discuss possible mechanisms that drive these persistent manifestations. Recent Findings Focusing on the recently discovered antimicrobial roles of amyloid and alpha-synuclein, we connect WNV late pathology to overlapping features encountered in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. We also summarize new research on microglial activation and engulfment of neural synapses seen in recovered WNV as well as in neurodegenerative diseases, and discuss how loss of integrity of the blood-brain barrier (BBB) may exacerbate this process. Summary Neuroinvasive viral infections such as WNV may be linked epidemiologically and mechanistically to neurodegeneration. This may open doors to therapeutic options for hitherto untreatable infectious sequelae; additionally, it may also shed light on the possible infectious etiologies of age-progressive neurodegenerative dementias.
Collapse
Affiliation(s)
- Amy Y Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Maureen Long
- College of Veterinary Medicine, Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Diseases, and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lauren Aycock
- School of Medicine, University of Florida, Gainesville, FL, USA
| | - Vidya Kollu
- Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, FL, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Parrino D, Brescia G, Trimarchi MV, Tealdo G, Sasset L, Cattelan AM, Bovo R, Marioni G. Cochlear-Vestibular Impairment due to West Nile Virus Infection. Ann Otol Rhinol Laryngol 2019; 128:1198-1202. [PMID: 31366220 DOI: 10.1177/0003489419866219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES West Nile virus (WNV) has been spreading over the last 20 years. Human infection is asymptomatic in most cases. When the disease becomes clinically manifest, it may involve a range of issues, from a mild infection with flu-like symptoms to a neuroinvasive disease. Albeit rarely, WNV-associated sensorineural hearing loss (SNHL) has also been reported. Here we describe two new cases of SNHL and balance impairment caused by WNV infection. METHODS The patients were investigated with repeated audiometric tests and, for the first time, videonystagmography was also used. RESULTS Unlike findings in the few other published cases, an improvement in audiometric thresholds and vestibular function was documented in both of our patients. CONCLUSIONS In the light of our findings, a prospective study would be warranted on a large series of patients with WNV infection in order: (i) to better define the epidemiology of the related cochlear-vestibular involvement; and (ii) to elucidate the virus-related changes to peripheral and central auditory and vestibular functions.
Collapse
Affiliation(s)
- Daniela Parrino
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Giuseppe Brescia
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - Giulia Tealdo
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Lolita Sasset
- Unit of Tropical and Infectious Diseases, Azienda Ospedaliera- Padova University, Padova, Italy
| | - Anna Maria Cattelan
- Unit of Tropical and Infectious Diseases, Azienda Ospedaliera- Padova University, Padova, Italy
| | - Roberto Bovo
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| |
Collapse
|
6
|
Ronca SE, Dineley KT, Paessler S. Neurological Sequelae Resulting from Encephalitic Alphavirus Infection. Front Microbiol 2016; 7:959. [PMID: 27379085 PMCID: PMC4913092 DOI: 10.3389/fmicb.2016.00959] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
The recent surge in viral clinical cases and associated neurological deficits have reminded us that viral infections can lead to detrimental, long-term effects, termed sequelae, in survivors. Alphaviruses are enveloped, single-stranded positive-sense RNA viruses in the Togaviridae family. Transmission of alphaviruses between and within species occurs mainly via the bite of an infected mosquito bite, giving alphaviruses a place among arboviruses, or arthropod-borne viruses. Alphaviruses are found throughout the world and typically cause arthralgic or encephalitic disease in infected humans. Originally detected in the 1930s, today the major encephalitic viruses include Venezuelan, Western, and Eastern equine encephalitis viruses (VEEV, WEEV, and EEEV, respectively). VEEV, WEEV, and EEEV are endemic to the Americas and are important human pathogens, leading to thousands of human infections each year. Despite awareness of these viruses for nearly 100 years, we possess little mechanistic understanding regarding the complications (sequelae) that emerge after resolution of acute infection. Neurological sequelae are those complications involving damage to the central nervous system that results in cognitive, sensory, or motor deficits that may also manifest as emotional instability and seizures in the most severe cases. This article serves to provide an overview of clinical cases documented in the past century as well as a summary of the reported neurological sequelae due to VEEV, WEEV, and EEEV infection. We conclude with a treatise on the utility of, and practical considerations for animal models applied to the problem of neurological sequelae of viral encephalopathies in order to decipher mechanisms and interventional strategies.
Collapse
Affiliation(s)
- Shannon E Ronca
- Department of Pathology, University of Texas Medical Branch, Galveston, TXUSA; Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TXUSA
| | - Kelly T Dineley
- Department of Neurology, Center for Addiction Research, Rodent In Vivo Assessment Core, Mitchell Center for Neurodegenerative Disorders, University of Texas Medical Branch, Galveston, TX USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TXUSA; Institute for Human Infections and Immunity, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TXUSA
| |
Collapse
|